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Chern-Simons, large N, and topological string

K = K1 ∪ · · · ∪ Kk ⊂ S3 a k-component link.

LK ⊂ T ∗S3 the Lagrangian conormal of K :

LK = {(q, p) ∈ T ∗S3 : q ∈ K , p|TK = 0},

components of LK are ≈ S1 × R2.

ΛK ⊂ ST ∗S3 the Legendrian conormal of K :

ST ∗S3 = {(q, p) ∈ T ∗S3 : |p| = 0}, ΛK = LK ∩ ST ∗S3,

components of ΛK are ≈ S1 × S1.
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Chern-Simons, large N, and topological string

Let Pm1,...,mk
(K ) denote the (un-normalized)

HOMFLY-polynomial of K with Kj colored by the mth
j

symmetric representation smj (1-row Young diagram with m
boxes).

Pm1,...,mk
(K ) =

∫
DA e

ik
4π

CS(A) Πk
j=1 trsmj

(Hol(Kj)),

where the path integral is over gauge orbits of
U(N)-connections A.

Define the HOMFLY wave function:

ΨK (q,Q, x) =
∑

m1,...,mk

Pm1,...,mk
(K )e−m1x1 . . . e−mkxk ,

where q = e
2πi
k+N and Q = qN .
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Chern-Simons, large N, and topological string

The resolved conifold X is the total space of
O(−1)⊕2 → CP1.

Both X and T ∗S3 are resolutions of a quadratic cone in C4.
Topologically the same outside 0-sections. Symplectically
asymptotic at ∞.

By a non-exact shift along a closed 1-form in a neighborhood
of K ⊂ S3, LK can be shifted off the 0-section and becomes a
Lagrangian in X asymtotic to [T ,∞)× ΛK at ∞.
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Chern-Simons, large N, and topological string

Witten relates U(N) Chern-Simons theory in S3 to A-model
open topological string in T ∗S3 with N branes on S3.

Gopakumar-Vafa and Ooguri-Vafa relates A-model open
topological string in T ∗S3 with N branes on S3 to closed
strings X , and open strings connecting these N branes to
branes on LK to strings in X with endpoint only on LK .



Chern-Simons, large N, and topological string

Witten relates U(N) Chern-Simons theory in S3 to A-model
open topological string in T ∗S3 with N branes on S3.

Gopakumar-Vafa and Ooguri-Vafa relates A-model open
topological string in T ∗S3 with N branes on S3 to closed
strings X , and open strings connecting these N branes to
branes on LK to strings in X with endpoint only on LK .



Chern-Simons, large N, and topological string

Combining these results gives

ΨK

(
x ,Q, gs =

2πi

k + N

)
= ZGW (X ; LK )

= exp

(∑
χ,r ,n

Cχ,r ,lg
−χ
s Qrenx

)
,

where ZGW is the Gromov-Witten partition function counting
holomorphic curves in X with boundary on LK ,
t = logQ = Ngs is the area of CP1.



Chern-Simons, large N, and topological string

Quantizing strings connecting LK to itself in the same spirit
upgrades generators (xj , pj) of H1(ΛK ) to operators,
pj = gs

∂
∂xj

. Acting on other string states:

pjΨK (x) = gs
∂

∂x
ΨK .

Short wave asymptotics give

ΨK (x) = exp

(
g−1
s

∫
pdx + . . .

)
= exp

(
g−1
s WK (x) . . .

)
,

where WK (x) is the GW disk potential.
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Chern-Simons, large N, and topological string

From the recursion relation for ΨK we find that

pj =
∂WK

∂xj
,

is a Lagrangian variety VK in (C∗)2k .

The variety VK is closely related to the augmentation variety
of knot contact homology. The relation gives a way to
calculate GW disk potentials via much easier curve counts at
infinity. We will explain this next.
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Knot contact homology

Knot contact homology is a Floer-type theory (the
Chekanov-Eliashberg algebra of ΛK ) associated to the contact
action functional:

c : [0, 1]→ ST ∗S3, c(0), c(1) ∈ ΛK , c 7→
∫
c
pdq,

where pdq is the contact 1-form.

Critical paths of positive action are Reeb chords, flow lines of
R with d(pdq)(R, ·) = 0, pdq(R) = 1.

The knot contact homology algebra AK is CE (ΛK ), the free
unital (non-commutative) graded algebra

AK = C[H2(ST ∗S3,ΛK )]
〈

Reeb chords
〉

= C[e±xj , e±pj ,Q±1]kj=1

〈
Reeb chords

〉
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Knot contact homology

The grading |c | of a Reeb chord is defined by a Maslov index.
For ΛK , Reeb chords correspond to oriented binormal
geodesics on K with grading equal to the Morse index (in an
R3-patch, min = 0, sad = 1, max = 2).

The differential d : AK → AK is linear, satisfies Leibniz rule,
and is defined on generators through a holomorphic curve
count. The dg-algebra (AK , d) is invariant under deformations
up to homotopy and in particular up to quasi-isomorphism.
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Knot contact homology

In general, the knot contact homology can be explicitly
computed from a braid presentation of a link. For a braid on n
strands the algebra has n(n − 1) generators in degree 0,
n(2n − 1) in degree 1, and n2 in degree 2.

The unknot

AU = C[e±x , e±p,Q±1]〈c , e〉, |c | = 1, |e| = 2,

∂e = c − c = 0, ∂c = 1− ex − ep + Qexep
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The trefoil T (differential in degree 1):

AT = C[e±x , e±p,Q±1]〈a12, a21, b12, b21, cij , eij〉i ,j∈{1,2},
|aij | = 0, |bij | = |cij | = 1, |eij | = 2,

∂b12 = e−xa12 − a21,

∂b21 = exa21 − a12,

∂c11 = epex − ex − (2Q − ep)a12 − Qa2
12a21,

∂c12 = Q − ep + epa12 + Qa12a21,

∂c21 = Q − ep + epexa21 + Qa12a21,

∂c22 = ep − 1− Qa21 + epa12a21,



Augmentation variety

Consider AK as a family over (C∗)2k+1 of C-algebras, where
points in (C∗)2k+1 correspond to values of coefficients
(exj , epj ,Q).

An augmentation of AK is a chain map

ε : AK → C, ε ◦ ∂ = 0,

of unital dg-algebras (C lives in degree 0 and has trivial
differential).

The augmentation variety VK is the algebraic closure of{
(exj , epj ,Q) ∈ (C∗)2k+1 : AK has augmentation

}
.
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Augmentation variety

For the unknot U:

AU(ex , ep,Q) = 1− ex − ep + Qexep.

For the trefoil T :

AT (ex , ep,Q) = Q3 − Q3ex − Q2ep + Q2exep

− 2Qexe2p + 2Q2exe2p + Qexe3p

− e2xe3p − Qexe4p + e2xe4p.
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Augmentations and exact Lagrangian fillings

Exact Lagrangian fillings L of ΛK in T ∗S3 induces
augmentations by

εL(a) =
∑
|a|=0

|MA(a)|eA.

The map on coefficients are just the induced map on
homology.



Augmentations and exact Lagrangian fillings

There are two natural exact fillings of ΛK in T ∗S3 (Q = 1):
LK and MK ≈ S3 − K . Thus, ep = 1 and ex = 1 belong to
VK |Q=1 for any K .

For the unknot AU(ex , ep,Q = 1) = (1− ex)(1− ep).
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Augmentations and non-exact Lagrangian fillings

In contrast to the exact case LK ⊂ X supports closed
holomorphic disks and the previous definition of a chain map
does not work because of new boundary phenomena.

Compare the family of real curves in C2, xy = ε, ε→ 0.



Augmentations and non-exact Lagrangian fillings

We resolve this problem by using Fukaya-Oh-Ohta-Ono
obstruction chains: fix a chain σD for each rigid disk D that
connects its boundary in LK to a multiple of a standard
homology generator at infinity.



Augmentations and non-exact Lagrangian fillings

We introduce quantum corrected holomorphic disks with
punctures: these are ordinary holomorphic disks with all
possible insertions of σ along the boundary. In the moduli
space MA(a;σ) of quantum corrected disks, boundary
bubbling becomes interior points.



Augmentations and non-exact Lagrangian fillings

Analyzing the boundary then shows that

εL(a) =
∑
|a|=1

MA(a;σ)eA

is a chain map provided p = ∂WK
∂x . (This substitution counts

quantum corrected disks at infinity.)

We find that p = ∂WK
∂x parameterizes a branch of the

augmentation variety.
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Legendrian SFT

We next consider the full quantization. This involves
generalizing AK to all genus and corresponds to quantizing
VK . We call this theory Legendrian SFT. It requires a
framework involving bounding chains so that there is no
boundary splittings in more complicated holomorphic curves
with boundary. Before going into detail, the structure of the
theory would then be the following:

There is an SFT-potential F = F (ex ,Q, gs) that counts
configurations of rigid holomorphic curves in X with boundary
on LK , bounding chains, and positive punctures. Note that
curves contributing to F must have all positive punctures of
degree 0. We have

F = F0 + F1 + F2 + . . . ,

where Fj counts curves with several positive punctures.
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Legendrian SFT

There is similarly a Hamiltonian H = H(ex , ep,Q, gs) that
counts rigid 1-parameter families of curves at infinity.

The boundary of the 1-dimensional moduli spaces then gives
the equation

e−FHeF = 0, or simply HeF = 0.

Here we need only consider broken curves with one positive
degree 1 chord and the rest degree 0.
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Legendrian SFT

Consider next the counterpart of the substitution p = ∂W
∂x .

When counting arbitrary curves we can make any insertions.
A coefficient ep in H then contributes

e−F egs
∂
∂x eF

which means we should set p = gs
∂
∂x in H.



Legendrian SFT

Note that ΨK (x) = eF0 . Thus using elimination theory in the
non-commutative setting epex = egs exep we should find an
operator equation

ÂK (ex , ep,Q)ΨK (x) = 0,

which gives the recursion for the colored HOMFLY.



Legendrian SFT

We sketch how to define the Legendrian SFT in a way that
should lead to a calculation of H.

Let the degree 1 Reeb chords be denoted b1, . . . bm and the
degree 0 Reeb chords a1, . . . , an

Additional data: a Morse function f on LK which gives
obstruction chains. A 4-chain CK for LK with ∂CK = 2[LK ]
which looks like ±J∇f near the boundary.
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Legendrian SFT

We define the GW-potential eF as the generating function of
oriented graphs with holomorphic curves at vertices, and
intersections with chains at the edges weighted by ±1

2 :

F =
∑

Cχ,m,I g
−χ
s emxai1 . . . air



Legendrian SFT

Let H(bj) denote the count of rigid holomorphic curves in the
symplectization with a positive puncture at bj :

H(bj) =
∑

Cχ,m,n,I ,J g
−χ
s emxenp ai1 . . . air g

l
s

∂

∂aj1
. . .

∂

∂ajl
.

Then if p = gs
∂
∂x , e−FH(bj)e

F counts ends of a
1-dimensional moduli space and in particular:

H(bj)e
F = 0

as desired.



Legendrian SFT

For the unknot there are no (formal) higher genus curves and
the operator equation is

ÂU(ex , ep,Q) = (1− ex − ep − Qexep)ΨU = 0.

For the Hopf link L Reeb chord generators are as for the
trefoil. The relevant parts for the operator H is as follows:

H(c11) = (1− ex1 − ep1 + Qex1ep1) + g2
s ∂a12∂a21 +O(a),

H(c22) = (1− ex2 − ep2 + Qex2ep2) + Qex2ep2g2
s ∂a12∂a21 +O(a),

H(c12) = (ep2e−p1 − Qex2ep2)gs∂a12

+ g−1
s (e−gs − 1)(1− ex2)a21 +O(a2),

H(c21) = (Qex1ep1 − egs ep1e−p2)gs∂a21

+ g−1
s

(
(egs (egs − 1)− e2gs (egs − 1)ex1)ep1e−p2

+(egs − 1)Qex1ep1g2
s ∂a12∂a21

)
a12 +O(a2).
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Legendrian SFT

After the change of variables,

ex
′
1 = egs ex1 , ep

′
1 = egs ep1 ;

ex
′
2 = Q−1e−x2 , ep

′
2 = e−gsQ−1e−p2 ;

Q ′ = egsQ, g ′s = −gs ,

we find the D-module ideal generators

Â1
L = (ex1 − ex2) + (ep1 − ep2)− Q(ex1ep1 − ex2ep2)

Â2
L = (1− e−gs ex1 − ep1 + Qex1ep1)(ex1 − ep2)

Â3
L = (1− e−gs ex2 − ep2 + Qex2ep2)(ex2 − ep1),

in agreement with HOMFLY.



Legendrian SFT

Similarly, for the trefoil we get the D-module ideal generator

ÂT = e5gsQ3(Q − e2gsep)(Q − egse
2p

)

+
(
e3gs (Q − egs e2p)(Q − e2gs e2p)(Q − e3gs e2p)

+ e3gsQe2p(Q − e3gs e2p)(Q − egs ep)

− e3gsQ2µ(1− egsep)(Q − egs e2p)
)
ex

− e3p(1− ep)(Q − e3gse2p)e2x .

in agreement with recursion for colored HOMFLY.



Recursive calculation of the wave function

We next turn to finding the wave function ΨK (x) recursively.

Note first that WK (x) is given by solving an algebraic
equation and hence an analytic function.
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Recursive calculation of the wave function

Using this and the curve counting isomorphism map

CH lin(ΛK )⊕ C∗(K ) → Cone(C∗(Ω(K ,K ),K )→ C∗(K ))

we find that for generic points in VK

rank(CH lin
0 ) = 0, rank(CH lin

1 ) = 1, rank(CH lin
2 ) = 1

Furthermore, if c generates CH lin
1 then the count of disks at

infinity with positive puncture c passing through the reference
curve ξ is generically non-zero.
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Recursive calculation of the wave function

We illustrate the principle of the recursion in the first step, for the
annulus.



Recursive calculation of the wave function

This generalizes to and A-model topological recursion for all
genera. At infinity there are only disks, all higher genus curves
are formal and can be computed via these disks and linking
numbers. (Note that the first step gives the annulus
amplitude needed for usual B-model topological recursion on
the spectral curve VK .)

We consider curves of index 0 and 1. A curve has type (n, χ)
if it has n positive degree 0 punctures and Euler characteristic
χ. An index 0 curve attached to an index 1 curve has
attached type (n0, n1, χ) if it is attached via n0 positive
punctures and chain insertions and has n1 free positive degree
0 punctures and Euler characteristic χ.
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We consider curves of index 0 and 1. A curve has type (n, χ)
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χ. An index 0 curve attached to an index 1 curve has
attached type (n0, n1, χ) if it is attached via n0 positive
punctures and chain insertions and has n1 free positive degree
0 punctures and Euler characteristic χ.



Recursive calculation of the wave function

Assume inductively we know the counts of index 0 curves of
type (n, χ) for −χ+ n < r . Pick a generator b of CH lin

1 and
consider the boundary of index 1 curves of type (0, r) with
positive puncture at b.

The broken curves in the boundary with attached curve of
type (1, 0, r) are all attached at an insertion (the ones
attached at a chord do not contribute since b is a cycle in
CH lin). The contribution is

B(ex ,Q) · F r
0 , B 6= 0.

By the inductive assumption we can then solve for F r
0 in terms

of earlier curves and curves at infinity.
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Recursive calculation of the wave function

For curves of type (j , r − j), j > 0 take a positive puncture at
aj and pick a primitive bj of aj in the linearized complex,
study the boundary of index 1 curves of type (j − 1, r − j)
with positive puncture at bj to see that we can express it in
terms of less complex curves.


