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Scattering amplitudes are essential tools to understand a variety of
physical phenomena from gauge theory to classical and quantum
gravity

A convenient approach is to use modern unitarity methods for
expanding the amplitude on a basis of integral functions

AL—loop _ Z coeff; Integral; + Rational
ieB(L)

What are the intrinsic properties of amplitudes of QFT? How much
can we understand about the amplitudes without having to compute
them?

» What are the generic constraints on the integral coefficients?
» What are the elements of the basis of integral functions?
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Feynman Integrals: parametric representation

Any Feynman integrals with L loops and n propagators

/ J HI'L:1 dDei
r=\|45n v
[Ty g

has the parametric representation

LD v—(L+1)2 n ,
/rZF(V—)J & — s =] fjf’v.
2 " Jxzo (WY, m2x; — V)Vt x
The Symanzik polynomials 1L and V are homogeneous in the x;, . . ., Xn

» 10 is of degree L in P
» V of degree L + 1in P
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What are the Symanzik polynomials?

D
2

dX,‘
1—v;

2 X

]

LD J uv—(L—l—ﬂ
Xi

n
I =T(v——) §(xp=1)
r >0 (UY; m2x;— V)¥ L2 ! g

U = det Q) determinant of the period matrix of the graph O — 390/ 7

D
(a) (b) ()

X + X3 X3 X1 + Xo Xo 0
QZ(a):< X3 X2+x3); Qg(b]: X X + X3 + X5 + Xg X3
0 X3 X3 + X4
X{ + X4 + X5 X5 X4
Q3(c): X5 Xo + X5 + Xg X
X4 Xg X3+ X4 + X
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What are the Symanzik polynomials?

o0 §(1— xp) 1 2 dx
Ir O(J 2 . I’I*LQ 7QH 17’\/,‘
0 (2;mrx;—=V/U)" "2 Uz 4 X

V/U =73 1 rcscnkrksGlx:/Tr, Xs/ Ts; Q) sum of Green'’s function

Dr

Pn

_ 1 1 (o — xs)?
G looP(oc,,ocs;L) :—§|(Xs_ar|+§¥
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The geometry of a Feynman graph

The homogeneous polynomial of n variables and degree L + 1
completely characterises the Feynman graph and its integral

n
Or =U x (Zm,-zx,-)—\?
i=1

» We can recover both Symanzik polynomials
» Determines the graph topology

e the number of propagators is the number of variables n
e the loop order is the degree minus one L = deg(®) — 1
e Number of vertices v = 1 + n— L from Euler characteristic
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From parametric representation to graph

The most general quadric polynomial in P2

it 2\ 03
W 3(x1, X2, X3) E Wi i, i X4 X5 X3
l1+/2+/3 2
ir>0

The graph has n = 3 propagators, L = 1 loop, v = 3 vertices
This can only be a triangle graph

P1

D2

Pi+P2tps=0;  pi#0
p3
. 2 2 2 2 2 2
Oy = (X1 + X2 + X3) (M7X1 + M5X2 + M3 X3) — (PTXoX3 + P5X1X3 + P3X1X2)
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From parametric representation to graph

The most general cubic in P2

i
Ws 5 = Z Wis ip,is X1 X3 X3

iq+ip+ig=3
ir=0

The graph has n = 3 propagators, L = 2 loops, v = 2 vertices
This can only be a sunset graph

p (m )\ p

mg

> 2 2 2
Do = (X1 X2 + X1 X3 + XoX3) (MTX1 + M5X2 + M5X3) — PX1X2X3
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From parametric representation to graph

The most general polynomial of degree nin P71

— . . Iy in
Whn = E Wi, inXy - Xn
i +-+in=n
ir=0

The graph has n propagators, L = n— 1 loops, v = 2 vertices
This can only be a n-loop sunset graphs

—

n n n n
—1 2 2
@n:||X,' E X; E m:X; — p ||X,‘
i=1 i=1 i=1 =1

In general several graphs can occur in particular planar and
non-planar topologies
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Feynman integral and periods

NG

LD Yv—(L+1) n—1

2 A,

ax i

—[D T,
Or(x;)Y L i—1 X i

Qr algebraic differential form on the complement of the graph
hypersurface

Qr € H" 1P\ Xp) Xr:={0r(x;) =0, x € P}
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Feynman integral and periods

LD U8 T gy
Ir=T(v— Z)J Qr; Qr = ~D 1T S
An Or(x)Y "2 5 X
Ap
Ap:i={x1 >0,...,% > 0llxq,..., x)] € P}

with boundary contained in the normal crossings divisor
aAn C ,Hn ::{X‘| ano}
But 0A, N Xr # 0 therefore A, ¢ H, 1(P" "\ Xp)

This is resolved by looking at the relative cohomology

H.(]Pn71 \XI“J ﬂn\ﬂn N XF)
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Feynman integral and periods

I, and X are separated by performing a series of iterated blowups of
the complement of the graph hypersurface (2ioch, Esnault, Kreimer]

The Feynman integral are periods of the relative cohomology after
performing the appropriate blow-ups

H=1 (P \ X T\ 0 Xr)
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Feynman integral and periods

» In QFT one is interested inthe e = (D — D;)/2 (e.g. D, = 4)
expansion of the Feynman integral

Ir = Z C,'€i

i>—n
> The C,' are nu merical periOdS [Belkale, Brosnan; Kontsevich, Zagier; Bogner, Weinzierl]

M := H* (P—\Xr; T\ N Xr)

» The QFT questions: numbers of master integrals for amplitudes,
their differential equations are now reformulated in a
cohomological framework
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When physics and mathematics meet

The central questions about amplitudes in QFT can be reformulated as
Riemann-Hilbert problem for periods

» Compute period explicitly

:( Numerically or by series expansion in the physical region

» Derive the local monodromy

17 unitarity of the S-matrix
» Construct a complete system of differential equations

I Relate this to the integration-by-part method used in QCD
» Understand the new class of special functions that are needed

1. What is needed beyond beyond elliptic multiple polylogarithm?
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Differential equation

M(sj, my) = H*(PP=1\ X T\ I, 0 Xr)

Since ()1 varies when one changes the kinematic variables s; one
needs to study a variation of (mixed) Hodge structure

Consequently the Feynman integral will satisfy a differential equation

Lpr Ir = Sr

The Picard-Fuchs operator will arise from the study of the variation of
the differential in the cohomology when kinematic variables change

Generically there is an inhomogeneous term Sr # 0
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The sunset family
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The sunset family

This talk will be focused on the special families of n-loop sunset graphs
n n n n
Op=]]x D x> mxi—p?*]]x
=1 =1 i=1 i=1

» This family is a nice and important playground for understanding
relations between Feynman integrals and periods

» This family leads to interesting motives : not mixed Tate, non trivial
extensions

» Surprisingly rich: interesting Hodge structure, mirror symmetry

» For p? = m? = ... = m2(Broadnurst] found that special values of
these sunset Feynman integrals are given by L-function evaluated
in the critical band
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The sunset family

The graph polynomials ©, = (—p?) [ [ x; < (1 — #d)n)
n n
bni=) X' x ) mix
i—1 i—1

» ¢, has a reflexive Newton polytope A « R,
> lts polar part A° has only integral points in R”*"
» A°is associated to a noncompact toric Fano n-fold IP o

The sunset graphs lead to 1-parameter families of Calabi—Yau
hypersurfaces in toric Fano n-folds
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The two-loop sunset integral

We consider the sunset integral in two Euclidean dimensions

Jé:JA Qo; Ag:={lx:y:zZ]eP?x>0,y>0z>0}
3
» The sunset integral is the integration of the 2-form

zdx A\ dy + xdy /\ dz + ydz N dx
Qg = — VY 2 —— € H(P? — &)
(mx +mgy + msz)(xz + Xy + yz) — p°xyz

» The sunset family of open elliptic curve
e ={(MEX + M5y + m32)(xZ + Xy + yz) — p°xyz = 0}

» For my = my = mz we have a modular curve € . ~ X;(6)
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The differential operator: from the period

The analytic period of the elliptic curve around p? ~ co has the same
integrand as the Feynman integral but we have just changed the
domain of integration

(%) :J N
[x|=ly|=1

This is the imaginary part or the maximal cut of the amplitude

/\ . Jm(Js(p?)) =
K / fﬁcné(f?m?)6(€1+€2+p)d2£1d2e2

The other period is 71 (s) = log(s) my(S) + @1(8) with @4(s) analytic is
obtained by looking at different unitarity cut cutting less lin€s iprimo, Tancredi
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The differential operator: from the period

The integral is the analytic period of the elliptic curve around p° ~ oo

1 n;
o (P’) ::_ZW ( Z <n1'n2'/73> Hm2 )

nz=0 +np+ng=n

From the series expansion we can deduce the Picard-Fuch differential
operator (the system has maximal unipotent monodromy (uian, todorov. vauy)

Lomo(p?) =0

» With this method one easily derives the PF at all loop order for the
all equal mass sunset and show the order(PF)=loop (vannove]

» Gives for the 3-loop sunset 2 unequal mass PF of order 4, and
Ol’der 6 fOI’ 3 different masses [Vanhove; to appear]
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The differential equation

By general consideration we know that since the integrand is a top
form we have

LFIF:J dBrZJ Br=8r+#0
An A,

Writing the differential equation as 65 = s % s = 1/p?

3
(58 + uls15a+ ap(s)) (5 ls)) =Y + Y_tog(mPlai(s)
i—1
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The differential equation

Using works from (el angel mier-stach) @nd [poran, ker] W€ know that when rank of
the D-module system of differential equations that Y is the Yukawa
coupling

ES .:J Q@/\SEQ@ = 2s° H?:1 i—4sy ;m; +6
& (p?) ds 171 (u2s—1)

The Yukawa coupling is the Wronskian of the Picard-Fuchs operator
and only depends on the form of the Picard-Fuchs operator

Yo — s det(;To(S) 4 (S) )

Imo(s) Lmi(s)

So far all we got can be deduced from the graph polynomial, and the
associated Picard-Fuchs operator.
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The differential equation

The mass dependent log-terms come from derivative of partial elliptic
integrals on globally well-defined algebraic 0-cycles arising from the
punctures on the elliptic curve (siocn, kerr,vanhove)

They are rational function by construction.
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The 2-loop sunset integral as elliptic dilogarithm

The integral divided by a period of the elliptic curve is a function
deflned on the pUnCtured tOfUS [Bloch, Kerr,Vanhove]

oy XY ZY X Z .
j@7t<L2{Z,Z}+L2{X,X}+L2{Y,Y}) mod period

» @, is the elliptic curve period which is real on the line
0 < p? < (my+ mp+mg)?

» The sunset integral is the regulator period (with tame Milnor

symbol) in the K> of the elliptic curve (B1och, vanhove]
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The 2-loop sunset integral as elliptic dilogarithm

Py =[1,0,05; Q =[0,—m8, ml;  x(Pyx(Q)=—1
Py =10,1,05; Q=[-m20,mel; x(Pp)x(Q)=—1
(Pl
! P3=1[0,0,1;  Qg=[-m3,m30;;  x(P3)x(Qg) =—1

Representmg the ratlo of the coordinates on the sunset cubic curve as
functions on £, ~ C* /g7

X GO/X(@0 /X (Ps) Y
Z7 T B /X (PO (x/X(Q) 2

0+ (x) is the Jacobi theta function
x1/2 _ y—1/2

01(x)=qp [0 — g1 —g")(1 — q"/x).

n>1
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The 2-loop sunset integral as elliptic dilogarithm

Since

Jlog(91 (x))dlogx = Z J(Li1 (@"x) +Liy(q"/x) + cste) d log(x)

n>1

= (Lip(q"x) — Lin(q"/x)) + cste log(x)

n>1
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The 2-loop sunset integral as elliptic dilogarithm

We find

i = 2 (& (G ) + & (e ) 75 (e ) o

where

Ex(x) =) (Li, (q"x) —Li, (—q"x)) — > (Li, (q"/x) — Li, (—q"/x)) .
n=0 n>1

C|Ose tO the fOI’m given by [Brown, Levin]. See as We” [Adams, Bogner, Weinzeirl]
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The three-loop sunset graph: integral

S

We look at the 3-loop sunset graph in D = 2 dimensions

» The Feynman parametrisation is given by

3

1 ax
/2 (m,; K2) :J bt}
o =0 (M + 3 0 m2x)(1+ 3% x7") — K2 ,H Xi
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three-loop sunset graph: differential equation

For the all equal mass case the geometry of the 3-loop sunset graph is
a K3 surface (Shioda-Inose family for ' (6)*2) with Picard number 19
and discriminant of Picard lattice is 6

3
(m?+ )Y mx)1+) x ] [x—pP][x=0
s '

The t = p?/m? Picard-Fuchs equation

2

RE d
(tZ(t—4)(t— 16) 5 +6t( — 15 +32)

A 4) 2 (1) = —4

+ (712 — 68t + 64)— i

» One miracle is that this picard-fuchs operator is the symmetric
square of the picard-fuchs operator for the sunset graph (verrii1]
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three-loop sunset graph: solution

» |t is immediate to use the Wronskian method to solve the
differential equation [Bloch, Kerr, Vanhove]

m? 2 (t) = 40 log(q) @+ ()
_ 48+ (1) (24Li3(T, Ge) + 21 Lig(t, (B) + 8Lis(t, (8) + 7Lis(, 1 ))

with Lig(T,Z) [Zagier; Beilinson, Levin]

Lig(,2) = Lig (2) + ) _(Lia(q"2) +Lis (q"z"))

n>1

1 1 1
- <12 |Og(Z)3 + >4 log(q) |Og(Z)2 - 72()“0%((7))3) -

» The 3-loop sunset integral is a regulator period of a motivic class
of the K3 of the the K3 surface [Bloch, Kerr, Vanhove]
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Mirror Symmetry

sunset sunrise
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The sunset Gromov-Witten invariants

Around 1/s = p® = co the sunset Feynman has the expansion

3
Jo(8) = —mg SRS + Z 01— ERO)N&,EZ,% H m,-% gtfo

0y +lp+l3=>0 i=1
(€4.,85.,05)€N3\(0,0,0)

where the Kahler parameters are O, = m?e and A, is the logarithmic
Mahler measure defined by

. dlog xd log y
F:’:m—J log(Dg(X, XY)) —————.
0 o, OBl )/ ) ==
This is related to the holomorphic 7o (s) period near s = 1/p° = 0
dRo(s)

Ty = S§————
0 ds
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The sunset Gromov-Witten invariants

The numbers Ny, ¢, ¢, are local Gromov-Witten expressed in terms of

the virtual integer number of degree ( rational curves by

N€1,€2,€3 =

2

dley,82,03

a3

Ne

6 b3 -
vdrd

H (100) ‘ (k0O) ‘ (110) ‘ (210) ‘ (111) ‘ (310) ‘ (220) ‘ (211) ‘ (221) ‘

N, 2 2/k3 —2 0 6 0 —1/4 —4 10 |

Ny 2 0 —2 0 6 0 0 —4 10 |
| ¢ || (410) | (320) | (311) | (510) | (420) | (411) | (330) | (321) | (222) |
| N, 0 0 0 0 0 0 —2/27 —1 —189/4 |
| ne 0 0 0 0 0 0 0 —1 —48 |
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The sunset Gromov-Witten invariants

For the all equal masses case m; = m, = ms = 1, the mirror map is

Q= =—q (1 —q)™™;  §(n):= (1) <—3> |

n
n>1
where (2) = 0,1, ~1forn=0,1,2 mod 3.

The local Gromov-Witten numbers

Ne _, 728 135 626 751 14407 69767 339013 827191 8096474
6 '8'27' 64’125 54' 343 ' 512 ' 729 ' 500 ' 1331
367837 195328680 137447647 4746482528 23447146631 115962310342

16 ' 2197 ' 392 ' 3375 ' 409 ' 4913

574107546859 2844914597656 1410921149451 10003681368433
B 5832 ’ 6859 o 800 ’ 1323
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The sunset mirror symmetry

» The sunset elliptic curve is embedded into a singular
compactification X of the local Hori-Vafa 3-fold

Y = {1—s(mex+may+mi)(1+x"'+y ") +uv =0} c (C*)?>xC?,

limit of a family of elliptically-fibered CY 3-folds X,
» The base given by @ is a toric del Pezzo surface of degree 6
» We have an isomorphism of A- and B-model Z-variation of Hodge
structure
HS(XZO) ~ Heven( 2}0) '
and taking (the invariant part of) limiting mixed Hodge structure on
both sides yields

the sunset Feynman integral given by the second regulator period of
the motivic cohomology class is identified to the local Gromov-Witten
prepotential for the 3-fold X
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Mirror symmetry for elliptically fibered CY 3-fold

» In the degeneration limit the Yukawa coupling CY 3-fold X leads to
the local Yukawa of the sunset elliptic curve

Yijk :JXQ/\V(SiéjékQ: (l)(l}c X Y@ :JQO/\V;;QO

The hOIOmOfphiC prepotential of [Huang, Klemm, Poretschkin]
cit't'th ¢ . .
F(Q1, Qo, Q3, () = //3! +2—'{t’tf+c,-t’+c+ > ng Liz(QP)
BEH(M,Z)
is mapped to the sunset integral with the identification of the Kéhler
parameter Q, — exp(27it,) = m?Qforr = 1,2, 3 [Klemnnm private

communication]

» Q1 QQy)s

m = : (Q1QQy)3
Q;}

%
Q2

(Q1 Q)3

. me L2
VM = VM3 = %
QB

Q= (QQQQu)¢
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Mirror symmetry for higher sunset integrals

3% The same construction applies to the 3-loop sunset graph where
@4 = 0 defines a family of K3

¥ The same is conjectured to be true for the 4-loop sunset graph
where @5 = 0 defines a family of CY 3-fold. oran, ker
o Not modular in general [Hulek, verill].
e Therefore (elliptic) polylogarithm not enough from 4-loop
At higher-loop loop the geometry is more intricate
&% Need to go beyond the smoothness hypothesis for Kp, usedin

[Lian, Todorov, Yau]

& Need to extend the construction of the motivic conomology
classes and the regulator period of (pDoran, xerr)
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The construction gives new way for computing amplitudes in QFT

» Efficient method for deriving Picard-Fuchs equation for Feynman
integral in geometrical way

» Should help with the integration by part method and fix the
ambiguities in the definition of the loop momentum

Nice recent developments in mathematics

» [Deligne] conjectures and [Eroadnurst] results on the relation
between period and L-functions values (cf (21och, ®err,
Vanhove})

» Recent approach by [znhou] using Hilbert transforms
» Relation to the Gamma class of [colyshev, zagier]
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