David Ben-Zvi University of Texas at Austin > StringMath Hamburg, July 2017 ## Outline #### Defects and Moduli of Vacua Defects and Moduli of Vacua ### **Defects** Study *n*-dimensional TFT \mathcal{Z} through its defects and their OPE: - Local operators $\mathcal{Z}(S^{n-1})$: commutative algebra¹ with Poisson bracket (n = 3, 5, ...)or odd Poisson bracket $(n = 2, 4, ...)^2$ - Line operators $\mathcal{Z}(S^{n-2})$: tensor category³ - Surface operators $\mathcal{Z}(S^{n-3})$: tensor 2-category⁴ ¹We will suppress gradings $^{^{2}}E_{n}$ algebra – cf. Beem, BZ, Bullimore, Dimofte, Neitzke $^{{}^{3}}E_{n-1}$ category $^{^{4}}E_{n-2}$ 2-category # Nekrasov Ω-background Canonical deformation of algebra of defect operators: study TFT $\mathcal{Z}(X)$ equivariantly for U(1) acting by rotations⁵ of spacetime X $$\leadsto$$ deformation⁶ of $\mathcal{Z}(X)$ over $H^*(BU(1)) = \mathbb{C}[\epsilon]$. OPE of defects loses directions \infty loses commutativity: Shifted Poisson algebra of defects is deformation quantized ⁵Today: only 1-parameter version ⁶Note: ϵ graded parameter: all values $\epsilon \neq 0$ equivalent. #### Moduli of vacua BZ-Neitzke: Geometric model for TFT \mathcal{Z} as maps into a [shifted] Poisson space⁷, built from algebra of defects: moduli stack of vacua $\mathfrak{M}_{\mathcal{Z}}$. Measure with increasing resolution: - 1. Local operators give $\Gamma(\mathfrak{M}, \mathcal{O})$ - \rightsquigarrow realize affinization $\mathfrak{M} \to \mathfrak{M}^{loc} = Aff(\mathfrak{M})$ as $Spec \mathcal{Z}(S^{n-1})$ - 2. Line operators give quasicoherent sheaves on \mathfrak{M} - \rightsquigarrow realize 1-affinization $\mathfrak{M} \longrightarrow \mathfrak{M}^{lin} \longrightarrow \mathfrak{M}^{loc}$ from $(\mathcal{Z}(S^{n-2}), \otimes)$ by Tannakian reconstruction ⁷E_n stack: Francis #### Defects - Surface defects give sheaves of categories over M. - \leadsto detect abelian varieties or topological tori as automorphism groups (e.g. Seiberg-Witten for 4d $\mathcal{N}=2$) - ... - Cobordism Hypothesis⁸: Entire TFT detected by n-1-category of boundary conditions $\mathcal{Z}(pt)$ ## Outline $\mathcal{N}=4$ Hamiltonian Geometry $$\mathcal{N}=4$$ Super Yang-Mills ### $\mathcal{N} = 4 \text{ SYM}$ $\mathcal{N}=4$ Hamiltonian Geometry Focus on 4d "geometric Langlands" theory: $\mathcal{N}=4$ super-Yang-Mills, following Kapustin-Witten. $G_{\mathbb{C}}$ compact Lie group $\leftrightarrow G = G_{\mathbb{C}}$ complex reductive $\widehat{\mathcal{B}}_G$: $\mathcal{N}=4$ SYM in GL twist with gauge group G_c , $\Psi=\infty$ $\widehat{\mathcal{A}}_{G^{\vee}}$: $\mathcal{N}=4$ SYM in GL twist with gauge group G_c^{\vee} , $\Psi=0$ S-duality: Equivalence $\widehat{\mathcal{A}}_{G^{\vee}} \simeq \widehat{\mathcal{B}}_{G}$ # Local operators in $\mathcal{N}=4$ $\mathcal{N}=4$ Hamiltonian Geometry In $\widehat{\mathcal{A}}_{G^{\vee}} \simeq \widehat{\mathcal{B}}_{G}$: local operators \longleftrightarrow $$H^*(BG^{\vee}) \simeq \mathbb{C}[\mathfrak{h}^*]^W \simeq \mathbb{C}[\mathfrak{g}^*]^G$$ (vanishing Poisson bracket) → space of characteristic polynomials $$\mathfrak{M}^{loc} \simeq \mathfrak{h}^* //W \simeq \mathfrak{g}^* //G$$ coadjoint quotient of g*. Coulomb branch of $\mathcal{N}=4$ SYM # Local operators in Ω -background The Ω -background doesn't affect ring of $\mathcal{N}=4$ local operators: Harish-Chandra isomorphism: deformation quantization preserves Casimirs / center of enveloping algebra # Line operators in $\mathcal{N}=4$ Line operators in $\widehat{\mathcal{A}}_{G^\vee}$: derived Satake category, LG_+^\vee -equivariant sheaves on affine Grassmannian $Gr^\vee = LG^\vee/LG_+^\vee$ $$\widehat{\mathcal{A}}_{G^{\vee}}(S^2) = Shv_{LG^{\vee}_+}(Gr^{\vee})$$ Ω -background: add equivariance for loop rotation \mathbb{C}^{\times} $$\widehat{\mathcal{A}}_{G^{ee}}(S^2_{\epsilon}) = \mathit{Shv}_{LG^{ee}_{+} \rtimes \mathbb{C}^{ imes}}(\mathit{Gr}^{ee})$$ # Line operators in $\mathcal{N}=4$ $\mathcal{N}=4$ Hamiltonian Geometry Line operators in $\widehat{\mathcal{B}}_G$: $$\widehat{\mathcal{B}}_G(S^2) = D^b(\mathfrak{g}^*/G)$$ coherent sheaves on \mathfrak{g}^*/G \leftrightarrow G-equivariant $Sym \mathfrak{g}$ -modules Turn on Ω -background: $$\widehat{\mathcal{B}}_G(S_{\epsilon}^2) = Mod(U_{\epsilon}\mathfrak{g}/G)$$ quantize to G-equivariant Ug-modules Harish-Chandra bimodules # S-duality for line operators in $\mathcal{N}=4$ Line operators in $\widehat{\mathcal{A}}_{G^{\vee}}$ and $\widehat{\mathcal{B}}_{G}$ (with or without Ω -background) identified by Derived Geometric Satake Theorem⁹: $$\mathit{Shv}_{LG_+^{ee} times\mathbb{C}^{ imes}}(\mathit{Gr}^{ee})\simeq \mathit{Mod}(\mathit{U}_{\epsilon}\mathfrak{g}/\mathit{G})$$ ightsquigarrow moduli stack of $\widehat{\mathcal{A}}_{G^ee}\simeq\widehat{\mathcal{B}}_G$ given by $$\mathfrak{M}^{\mathit{lin}}_{\epsilon} \simeq \mathfrak{g}^*_{\epsilon}/\mathit{G}$$ Stack structure \leftrightarrow residual gauge symmetry along Coulomb branch ⁹Bezrukavnikov-Finkelberg ### Outline Defects and Moduli of Vacua $$\mathcal{N}=4$$ Super Yang-Mills $\mathcal{N}=4$ Hamiltonian Geometry Integrating Hamiltonians ### The $\mathcal{N}=4$ mold Shifted symplectic geometry perspective: \mathfrak{g}^*/G is odd shifted cotangent bundle of pt/G, Affinization map $$\mathfrak{M}^{lin} = \mathfrak{g}^*/G \xrightarrow{\chi} \mathfrak{M}^{loc} = \mathfrak{h}^*//W$$ is a shifted integrable system: "Mold for integrable systems" 10 ### Quantum mold Quantum local operators $Z(U_{\epsilon}\mathfrak{g})$ \sim commuting operators on $\mathfrak{M}_{\epsilon}^{lin}$: map of mildly noncommutative spaces¹¹ $$\mathfrak{M}_{\epsilon}^{lin} \xrightarrow{\chi_{\epsilon}} \mathfrak{M}_{\epsilon}^{loc}$$ i.e., tensor functor from modules over local operators to line operators: $$Mod(U_{\epsilon}\mathfrak{g}/G) \longleftarrow \chi_{\epsilon}^{*} Mod(Z(U_{\epsilon}\mathfrak{g}))$$ ¹¹ E2 stacks # Probing M^{lin} Study \mathfrak{M}^{lin} by mapping in and intersecting Poisson varieties 12 \leftrightarrow studying module categories over line operators¹³ #### G-phase spaces $$\begin{array}{ccc} X \times_{\mathfrak{g}^*/G} Y \longrightarrow Y \\ \downarrow & \downarrow \\ X \longrightarrow \mathfrak{g}^*/G \xrightarrow{\chi} \mathfrak{h}^*//W \end{array}$$ All (classical and quantum) G-phase spaces carry commuting Hamiltonians from map to \mathfrak{M}^{loc} - source of (classical and quantum) integrable systems. ¹²shifted coisotropic maps $^{^{13}}E_2$ -algebras over E_3 -category of line operators # Probing Min Physically: use line operators to study 3d boundary conditions – (e.g., 3d $\mathcal{N}=4$ theories with suitable global (G or G^{\vee}) symmetry) and 3d reductions of 4d theory on interval¹⁴ \rightsquigarrow Poisson moduli spaces and $\Omega\text{-background}$ quantization. All resulting theories carry commuting operators from 4d local operators. ¹⁴BZ-Dimofte-Neitzke # Basic boundary conditions 1 Two basic examples: • \mathbb{D}_G : Quotient map $$\mathfrak{g}^* \longrightarrow \mathfrak{g}^*/G$$ \leftrightarrow Dirichlet boundary condition for $\widehat{\mathcal{B}}_{\mathcal{G}}$ Quantum version: $Mod(U_{\epsilon}\mathfrak{g}) \longleftarrow Mod(U_{\epsilon}\mathfrak{g}/G)$. # Ungauging G Given map $X \longrightarrow \mathfrak{g}^*/G$ (e.g. boundary condition), pair with $\mathbb{D}_G = \mathfrak{g}^*$: $$\widetilde{X} \xrightarrow{\mu} \mathfrak{g}^*$$ $$\downarrow^{G} \qquad \downarrow^{\chi}$$ $$X \longrightarrow \mathfrak{g}^*/G \xrightarrow{\chi} \mathfrak{h}^*//W$$ $\leftrightarrow \widetilde{X}$ holomorphic Hamiltonian G-space \leadsto commuting Hamiltonians on any Hamiltonian reduction of \widetilde{X} , e.g. $T^*(\Gamma \backslash G/K)$ # Ungauging G Quantum version of pairing with \mathbb{D}_G : A noncommutative space $X_{\epsilon} \longrightarrow \mathfrak{M}^{lin}_{\epsilon}$ (module category for line operators $Mod(U_{\epsilon}\mathfrak{g}/G)$) \leftrightarrow a quantum Hamiltonian G-space X_{ϵ} : a [de Rham] categorical representation 15 of G: e.g., Quantization of T^*M for holomorphic G-space M Local operators $Z(U\mathfrak{g})$ → G-invariant commuting Hamiltonians e.g., Harish-Chandra system of commuting operators on $\Gamma \backslash G/K$ $^{^{15}}$ module category for \mathcal{D} -modules on G # Basic boundary conditions 2 • $\mathbb{N}_{G^{\vee}}$: Kostant section \leftrightarrow Neumann boundary condition for $\widehat{\mathcal{A}}_{G^{\vee}}$, regular Nahm pole boundary condition for $\widehat{\mathcal{B}}_{G}$ lands in regular locus g*,reg Quantum version: Whittaker reduction # Gauging G^{\vee} Given map $X \longrightarrow \mathfrak{g}^*/G$, can instead pair with $\mathbb{N}_{G^{\vee}}$ \leftrightarrow gauge 3d G^{\lor} -symmetry 16 intersect with Kostant section (quantum: take Whittaker reduction) $$\overline{X} \xrightarrow{\mu} \mathfrak{h}^* //W$$ $$\downarrow \qquad \qquad \downarrow \kappa_{os}$$ $$X \longrightarrow \mathfrak{g}^* /G \xrightarrow{\chi} \mathfrak{h}^* //W$$ → integrable system on Coulomb branch of 3d gauge theories Note: only probes *regular* part of \mathfrak{g}^*/G : carries Hamiltonian action of regular centralizers in G ¹⁶cf. Dimofte talk ### Outline Defects and Moduli of Vacua $$\mathcal{N}=4$$ Super Yang-Mills $\mathcal{N}=$ 4 Hamiltonian Geometry Integrating Hamiltonians # "Integrating" integrable systems Typical integrable system $M \longrightarrow B$: - Restrict to generic part $B^{reg} \subset B$ - → family of abelian groups (tori) - "Nice" singular fibers contain dense abelian groups family of abelian groups with $Lie(J) \simeq T^*B$ realizing Hamiltonian flows # Regular Locus #### Regular element $x \in \mathfrak{g}^*$: Centralizer $Z_G(x)$ of dimension $rk(\mathfrak{g})$ (\Rightarrow abelian) \bullet $\mathfrak{g}^{*,\textit{reg}}\subset\mathfrak{g}^*$ open, codim 3 complement $$\mathfrak{sl}_2^{*,reg}=\mathfrak{sl}_2^*\setminus\{0\}$$ • Kostant section lands in g*, reg # Regular Centralizers Consider centralizers of elements of Kostant section: $$\{Z_G(Kos(\lambda))\} \longrightarrow \{\lambda\}$$ $$\downarrow \qquad \qquad \downarrow$$ $$J \longrightarrow \mathfrak{h}^*//W$$ family of abelian groups over $\mathfrak{h}^*//W$ group scheme of regular centralizers • $\mathfrak{g}^{*,reg}$ is G-orbit of Kostant section \rightsquigarrow $$\mathfrak{g}^{*,reg}/G \simeq BJ \longrightarrow \mathfrak{h}^*//W$$ family of shifted abelian groups, with Kostant section as unit #### A Fundamental Lemma Ngô Lemma: The action of BJ on itself extends to an action on all of \mathfrak{g}^*/G . i.e., can integrate our shifted integrable system! Proof: Hartogs... # Integrating G-integrable systems Corollary: 17 Canonical integration of Hamiltonian flows on any G-phase space to action of J #### Examples: - Any Hamiltonian reduction $\Gamma_{O_1} \setminus T^*G//_{O_2}K$ - Moduli space of any reduction of $\mathcal{N}=4$ on an interval (for example 3d G^{\vee} -gauge theories) ¹⁷BZ-Gunningham ## Integrating Hitchin system Ngô's application: to topology of spaces of Higgs bundles $$Higgs_G(\Sigma) \sim Map(\Sigma, \mathfrak{g}^*/G)$$ Crucial: regular centralizers disconnected! "smart integration" \rightsquigarrow Produce abelian groups acting on cohomology of Hitchin fibers $\sim \rightarrow$ (\ldots) $\sim \rightarrow$ proof of Fundamental Lemma ### Main Construction BZ - Gunningham: Geometric construction and quantization of Ngô action: - Identify commutative 18 tensor category \mathcal{K}_{ϵ} , the Kostant category, - $\epsilon = 0$: sheaves on groupscheme J of regular centralizers, - $\epsilon \neq 0$: sheaves on $\mathfrak{h}^*//W_{aff} \sim H^{\vee}//W$ - Construct central action of \mathcal{K}_{ϵ} on $\mathfrak{g}_{\epsilon}^*/G$ (equivalently, on all categorical representations of G) deforming action of J $^{^{18}}$ Symmetric monoidal / E_{∞} # Hidden Symmetry Construction gives hidden symmetry of line operators in $\mathcal{N}=4$ $\sim \rightarrow$ - universal integration of Hamiltonian system on all quantum G-phase spaces - large commutative action on quantized moduli space of any reduction of $\mathcal{N}=4$ on interval #### **Translations** Role of $\mathfrak{h}^*//W_{aff} \sim H^{\vee}//W$: Quantum *G*-phase spaces live over $\mathfrak{h}^*//W_{aff}$ (not $\mathfrak{h}^*//W$). Example: On $H = \mathbb{C}^{\times}$, eigensystem $\{z\frac{d}{dz}f = \lambda f\} \leftrightarrow \text{connection } d - \lambda \frac{dz}{z}$ depends (up to gauge) only on monodromy $$exp(2\pi i\lambda) \in \mathbb{C}^{\times} = H^{\vee},$$ i.e. on $$[\lambda] \in \mathbb{C}/\mathbb{Z} = \mathfrak{h}^*/\Lambda.$$ #### **Translations** - $U\mathfrak{g}$ -modules at fixed central character $\lambda \in Spec(Z_{\mathfrak{g}}) = \mathfrak{h}^*//W$ depend on λ only up to translation: translation functors - Eigensystems¹⁹ of higher Casimirs $$Z(U\mathfrak{g}) \to \mathcal{D}(\Gamma \backslash G/K)$$ depend on λ only up to translation: shift operators #### Categorified Harish-Chandra System: We build spectral decomposition of $Mod(U\mathfrak{g})$, $Mod(\mathcal{D}(\Gamma \backslash G/K))$ etc. over $\mathfrak{h}^*//W_{aff}$: ¹⁹Harish-Chandra #### The Construction Geometric source of hidden symmetry: • Use S-dual description²⁰ of \mathfrak{M}^{lin} as derived Satake category: $$\widehat{\mathcal{A}}_{G^{\vee}}(S^2) = (Shv_{LG^{\vee}_{+}}(Gr^{\vee}), *)$$ - can tensor sheaves on any space by locally constant sheaves! - Description²¹ of $H_*^{G \times \mathbb{C}^{\times}}(Gr)$ - \rightsquigarrow local systems are identified with sheaves on $\mathfrak{g}^{*,reg}=BJ$ $\rightsquigarrow BJ$ acts on \mathfrak{g}^*/G Same works U(1)-equivariantly, i.e., for $\epsilon \neq 0$. ²⁰Bezrukavnikov-Finkelberg ²¹Bezrukavnikov-Finkelberg-Mirkovic # The Kostant category, abstractly Modules for equivariant homology of affine Grassmannian²² $$\mathcal{K}_{\epsilon} := Mod(H_{*}^{G imes \mathbb{C}^{ imes}}(Gr))$$ - quantized phase space of Toda lattice for G - Whittaker Hecke category for G[∨], $\mathcal{D}_{\epsilon}(N_{ab}\backslash G^{\vee}/_{ab}N) = End(\mathbb{N}_{G^{\vee}})$ - $\leftrightarrow \Omega$ -deformed line operators in G^{\vee} 3d $\mathcal{N}=4$ SYM²³ ²²Bezrukavnikov-Finkelberg-Mirkovic ²³Teleman ## The Kostant category, concretely (Take $\epsilon \neq 0$.) - Modules for affine nil-Hecke algebra²⁴: explicit combinatorial description: divided-difference operators on h* - Sheaves on coarse quotient²⁵ $$\mathfrak{h}^{\vee,*}//W_{aff} \sim H^{\vee}//W$$ $W_{aff} \simeq \Lambda \rtimes W$ affine Weyl group ²⁴Kostant-Kumar ²⁵Lonergan, Ginzburg ### Other aspects Other structures captured by $\widehat{\mathcal{A}}_{G^{\vee}} \simeq \widehat{\mathcal{B}}_{G}$ decompose over \mathcal{K} : ullet Langlands parameters for categorical representations of G in $$\mathfrak{h}^*//W_{aff} \sim H^{ee}//W \sim G^{ee}//G^{ee}$$ conjugacy classes in dual group [local geometric Langlands program] - Decompose class \mathcal{D} -modules $\mathcal{D}(G/G)$ over $H^{\vee}//W$: spectral decomposition into Lusztig character sheaves with fixed central character - Homology of character varieties of surfaces $Loc_G(\Sigma)$ decomposes into "Kostant eigenhomology" parametrized by $H^{\vee}//W$ categorifies description of point counts²⁶ ²⁶Hausel-Letellier-Villegas ### The End Thank You!