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0. Outline

I Differential equations of period integrals of algebraic manifolds, and some
applications. These are related to the computation of observables of 2d
(2, 2) SCFT if the manifolds are Calabi-Yau manifolds.

I Three dimensional canonical singularity and 4d N = 2, 5d N = 1 and 4d
N = 1 superconformal field theories. Canonical singularity naturally
appears in the degeneration limit of Calabi-Yau manifold.



1. Differential equations of period integrals of
algebraic manifolds, and some applications

Based on joint works with
S. Bloch (Chicago & Tsinghua MSC)
A. Huang (Harvard)
B. Lian (Brandeis University)
V. Srinivas (Tata)



A study on the interplay between

SPECIAL FUNCTIONS↔ COMPLEX GEOMETRY



3. Introduction & History

Computing period of integrals is a very important component of computations
in mirror symmetry as was pioneered by candelas et al: When they computed
the partition functions for type B theory of the mirror of the CY quintic. The
most important quantity is the following integral∫

γ

Res
1

f (ψ)

4∑
i=0

(−1)i+1xidx0 ∧ · · · d̂xi · · · ∧ dx4,

of a holomorphic 3-form on the mirror quintic, where

Yψ : f (ψ) := x5
0 + · · ·+ x5

4 + 5ψx0 · · · x4 = 0, ψ ∈ B ⊂ C

is the Dwork family of quintic hypersurfaces, and γ is a locally constant
3-cycle on the mirror quintic.

Candelas spent a great deal of effort to calculate the period for the one
parameter family of CY threefolds. However, it is certainly desirable to
understand the mirror theory when there is more than one parameter. This
was developed by two groups of authors : Hosono-Klemm-lian-Yau,
Candelas-Ossa-Font-Katz-Morrison.



4. Introduction & History

I The computation is very complicated when the number of parameters is
getting bigger. But most important invariants of mirror geometry depends
on the deep understanding of the partition functions and the mirror maps.
They depend on the periods of the integral, where the major tool to
understand them is through the Picard-Fuchs equations.

I The derivation of such equations becomes very nontrivial for general CY
manifolds. The major part of this talk is devoted to studying such
equations which we generalized to cover periods of algebraic manifolds
beyond toric varieties. Historically, after the development by Euler, Gauss,
Riemann, there were works of Picard, Fuchs and also GKZ
(Gelfand-Kapranov-Zelevinsky). Since GKZ is not adequate to cover
non-toric situation, Bong lian and I with An Huang and others started to
develop the theory of tautological system. We shall discuss them here.



5. Euler-Gauss hypergeometric functions

The EG hypergeometric equation is the ODE defined on P1 = C ∪ {∞}:

z(1− z)
d2

dz2
+ [c − (a + b + 1)z ]

d

dz
− ab = 0

where a, b, c ∈ C are fixed parameters.

Every second-order linear ODE on P1 with three regular singular points can be
transformed into this equation.

A EG hypergeometric function is a local solution to this equation. For
c /∈ Z≤0, around z = 0, it has a power series solution of the form

2F1(a, b, c ; z) :=
∑
n≥0

(a)n(b)n
(c)n

zn

n!
,

with radius of convergence 1. Here (α)n =
∏n−1

k=0(α + k) = Γ(α+n)
Γ(α) .



6. From complex geometry to EG functions

The Legendre family of elliptic curves:

Yλ : y2 = x(x − 1)(x − λ), (x , y) ≡ [x , y , 1] ∈ P2

parameterized by λ ∈ B := C− {0, 1}.

For λ ∈ B ,
Yλ 'homeo. T 2.

For a given λ0 ∈ B , we also have canonical identification

H1(Yλ,C) ≡ H1(Yλ0,C) ≡ H1(T ,C) ∼= C2

if λ varies in any contractible neighborhood U of λ0.

The 1-form

ωλ :=
dx

y

is holomorphic on Yλ, so it is d-closed and defines a cohomology class on
[ωλ] ∈ H1(T ,C) ≡ C2. This vector varies holomorphically with λ ∈ U .



7. Period integrals

Fix a basis γ1, γ2 ∈ H1(T ,Z) = H1(T ,Z)∗. Then

[ωλ] = γ∗1〈γ∗1 , ωλ〉+ γ∗2〈γ∗2 , ωλ〉 = γ∗1

∫
γ1

ωλ + γ∗2

∫
γ2

ωλ.

The coefficient functions
∫
γi
ωλ ∈ OB(U) are called period integrals of the

family Yλ.

Remark: Even though they are defined locally, these period integrals admit
(multi-valued) analytic continuations along any path in B . Therefore the
period integrals generate a local system on B .



8. Differential equations for period integrals

Proposition: The period integrals are precisely the solutions to the EG
equation (for a = b = 1

2 , c = 1):

Lϕ := λ(1− λ)
d2

dλ2
ϕ + (1− 2λ)

d

dλ
ϕ− 1

4
ϕ.

Proof. Check that

Lωλ =

(
∂

∂x

(x − 1)2x2

2y3

)
dx

Right side is an exact 1-form on Yλ-finite set.

It follows that

L
∫
γi

ωλ =

∫
γi

Lωλ = 0

by Stoke’s theorem. 2



9. Computing period integrals

Remarks: This effectively reduces the task of computing each integral
∫
γi
ωλ

to one of determining two constants in the general solution to an ODE.

For example, at λ = 0, the curve Yλ develops a node. With a little more work
– basically by studying how the form ωλ develops a pole when λ = 0, we can
determine those constants.



10. Computing period integrals

If γ1 is the basic 1-cycle on Y0 that avoids the node, then∫
γ1

ωλ = 2F1(
1

2
,

1

2
, 1, λ).

If γ2 is the basic 1-cycle that runs through the node, then∫
γ2

ωλ = 2F1(
1

2
,

1

2
, 1, λ) log λ + g1(λ)

where g1(λ) is a unique power series determined by the EG equation.

Thus we have effectively solved an integration problem – elliptic integrals – by
relating it to the geometry of curves. This is the spirit in which we proceed to
study higher dimensional analogues of elliptic integrals.





11. Higher dimensional analogues: Period sheaves

Let B connected complex manifold (parameter space).

Let E → B be a vector bundle equipped with a flat connection

∇ : O(E )→ O(E )⊗ Ω1
B .

Let
〈 , 〉 : O(E )⊗O(E ∗)→ OB

be the usual pairing.

Fix global section s∗ ∈ Γ(B ,E ∗).

Definition: The period sheaf

Π ≡ Π(E , s∗) ⊂ OB

is the image of the map

O(E ) ⊃ ker∇ → OB , γ 7→ 〈γ, s∗〉.



12. Period sheaves from Complex Geometry

Let π : Y → B be a family of d-dimensional compact complex manifolds, with
Yb := π−1(b).

From topology: cohomology groups of fibers Hk(Yb,C) form a vector bundle
E ∗ := Rkπ∗C over B ; dual bundle E = E ∗∗ has fibers Hk(Yb,C), and

〈 , 〉 : O(E )⊗O(E ∗)→ OB

is the Poincaré pairing; E is equipped with a canonical flat (Gauss-Manin)
connection ∇.

Fix s∗ ∈ Γ(B ,E ∗), and represent s∗(b) ∈ Hk(Yb,C) by a closed form on Yb.
Represent section γ ∈ ker∇ by cycle on Yb. So, a local section f ∈ Π(U)
becomes an integral

f (b) = 〈γ, s∗(b)〉 =

∫
γ

s∗(b).

We call this a period integral of Y with respect to s∗.



13. Problem

Fix a compact Kähler manifold X d+1, and assume

π : Y → B

is a family of smooth Calabi-Yau hypersurfaces (complete intersections) in X .
Consider the associated flat bundle E ∗ = Rdπ∗C.

The subspaces
Γ(Yb,KYb

) ⊂ Hd(Yb,C).

form a subbundle Htop ⊂ E ∗.



14. Problem

Key Fact [Lian-Yau]: The line bundle Htop admits a canonical trivialization
in terms of an explicit family version of the Poincare residue map

ω := Res
Ω

f
,

where Ω is a holomorphic (d + 1)−form on certain principal bundle over X ,
and f is the universal section defining the hypersurface family.

This is essentially a consequence of Poincaré sequence.

The Riemann-Hilbert Problem for Period Integrals:
Construct a complete system of partial differential equations for the period
integrals in Π(E , ω).

Goal: To study the explicit solutions and monodromy of this local system.



15. What’s known: hypersurfaces in X = Pd+1

Dwork-Griffiths’ reduction-of-pole method can (in principle) be used to derive
differential equations; usually works for one-parameter families only.

Example. For the Legendre family, this method yields precisely the EG
equation

λ(1− λ)
d2

dλ2
ϕ + (1− 2λ)

d

dλ
ϕ− 1

4
ϕ = 0.

Once an ODE is found, one can apply standard techniques to solve them.



16. What’s known: hypersurfaces in a toric manifold

Let X d+1 be a toric manifold with respect to torus T , Assume c1(X ) ≥ 0, and
assume that generic CY hypersurface in X is smooth. Consider the family
π : Y → B of all such hypersurfaces.

Let t̂ be the Lie algebra of T × C×. Then T induces a linear action on
H0(−KX ), and C× acts by scaling. So, we have a Lie algebra action

t̂→ End H0(−KX ), y 7→ Zy .

Let β : t̂→ C be a character which takes zero on T , and takes 1 on the Euler
operator, as a generator of the Lie algebra of C×.

Each section f ∈ H0(−KX ) restricted to T ⊂ X is a Laurent polynomial. In
fact, the restriction of H0(−KX ) has a basis of Laurent monomials xµi in
x0, .., xd – coordinates on T = (C×)d+1.



17. Toric hypersurfaces: differential equations

Proposition:The period integrals of the family Y of CY hypersurfaces in X
satisfy the PDE system

2lϕ = 0, (Zy + β(y))ϕ = 0, y ∈ t̂

where the l are integral vectors such that
∑

i liµi = 0,
∑

i li = 0, and

2l :=
∏
li>0

(
∂

∂ai
)li −

∏
li<0

(
∂

∂ai
)−li

This system is called a GKZ hypergeometric system.

Remark: A theorem of GKZ says that solution space of this system is finite
dim. However, this system is never complete – there are always more solutions
than period integrals. But there is a conjectural way to pick out the period
integrals among solutions.



18. Beyond Toric

There were a few more isolated examples on the RH problem for period
integrals beyond toric hypersurfaces between 1996-2010.

For example, the problem was open even for the case of hypersurfaces in a
flag variety (i.e. GLn/P).

We’ll now discuss a partial solution to this problem for a large class of
manifolds including flag varieties.





19. Tautological Systems

Consider the case of a general projective manifold X .

Data & notations:
X : projective manifold
G : complex algebraic group (a group defined by algebraic equations), with Lie
algebra g
G × X → X , (g , x) 7→ gx , a group action
L: an equivariant base-point-free line bundle on X
V := H0(X , L)∗

φ : X → PV the corresp. equivariant map
Iφ: the ideal of φ(X )
〈, 〉: natural symplectic pairing on TV ∗ = V × V ∗

DV ∗: the ring of polynomial differential operators on V ∗



20. Example to keep in mind

X = P2

G = PSL3

L = O(3)
V ∗ = Sym3 C3

φ : X ↪→ PV is the Segre embedding, [z0, z1, z2] 7→ [z3
0 , z

2
0 z1, z

2
0 z2, .., z

3
2 ].

Iφ=the quadratic ideal generated by the Veronese binomials.
DV ∗= the Weyl algebra C[a0, ..., a9,

∂
∂a0
, .., ∂

∂a9
].



21. Group actions

Define a Lie algebra map (Fourier transform):

V ∗ → Der Sym(V ), ζ 7→ ∂ζ , ∂ζa := 〈a, ζ〉.

The linear action G → Aut V induces Lie algebra map

g→ Der Sym(V ), x 7→ Zx .

Let ai and ζi be any dual bases of V ,V ∗. Then ∂ζi = ∂
∂ai

.



22. Tautological systems

Definition: Fix β ∈ C. Let τ(X , L,G , β) be the left ideal in DV ∗ generated
by the following differential operators:
{p(∂ζ)|p(ζ) ∈ Iφ}, (polynomial operators)
{Zx |x ∈ g}, (G operators)
εβ :=

∑
i ai

∂
∂ai

+ β, (Euler operator.)
We call this system of differential operators a tautological system.



23. Regularity & Holonomicity

Theorem: [Lian-Song-Yau] Suppose X has only finite number of G orbits.
Then the tautological system τ(X , L,G , β) is regular holonomic. Moreover,
the solution rank is bounded above by the degree of X 7→ PV if the C[X ] is
Cohen-Macaulay.

Corollary: Any formal power series solution is analytic; the sheaf of solutions
is a locally constant sheaf of finite rank on some open V ∗gen ⊂ V ∗.



24. From complex geometry to special functions

Let X be a compact complex G -manifold such that −KX is base point free.
Consider the family Y of all CY hypersurfaces in X .

Theorem: [Lian-Yau] The period integrals of the family Y∫
γ

ω

are solutions to the tautological system τ(X ,−KX ,G , 1).

Remark: The special case when X = F (d1, .., dr ; n) and G = SLn, this was a
result of L-S-Y.



25. Solution rank of τ – special case

Consider the family of CY hypersurfaces Yσ in X , and write
τ ≡ τ(X ,−KX ,G , 1) for the corresponding tautological system.

Theorem: [Bloch-Huang-Lian-Srinivas-Yau] Let G be a semisimple group and
X n a projective homogeneous G -space (i.e. G/P), such that
g⊗ Γ(X ,K−rX ) � Γ(X ,TX ⊗ K−rX ). Then the solution rank of τ at any point
σ is dimHn(X − Yσ).

Remark: (1) It was conjectured that the statement is true without the
surjectivity assumption. The latter seems difficult to check in general.

(2) The proof uses a method of Dimca to interpret the de Rham cohomology
of the complement and the Lie algebra homology group of certain g-module.



26. Solution rank of τ & the completeness problem

Theorem: [Huang-Lian-Zhu] Geometric rank formula. Let G be a
semisimple group and X n a projective homogeneous G -space. Then the
solution rank of τ at any point σ is dimHn(X − Yσ).

Recall that the period sheaf Π ≡ Π(E , ω) ⊂ OB is the image of the map
O(E ) ⊃ ker∇ → OB , γ 7→ 〈γ, ω〉,

and that rk Π(E , ω) ≤ solution rk of τ . When is this an equality, i.e. when is
τ complete?

Corollary: Suppose X is a projective homogeneous space. Then the
tautological system τ is complete iff the primitive cohomology Hn(X )prim = 0.



27. Solution rank of τ & the completeness problem

Corollary: For X = Pn−1, G = PSLn, the system τ is complete.

Remark: This was conjectured by Hosono-Lian-Yau (1995).

Remark: The geometric rank formula is proved using the Riemann-Hilbert
correspondence [Kashiwara, Mebkhout].



28.Algebraic rank formula

Theorem: [Bloch-Huang-Lian-Srinivas-Yau] Let G be a semisimple group and
X a projective homogeneous G -space. Then the solution rank of τ at any
point σ is dimH0(g⊕ C,⊕∞j=0Γ(X ,K−jX )eσ).

Example: G = PSLn, and X = Pn−1. Then K−1
X = O(n). Let x1, ..., xn be

the standard homogeneous coordinates of X . Our module is the span of heσ,
where h is a monomial of degree divisible by n. g⊕ C acts on this space as
operators xi

∂
∂xj

, 1 ≤ i 6= j ≤ n, and xi
∂
∂xi

+ 1, 1 ≤ i ≤ n.



29. Large complex structure limit candidate

It is of particular interest to find points where the solution rank of τ is exactly
1, i.e. by the rank thoerem points σ such that dimHn(X − Yσ) = 1: these are
candidates of the so-called large complex structure limit (LCSL) in mirror
symmetry.

For the Grassmannian G (2, n), a candidate is given by x12x23...xn1

[B-H-L-S-Y], where xij are Plücker coordinates. The construction is
generalized to all projective homogenous spaces G/P in [H-L-Z], based on a
classical multiplicity theorem on Verma modules [B-G-G]

Very recently, it appears that mod p solutions to tautological systems give
strong constraints on mod p behavior of the unique holomorphic period
integral at any large complex structure limit point, for almost all primes p.
These constraints may be enough to provide complete information about the
period. Together with a Torelli type lemma, this may be used to prove that
the large complex structure limit is unique (if it exists) in the moduli space in
certain important situations, including hypersurfaces in Pn, and more generally
in homogeneous varieties.



30. Chain integral solutions

I The injective map Hn(X − Y∗)→ HomD(τ,Oan) (local solution space of
τ) is not surjective in general, (e.g. X being toric) where HomD(τ,Oan) is
in general given as compactly supported middle cohomology of a perverse
sheaf.

I Remark: This generalizes the famous GKZ formula for toric X , giving the
generic rank of the GKZ system τ as the volume of a convex polytope in
Rn: when τ is a GKZ system, the geometric rank formula reproduces this
GKZ volume rank formula.

I Proposition: More concretely, denote Ub := X − V (b), and ∪D the
union of all G -invariant divisors in X (which may be empty), for any
relative cycle C ∈ Hn(Ub,Ub ∩ (∪D)), the chain integral

∫
C

Ω
fb

is a local
analytic solution to τ at b.

I We understand the above chain integral map from Hn(Ub,Ub ∩ (∪D)), to
the space of local holomorphic solutions of τ at b, in several interesting
cases.



31. Chain integral solutions

I Theorem: [Huang,Lian,Yau,Zhu] Let X be a smooth toric variety, and
take G = T to be the torus acting on X with the open dense orbit, then
the chain integral map is an isomorphism.

I Proof is based on a general geometric formula for τ due to
Huang,Lian,Zhu, and some local Weyl algebra computation in the toric
case.

I Remark: Note that τ in this case reduces to a GKZ system. This
theorem gives a canonical geometric construction for all solutions to this
GKZ system. For e.g. X = P2, this was explicitly realized by physicists
Avram et al (who call these chain integrals “semi-periods”).

I Theorem: [Huang,Lian,Yau,Zhu] Suppose X = G/B is a complete flag
variety, and take the group in defining τ to be a Borel subgroup B , then
the chain integral map is an isomorphism.

I There are generalizations of these results to τ associated to other groups.
The chain integral map is not surjective in general, for interesting
geometric reasons: there could be lower dimensional chains invariant
under the group action, that can contribute to the solutions of τ . On the
other hand, there is a direct generalization of these results to the general
type case.



32. The Hyperplane Conjecture
I Mirror symmetry for toric CY hypersurfaces [Batyrev][Batyrev-Borisov]:
• ∆,∆∨: reflexive pair of dual polytopes in Rn

• Σ,Σ∨: respective fans over their faces
• X = XΣ, X∨ = XΣ∨: associated ∆-regular Fano toric varieties,

i.e. generic Yb ⊂ X intersects each T -orbit transversally.

Then a crepant resolution X̃ → X gives a crepant resolution Ỹb → Yb.

I Assume ∆,∆∨ admit regular projective triangulations, i.e. a unimodular
triangulation with each n-simplex having a vertex at 0.

• X̃ → X , X̃∨ → X∨: the corresponding projective resolutions.
• D1, ..,Dp ∈ H2(X̃ ,Z): the T -invariant divisors in X̃ .

Put D0 := −
∑p

i=1 Di = −[Ỹ ].

• M+ ⊂ H2(X̃ ,Z): the set of integral points in the Mori cone of X̃ .

I Theorem: [GKZ ’90][Adolphson ’97] For the universal CY family in X̃∨

rk sol(τGKZ ) = n! vol(∆).

I Solutions to τGKZ [HLY ’95]. Put U := {|a0| >> 0}, and introduce the
‘B-series’

BX̃ : U → H•(X̃ ,C)

BX̃ (a) =
1

a0

∑
`=(`0,..,`p)∈M+

Γ(−D0 − `0 + 1)∏p
i=1 Γ(Di + `i + 1)

a`+D .



33. The Hyperplane Conjecture

I Theorem: [HLY ’95] Π(ω) ( sol(τGKZ ) = 〈BX̃ 〉.

I Hyperplane Conjecture: [HLY 95’] The period sheaf ΠỸ∨ ≡ Π(ω) of

the universal family of mirror CYs Ỹ ∨ is generated by the functional
components of the cup product [Ỹ ] ∪ BX̃ :

ΠỸ∨ = 〈[Ỹ ] ∪ BX̃ 〉.
Thus, the cup product sheaf is independent of the choice of X̃ → X .

I Example: Take
X = P4, X∨ = P4/(Z5)3.

Then we have the well-known formula of Candelas et al:

BX̃ (a) =
1

a0

∑
d≥0

Γ(5H + 5d + 1)

Γ(H + d + 1)5
zd+H , z = −a1 · · · a5

a5
0

.

The cup product sheaf 〈5H ∪BX̃ 〉 agrees with the rank 4 period sheaf ΠỸ∨

of mirror quintic threefolds, as predicted by the hyperplane conjecture.

I Example: Now take X = P4/(Z5)3, X∨ = P4.
Then the hyperplane conjecture describes the rank 204 period sheaf ΠỸ∨

of quintics in P4. But proving the hyperplane conjecture becomes harder.



34. The Hyperplane Conjecture

I Main difficulties:
• Many different crepant resolutions X̃ → X , each involving quite
complicated combinatorial choices.
• Usually none of the crepant resolution are Fano, making it hard to
compute cup product sheaf.
• The period sheaf ΠỸ∨ was not well understood – even for the quintics –
until three years ago.

I Strategy: Blow down X̃ to a minimal canonical model that is Fano
forgetting all the combinatorial choices. Use resolution-independent way
to describe the cup product sheaf.

I Basic ideas: To explain the main ideas, we’ll mostly focus on the case

X∨ = Pn and X =the mirror Pn.

General case is a bit more involved.



35. Idea of proof: 1. D-module description of period
sheaf

I First, we want to construct a complete D-module τ for ΠỸ∨ such that

ΠỸ∨ = sol(τ) ⊃ 〈[Ỹ ] ∪ BX̃ 〉.

I Let τeGKZ = τ(X̃∨,Aut(X̃∨)), i.e. the tautological system obtained from

τGKZ by enlarging the symmetry group from T to Aut(X̃∨).

I For X∨ = Pn, PHn(X∨) = 0. Then the Completeness Theorem implies
τeGKZ is a complete D-module for ΠỸ∨, so the equality above holds in this
case. Hence

rk ΠỸ∨ = rk sol(τeGKZ )

I Next, to show the inclusion above:
Theorem: [Lian, M.Zhu ’17] For any mirror pair X̃ , X̃∨, the cup

product sheaf is Aut(X̃∨)-invariant. In other words, the cup product sheaf
is a subsheaf of ΠỸ∨.



36. Idea of proof: 2. Compare H•(X̃ ) and H•(X )

I For reverse inclusion 〈[Ỹ ] ∪ BX̃ 〉 ⊃ ΠỸ∨, it reduces to proving

rk [Ỹ ]∪ = rk ΠỸ∨.

I If [Ỹ ] is ample, we can use Lefschetz:

rk(cup product sheaf) = rk[Ỹ ]∪ = dimH•(X̃ )/ dimPH•(X̃ ).

But [Ỹ ] is only semi-ample in general, hence Lefschetz can fail.

I Idea: Compare H•(X̃ ) and H•(X ) under π : X̃ → X , and express [Ỹ ]∪ in
terms of [Y ]∪ on the singular space X . Then apply hard Lefschetz to

compute rk[Y ]∪ in each degree on X=the minimal Fano blow-down of X̃ .



37. Second application of the RH problem –
monodromy invariant differential zero loci

I As before, begin with a Fano G -variety X with finite number of orbits,
and consider the period sheaf Π(ω) of the universal CY family in X . We
shall assume that the tautological system τ = τ(X ,G ) is complete:

Π(ω) = sol(τ).

I Problem: Fix a differential operator δ ∈ DV∨ which is homogeneous
under Gm y V ∨. Describe the zero set cut out by the local system
δΠ(ω) on B ⊂ V ∨:

N (δ) := {b ∈ B | δs(b) = 0, ∀s ∈ Π(ω)}.

I Motivation: Describing the zeros of special functions has been an old
question in mathematics beginning from the time of Riemann.
Investigations of zeros of classical hypergeometric functions began as early
as the 1920s by E. Hille and his contemporaries. More recent work in this
direction involving generalized hypergeometric functions has been carried
out by Ki, Kim, Duke, Imamoglu, Eichler and Zagier.

I We shall consider the projectivization of N (δ) and its closure

N (δ) ⊂ PV ∨.



38. Projectivity of N (δ)

I Proposition: [Chen, Huang, Lian, Yau ’17] Let δ ∈ DV∨ be a
differential operator which is homogeneous under Gm y V ∨. Then N (δ):
the closure of the projectivization of the zero locus of the δ−derivative of
periods is a projective variety.

I N (δ) can be empty in general.
Conjecture: If δ ∈ C[∂] is homogeneous under Gm y V ∨ with order at
least 1, then N (δ) 6= ∅.

I Example: Take X = P1. Then Π(ω) = 〈∆−1/2〉 where ∆ = 4a1a2 − a2
0.

For generic δ ∈ C[∂] homogeneous under Gm y V ∨ with order d ,
N (δ) ⊂ PV ∨ = P2 is a curve of degree d .



39. Vanishing criterion

I Theorem:(Differential zero criterion) [CHLY ’17]
Let δ ∈ DV∨ and b ≡

∑
bia
∨
i ∈ B . Then

b ∈ N (δ)⇐⇒ δe f (b) ∈ Z∨ĝ Re
f (b).

i.e. b is a point in the zero locus, if and only if δe f (b) vanishes in the Lie
algebra coinvariant space in the algebraic rank formula.

I This gives a linear algebraic way to determine which δ ∈ DV∨ kills
sol(τ)b, say by writing a basis of the space Z∨ĝ Re

f (b).

I The proof relies on an Lie algebraic description of τ [BHLSY ’14].



40. Hypergeometric functions – the case X = P2

I Classical theory: Periods of elliptic curves form a rank 2 local system
on the j-plane P1

j . It is governed by the Weierstrass PF equation:

ϕ′′ +
1

j
ϕ′ +

31j − 4

144j2(1− j)2
ϕ = 0.

Note: Under a change of variable this is Gauss hypergeometric equation
for 2F1(1

2 ,
1
2 , 1; z).

I Lifting to τeGKZ : We can lift the local system to the section space
V ∨ = Γ(P2,O(3)), and consider the universal family of cubic curves in P2.
By the Completeness Theorem, Π(ω) is governed by τeGKZ = τ(P2,PGL3).
We can view τeGKZ as the lifting of the ODE under the base change:

B 3 b = (b0, .., b9) 7→ j =
g2(b)3

g2(b)3 − 27g3(b)2
∈ P1

j .

The cubic curve Yb then corresponds to the elliptic curve
y2 = 4x3− g2(b)x − g3(b), where g2(a), g3(a) ∈ C[a]PGL3 are the classical
Aronhol invariant polynomials of degree 4 and 6.

I Proposition: Under the base change, the functions ϕ and s ∈ sol(τeGKZ )
are related by

ϕ(j) = ϕ

(
g3

2

g3
2 − 27g2

3

)
= g2(b)1/4s(b).



41. Differential zero locus – cubic curve periods
Next, we give the first nontrivial case of the conjecture on non-emptyness of
N (δ):

I Corollary: [CHLY ’17] For generic δ ∈ C[∂]1, the projective variety
N (δ) ⊂ PV ∨ = P9 is nonempty and has dimension 7.

I Proof: Put G = PGL3, g = LieG , and consider G y V ∨ ≡ C[∂]1. We
argue that N (δ) 6= ∅ if δ lies in a stable G -orbit. It is well-known that
stable G -orbits are exactly the dense set B ⊂ V ∨ consisting of smooth
curves.

I First, the Differential Zero Criterion above, together with Hodge theory in
terms of Jacobi rings, implies

b ∈ N (δ)⇐⇒ δ = Z∨x · f (b), ∃x ∈ g⇐⇒ δg2(b) = δg3(b) = 0.

Fix b ∈ B . Then {Z∨x · f (b) | x ∈ g} ⊂ V ∨ has dimension 8. The orbit
G · δ is closed in PV ∨ and has dimension 8, so they intersect in PV ∨.

I Thus ∃g ∈ G , x ∈ g, such that g · δ = Z∨x · f (b). Hence for some x ′ ∈ g

δ = Z∨x ′ · f (g−1b), i .e. g−1b ∈ N (δ).

Thus if G · δ is stable, then N (δ) intersects every stable orbit G · b.



42. Equations for N (δ)
We can turn the proof into a set of equations for the projective variety N (δ).

I Fix bases (a∨i ) of V ∨, and (xj) of g. Write

δ =
∑
i

λi∂ai ≡
∑
i

λia
∨
i , b =

∑
i

bia
∨
i , x =

∑
j

cjxj .

Then the differential zero criterion δ = Z∨x · f (b), ∃x ∈ g takes the

form of a linear equation

Λ ≡ (λ1, λ2, ...)
t = M(b)(c1, c2, ...)

t

having solution.

I This is equivalent to

rkM(b) = rk(M(b)|Λ).

This gives an effective way to compute the equations for the differential
zeros of Π(ω), together with a stratification of this zero loci.

I Translating back into the Gauss hypergeometric function ϕ, we obtain

δ(g
−1/4
2 ϕ

(
g3

2

g3
2−27g2

3

)
)(b) = 0 iff b satisfies the above algebraic equation.



43. Three dimensional canonical singularity and
superconformal field theories

Joint work with Dan Xie (Harvard).



44. Motivation

I Two dimensional ADE singularity is very useful in studying
superconformal field theory (SCFT): It leads to the classification of 6d
(2, 0) SCFT (Witten, 1995); Branes probing these singularities give
another way of engineering SCFT (Douglas-Moore, 1996).

I The main purpose of a series of papers (DX, Yau 15-17) is to use three
dimensional analog of 2d ADE singularity to study SCFT in d ≥ 4.

I The main advantage of this approach is that the classification and the
description of quantum moduli space are reduced to much simpler
geometric problems.



45. Canonical singularity

A canonical singularity X is defined as follows (Reid 81):

I The Weil divisor KX is Q-Cartier, i.e. there is an integer r such that rKX

is a Cartier divisor.

I For any resolution of singularity f : Y → X , with exceptional divisors
Ei ∈ Y , we have

KY = f ∗KX +
∑
i

aiEi , (0.1)

with ai ≥ 0. r is called index of the singularity. If ai > 0 for all
exceptional divisors, it is called terminal singularity.

Two dimensional canonical singularity has a ADE classification:

An : x2 + y2 + zn = 0 (0.2)

Dn : x2 + yn−1 + zy2 = 0

E6 : x2 + y3 + z4 = 0

E7 : x2 + y3 + yz3 = 0

E8 : x2 + y3 + z5 = 0



46. Canonical singularity

Three dimensional canonical singularity has following properties:

I There exists a cyclic cover of the index r canonical singularity by index 1
singularity. The index 1 singularity is called rational Gorenstein singularity.

I There exists a crepant partial resolution f : Y → X , i.e.

KY = f ∗KX (0.3)

such that Y is Q-factorial and has only terminal singularity. Such
resolutions are not unique, but the number of crepant divisor is the same!

I The index one terminal singularity is classified by following isolated cDV
singularity:

f (x , y , z) + tg(x , y , z , t) = 0. (0.4)

here f (x , y , z) is the 2-dimensional ADE singularity.



47. Canonical singularity

There are no complete classifications of 3d canonical singularity, but we have a
huge class of examples:

I Quotient singularity C 3/G , with G a finite group and G ∈ SL(3).

I Toric Gorenstein singularity.

I Quasi-homogeneous Hypersurface singularity f (z1, z2, z3, z4) satisfying the
condition

f (λqi zi) = λf (zi),
∑

qi > 1. (0.5)

We are going to use three dimensional canonical singularity X to study
four dimensional N = 2 SCFT, five dimensional N = 1 SCFT, and four
dimensional N = 1 SCFT. We will focus on the constraint on X from
superconformal invariance, and the description of quantum moduli space.



48. 4d N = 2 SCFT

Here are some basic facts of 4d N = 2 SCFT:

I 4d N = 2 SCFT has a SO(2, 4)× SU(2)R × U(1)R symmetry group.

I It can have a Coulomb branch where generically the low energy theory is
described by abelian gauge theory, and U(1)R symmetry acts on this
branch. It is an interesting and challenging problem to find the
Seiberg-Witten solution which describes the low energy effective theory on
the Coulomb branch.

One can get 4d N = 2 SCFT by putting type IIB string theory on the
following background (Shapere, Vafa, 99; DX, S.T. Yau, 15):

R1,3 × X . (0.6)

Here X is a 3-fold isolated canonical singularity with the following constraint:

I X admits a C ∗ action (U(1)R symmetry).



49. 4d N = 2 SCFT

The Coulomb branch solution is given by the mini-versal deformation of
singularity X , i.e.

F (x , S) = 0, F (x , 0) = X . (0.7)

with S parameterizing the Coulomb branch. There is a Kodaira-Spencer map
(isomorphism):

KS : TS ,0 → T 1 (0.8)

T 1 is a vector space characterizing the infinitesimal deformations and we can
read the Coulomb branch spectrum from it.
Remark: In general, there is a non-empty vector space T 2 which implies that
there is non-trivial chiral ring relation for Coulomb branch spectrum.
Example: The miniversal deformation for hypersurface singularity is:

F (λ, z) = f (z) +

µ∑
α=1

λαφα (0.9)

φα is the monomial basis of Jacobian algebra Jf = C [z1,...,z4]

( ∂f
∂z1

,..., ∂f
∂z4

)
.



50. 5d N = 1 SCFT

Here are some basic facts about 5d N = 1 SCFT:

I It has a SO(2, 5)× SU(2)R symmetry group.

I It can have a Coulomb branch which is parameterized by real numbers.

5d N = 1 SCFT can be engineered by putting M theory on following
background:

R1,4 × X . (0.10)

Here X is a three dimensional canonical singularity. The Coulomb branch is
described by the crepant resolution of the singularity.
Example: The three dimensional toric Gorenstein singularity is described by a
two dimensional convex polygon:



51. 5d N = 1 SCFT

The crepant resolution is achieved by finding the unimodular lattice
triangulation of the polygon:

I Many different crepant resolutions: each crepant resolution gives a
chamber of Coulomb branch. One can also compute the prepotential in
each chamber.



52. 4d N = 1 SCFT

Here are some basic facts of 4d N = 1 SCFT:

I It has a SO(2, 4)× U(1)R symmetry group.

I The chiral operators form a chiral ring, and U(1)R symmetry group acts
on these operators. The moduli space can be read from the chiral ring.

Consider type IIB string theory on the following background

R1,3 × X , (0.11)

where X is a three dimensional canonical singularity. One gets four
dimensional N = 1 theory by putting N D3 branes on the tip of X . To get a
4d N = 1 SCFT, we need to impose the following conditions on X :

I There is an effective C ∗ action on X .

I X has to be K stable (Collins, Xie, Yau, 16), where K stability is
interpreted as the stability of the chiral ring of field theory.



53. 4d N = 1 SCFT

If the field theory on D brane is superconformal, then in the large N limit, it is
argued that the SCFT is dual to type IIB string theory on the background
AdS5×K . Here K is defined as the five-dimensional link of X and K admits a
Sasaki-Einstein metric.

So in this case, the stability of the chiral ring is equivalent to the existence of
Sasaki-Einstein metric on the link K , or equivalently the existence of Ricci-flat
conic metric on X :

ds2 = dr2 + r2dg2
K .



54. 4d N = 1 SCFT

The existence of Ricci-flat conic metric on X is conjectured by Yau to be
related to the stability of X . Donaldson (’02) has made it more precise by
introducing the notion of K-stability (K stability conjecture has recently been
proven by Chen, Donaldson, Sun). Let’s start with a polarized ring (X , ζ)
where ζ is a U(1)R-like symmetry. K-stability has the following ingredients
(Collins, Szkelyhidi, ’15):

I Test configuration: one use a one parameter group η acting on X , then
take a flat limit to get a new ring X0 (this is the candidate chiral ring of a
SCFT).

I One define a Futaki invariant F (X ,X0, ζ, η), and X0 is said to destabilize
X if F ≤ 0 for X 6= X0.

X is called K-stable if there is no destabilizing test configuration.



55. 4d N = 1 SCFT

I The test configuration has one more symmetry group generated by η.

I The Futaki invariant is defined as follows. One can compute the central
charge by calculating the Hilbert series of X with respect to symmetry ζ,
i.e.

F (ζ, t) =
∑
α

dimHαt
α =

a0(ζ)

s3
+

a1(ζ)

s2
+ . . . , t = exp(−s).

Here Hα is a subspace of affine ring of X, and it has charge α under the
symmetry ζ. a0 is inversely proportional to trial central charge a. If X is
stable, the true U(1)R symmetry and the central charge can be computed
by minimizing a0 (Martelli-Sparks-Yau, ’05).



56. 4d N = 1 SCFT

Now for a test configuration generated by a symmetry η, one can form a
one-dimensional family U(1)R-like symmetry on X0 parameterized by a
positive real number p. One can similarly consider the Hilbert series for X0

with respect to this one parameter family of symmetries:

F (ζ, η, p, exp(−s)) =
a0(p)

s3
+

a1(p)

s2
+ . . .

The Futaki invariant is defined as

Fut = Dpa0(p)|p=0.

This simply-looking Futaki invariant is the same as the one defined by
Donaldson, but it has a direct physical meaning as I will explain below.



57. 4d N = 1 SCFT

The meaning of Futaki invariant should be clear from the following graphs:

Fut<0

p

a
0
(p) a

0
(p)

Fut>0Fut=0

a
0
(p)

The destabilizing configuration gives less a0 and therefore more central
charge! So K stability is then interpreted as a generalized a maximization, and
the new ingredient is that one has to consider a family of chiral rings to do a
maximization.



58. More details

Definition
A test chiral ring R0 can be derived from R by using a symmetry generator η
on R and taking a flat limit.

Let’s discuss more precisely what this definition means. Assume that the chiral
ring R is given by

R =
C [x0, x1, . . . , xn]

I
, (0.12)

here xi , i = 0, . . . , n are the generators of chiral ring and I = (f1, f2, . . . , fm) is
the ideal which gives the chiral ring relation among the generators. Now
consider a one parameter subgroup η(t) of C n+1 and define its action on the
elements of idea I as

f (t) = λ(t) · f = f (λ(t) · (x0, x1, . . . , xn)). (0.13)

So we have a family of rings Rt = C [x0,x1,...,xn]
It

parameterized by t. The flat
limit I0 = limt→0It is defined as follows. We can decompose any f ∈ I as
f = f1 + . . .+ fk into elements in distinct weight spaces for the C ∗ action η on
C [x0, ..., xn]. Let us write in(f ) for the element fi with the smallest weight,
which we can think of as the ”initial term” of f . Then I0 is the ideal
generated by the set of initial terms {in(f )|f ∈ I}. The test chiral ring is

defined as R0 = C [x0,x1,...,xn]
I0

.



59. More details

The test chiral ring has the following crucial proerties: a) The flat limit is the
same if we use the symmetry generator sη with s > 0; b) R0 is invariant with
respect to symmetries of R and η; c): The Hilbert series of R and R0 are the
same for the symmetries of R, this is the continuity condition on test
configuration. Using above procedure, we can get infinite number of test
chiral rings. The criteria for determining whether a test chiral ring R0

destabilizes a polarized ring (R, ζ) is

Definition
A test chiral ring R0 destabilizes (R, ζ) if R0 gives no less central charge a
with respect to the space of possible U(1)R symmetries aζ + sη, s ≥ 0.

It is crucial that s ≥ 0 so we have the same test chiral ring using the
symmetry generator sη on R. Now we state the definition of stable chiral ring:

Definition
A polarized chiral ring (R, ζ) is called stable if there is no destabilizing test
chiral ring.



60. The chiral ring

Consider a N = 1 theory on world volume of N D3 branes probing a graded
three dimensional normal, Kawamata log-terminal (klt), Gorenstein singularity
X . The 3d singularity is defined by an affine ring

HX = C[x1, x2, . . . , xr ]/I , (0.14)

here C[x1, x2, . . . , xr ] is the polynomial ring and I is an ideal.



61. Hilbert series and the central charge a
Consider a possible U(1)R symmetry ζ which is realized as an automorphism
of X . The trial central charge a(ζ) (of order N2) of the field theory can be
computed from the Hilbert series of the ring X (Bergman-Herzog ’01,
Martelli-Sparks-Yau ’05, Martelli-Sparks-Yau ’06, Eager ’10). The Hilbert
series of X with respect to ζ is defined by

Hilb(X , ζ, t) =
∑

(dimHα)tα; (0.15)

Here Hα is the subspace of ring HX with charge α under the action ζ. The
Hilbert series has a Laurent series expansion around t = 1 obtained by setting
t = e−s and expanding

Hilb(X , ζ, e−s) =
a0(ζ)

s3
+

a1(ζ)

s2
+ . . . (0.16)

The coefficients (a0(ζ), a1(ζ)) have following properties:

I a0 is proportional to the volume of the link L5 of the singularity, and the
trial central charge a(ζ) (order N2 term) is related to a0 as

a(ζ) =
27N2

32

1

a0(ζ)
. (0.17)

I a0 = a1 which is due to the condition that Ω has charge 2.

I a0 is convex function of the symmetry generators (Martelli-Sparks-Yau
’06).



62. Hilbert series and the central charge a

For the singularity X , one can define a 5 dimensional link L5 with Sasakian
structure (boyer-Galicki, ’08). If there is a Sasaki-Einstein metric on the link
L5, one can find the true U(1)R symmetry by minimizing a0, and the field
theory central charge is given by the formula (0.17). In the large N limit, the
SCFT on D3 branes is dual to Type IIB string theory on the following geometry

AdS5 × L5. (0.18)

The existence of the SE metric on L5 is also equivalent to the existence of a
Ricci-flat conic metric on X .
Example: Consider the conifold singularity defined by the principal ideal
f (z) = z2

0 + z2
1 + z2

2 + z2
3 = 0, and it is known that the link L5 is the manifold

T 1,1 and has a Sasaki-Einstein metric. There is a C ∗ action ζ on this
singularity f (λqi zi) = λf (zi) with weights (1

2 ,
1
2 ,

1
2 ,

1
2). The canonical three

form is Ω = dz0∧dz1∧dz2∧dz3

dF . Ω has charge 1 under the symmetry ζ, so the

possible U(1)R symmetry is actually ζ
′

= 2ζ in order to ensure Ω has charge
two. The Hilbert series of X with respect to symmetry generator ζ

′
is

Hilb(t) =
(1− t2)

(1− t)4
|t=e−s =

2

s3
+

2

s2
+ . . . (0.19)

Using formula 0.17, We find that the central charge is equal to a = 27
64N

2

which agrees with the result derived from field theory (Klebanov-Witten,
1998).
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