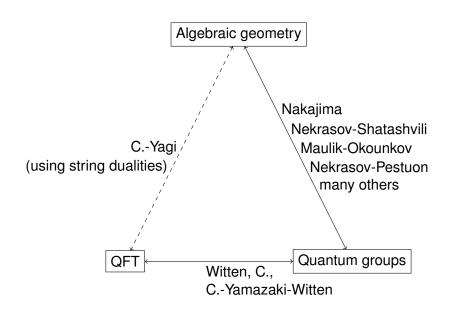
Kevin Costello Based on joint work with Yamazki and Witten, and with Yagi

String math, 2017



Dimension	Action	Quantum group	Algebraic geometry
3	$\int CS(A)$	$U_q(\mathfrak{g})$??
4	∫ d <i>zCS</i> (<i>A</i>)	Yangian, quantum loop group, elliptic quan- tum group	Cohomology of finite quiver varieties
5	∫ d <i>z</i> ₁d <i>z</i> ₂ <i>CS</i> (<i>A</i>)	Two variable quantum groups, affine Yan- gians	Cohomology of affine quiver varieties
6	$\int \mathrm{d}z_1 \mathrm{d}z_2 \mathrm{d}z_3 CS(A)$??	??

In this talk:

- Explain how to see quantum groups directly from 4*d* gauge theory.
- Use this to show from first principles why certain physical systems have Yangian symmetry.

On $\mathbb{R}^2 \times \mathbb{C}$ with coordinates *x*, *y* and *z*, there is a gauge theory with fundamental field

$$A = A_x dx + A_y dy + A_{\overline{z}} d\overline{z}$$
(1)

and Chern-Simons action

$$\int dz CS(A).$$
 (2)

- The theory is topological in the x y plane and holomorphic in the z-plane.
- Representations of \mathfrak{g} give Wilson line operators in the x y plane.

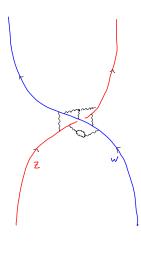
R-matrix from Wilson lines

- Put this theory on ℝ² × ℂ, gauge group SU(2).
- Consider Wilson lines at z, w ∈ C for the spin 1/2 representation of SU(2), which cross in the topological plane.
- The space of states at the end of each Wilson line is \mathbb{C}^2 .
- Gluon exchange leads to the *R*-matrix

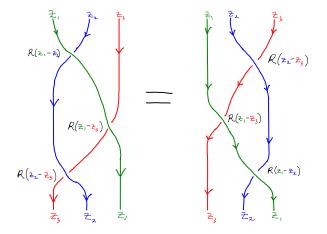
$$R(z-w): \mathbb{C}^2_z \otimes \mathbb{C}^2_w \to \mathbb{C}^2_w \otimes \mathbb{C}^2_z.$$

Theorem

This is the R-matrix for zero-field six-vertex model (related to XXX spin chain).



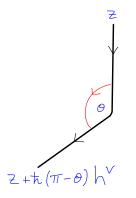
The Yang-Baxter equation follows from topological invariance of the theory on \mathbb{R}^2 :



Framing anomaly

Classically, Wilson lines must live at a constant value of z.

At the quantum level, if they bend they shift in the *z* plane:



Here h^{\vee} is the dual Coxeter number.

Where does the Yangian algebra come from?

- Koszul dual of local operators. (Too abstract!)
- In the second second

We will show that for any Wilson line in the theory, the Yangian acts on the states at the end of the Wilson line.

Take $\mathfrak{g} = \mathfrak{gl}_n$, consider vertical Wilson line in the fundamental representation at $z \in \mathbb{C}$, arbitrary horizontal Wilson line W.

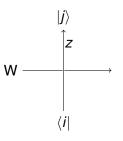
Place incoming/outgoing states $\langle i|$ and $|j\rangle$ on the fundamental Wilson line.

This gives an operator

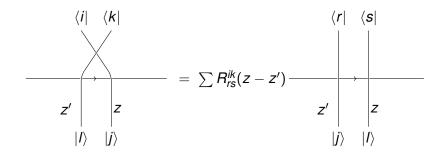
$$T^i_j(z): W o W.$$

If we expand near $z \sim \infty$, we find operators

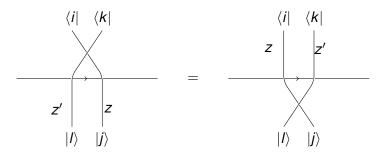
$$T_j^i(z) = \delta_j^i + z^{-1} t_j^i[0] + z^{-2} t_j^i[1] + \dots$$



The operators $t_j^i[k]$ will give a representation of the Yangian. Commutation relations are deduced from crossing vertical Wilson lines:



Topological invariance means location of crossing of vertical lines doesn't matter:



This leads to the relation

$$\sum_{r,s} R_{rs}^{ik}(z-z')T_j^r(z')T_l^s(z) = \sum_{r,s} T_r^i(z)T_s^k(z')R_{jl}^{rs}(z-z').$$

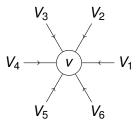
This is the RTT relation for the Yangian for \mathfrak{gl}_n .

This explains the Yangian for \mathfrak{gl}_n . What about other groups? We need extra relations. These come form *vertices*.

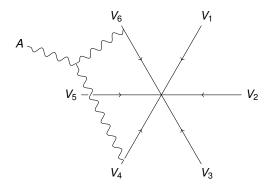
Classically we can make a gauge invariant configuration where k Wilson lines in representations V_1, \ldots, V_k meet with an invariant tensor

$$v \in V_1 \otimes \cdots \otimes V_k$$

at the vertex.



At the quantum level there may be anomalies to quantizing the vertices. These come from Feynman diagrams:



Formula for the anomaly:

$$\partial_z X^a \left(\sum_{1 \leq i < j \leq n} (\theta_{ij} - \pi) f^a_{bc} t_{b;i} t_{c;j} \right) v.$$

This is a linear map $\mathfrak{g} \to V_1 \otimes \cdots \otimes V_n$. *X* is ghost field.

Anomalies can potentially be cancelled by varying 2 parameters:

- The angles between the Wilson lines in the topological plane.
- Interposition of the Wilson lines in the z-plane.
- By the framing anomaly these are equivalent.

With 3 Wilson lines V_1 , V_2 , V_3 we can cancel the anomalies if there are *exactly two* copies of \mathfrak{g} in $V_1 \otimes V_2 \otimes V_3$.

If the quadratic Casimir acts by c_i on V_i then the angles between the three Wilson lines are given by the formula

$$\theta_{12} = \pi - \pi \frac{(c_1 - c_2 - c_3)(c_2 - c_3 - c_1)}{-c_1^2 - c_2^2 - c_3^2 + 2c_1c_2 + 2c_1c_3 + 2c_2c_3}$$

$$\theta_{23} = \pi - \pi \frac{(c_2 - c_3 - c_1)(c_3 - c_1 - c_2)}{-c_1^2 - c_2^2 - c_3^2 + 2c_1c_2 + 2c_1c_3 + 2c_2c_3}$$

$$\theta_{31} = \pi - \pi \frac{(c_3 - c_1 - c_2)(c_1 - c_2 - c_3)}{-c_1^2 - c_2^2 - c_3^2 + 2c_1c_2 + 2c_1c_3 + 2c_2c_3}$$

Examples

• $V_1 = V_2 = V$ fundamental representation of \mathfrak{sl}_n , $V_3 = \wedge^2 V$.

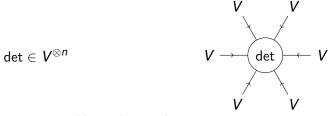
$$\theta_{12} = \pi \frac{n-1}{n}$$

$$\theta_{23} = \pi \frac{2}{n}$$

$$\theta_{31} = \pi \frac{n-1}{n}$$

② $\mathfrak{g} = \mathfrak{so}(4n), V_1 = S_+, V_2 = S_-, V_3 = \mathbb{C}^{4n}$, invariant tensor $\Gamma \in S_+ \otimes S_- \otimes \mathbb{C}^{4n}$



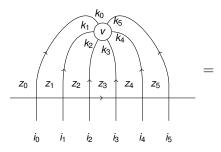


is a vertex with angles $2\pi/n$.

2 V is the fundamental representation of G_2 , invariant 3-form

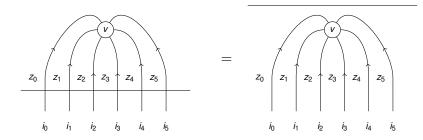
defines a vertex with angles $2\pi/3$.

Vertices add relations to the RTT algebra. We can cross a vertex with a horizontal line:



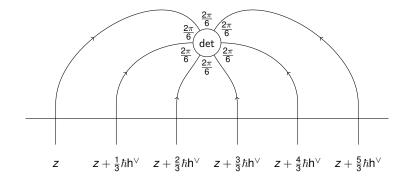
 $\sum_{k_0,\ldots,k_5} v_{k_0,\ldots,k_5} T_{i_0}^{k_0}(z_0) \ldots T_{i_5}^{k_5}(z_5)$

Vertices add relations to the RTT algebra. We can cross a vertex with a horizontal line:

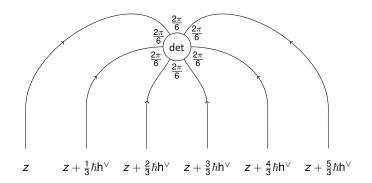


$$\sum_{k_0,\ldots,k_5} v_{k_0,\ldots,k_5} T_{i_0}^{k_0}(z_0) \ldots T_{i_5}^{k_5}(z_5) = v_{i_0,\ldots,i_5}$$

Examples : quantum determinant. *V* fundamental representation of \mathfrak{sl}_n , vertex coming from det (n = 6).



Examples : quantum determinant. *V* fundamental representation of \mathfrak{sl}_n , vertex coming from det (n = 6).



Examples : quantum determinant. *V* fundamental representation of \mathfrak{sl}_n , vertex coming from det (n = 6).

This gives the relation (using $h^{\vee} = n$ for \mathfrak{sl}_n)

$$\sum_{k_r} \operatorname{Alt}(k_0, \dots, k_{n-1}) T_{i_0}^{k_0}(z) T_{i_1}^{k_1}(z+2\hbar) \cdots T_{i_{n-1}}^{k_{n-1}}(z+2(n-1)\hbar)$$
$$= \operatorname{Alt}(i_0, \dots, i_{n-1}), \quad (3)$$

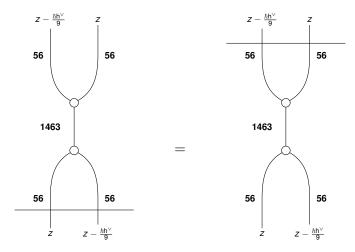
which is the *quantum determinant*. This presents the Yangian for \mathfrak{sl}_n .

Other groups

For all simple groups except *E*8 this method produces a presentation of the Yangian (and the quantum loop group, elliptic quantum group) directly from field theory. Strategy:

- Present the group as the automorphisms of its smallest dimensional representation preserving a list of invariant tensors.
- Lift these invariant tensors to vertices between Wilson lines.
- Add the corresponding relations to the RTT relation.
 - $\mathfrak{so}_n, \mathfrak{sp}_{2n}$: quadratic relation from invariant tensor in $V^{\otimes 2}$.
 - *G*2, *F*4: quadratic plus cubic relation in lowest-dimesional representation (**7** and **26**)
 - E6 : only a cubic relation from the invariant tensor in 27⁸³.
 - *E*7 : quadratic plus quartic relations from invariant tensors in powers of **56**.

The quartic relation for *E*7:



Why is this useful? We can embed certain physical systems in the 4*d* gauge theory. They will then acquire Yangian (or quantum loop group / elliptic quantum group) symmetry, explaining many results in the physics literature.

- Two-dimensional integrable field theories can be engineered by considering surface operators instead of line operator. This explains why they have quantum group symmetry, and gives many new examples.
- Twisted supersymmetric gauge theories can be realized by embedding the 4*d* gauge theory in string theory and applying string dualities. Explains quantum group symmetry here (e.g. Nekrasov-Shatashvili, Maulik-Okounkov, ...).
- In this talk I will explain why the Yangian appears in the algebra of monopole operators in 3d N = 4 gauge theories. This is a result of Bullimore, Dimofte, Gaiotto and Braverman, Finkelberg, Kamnitzer, Kodera, Nakajima, Webster, Weekes.

Embedding the 4d gauge theory in string theory

- Consider a *D*5 brane on x_0, \ldots, x_5 in \mathbb{R}^{10}
- Introduce Ramond-Ramond 2 -form with

$$\mathrm{d}C_2 = \mathrm{d}x_3\left(\mathrm{d}x_4\mathrm{d}x_5 - \mathrm{d}x_6\mathrm{d}x_7\right)$$

Theorem (C., J. Yagi)

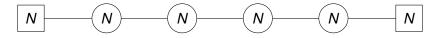
After performing a twist the theory on the D5 brane is the 4d Chern-Simons theory related to the Yangian.

Topological directions are x_0, x_1 , holomorphic plane is x_2, x_3 . This set up is *T*-dual to *M*-theory on

$$S^{1} \times \mathbb{R}^{2} \times \underline{\mathbb{R}^{2}} \times \left(\underline{S^{1}} \times \underline{\mathbb{C}_{q}} \times \mathbb{C}_{-q}\right)$$
 (4)

with <u>M5</u> brane on underlined directions.

- F1 ending on *m* D5's gives Wilson line in the fundamental representation V.
- ② *N D*3 wrapping x_0, x_4, x_5, x_8 passing through *m D*5 gives a Wilson line in (Sym^{*} V)^{⊗N}.
- S-duality: takes us to *N D*3's passing through *m NS*5's, and so linear quiver gauge theory.

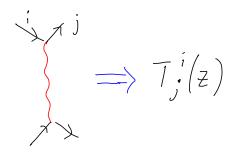


Presence of RR-form in *S*-dual setting means the linear quiver gauge theory is in an Ω -background.

Conclusion

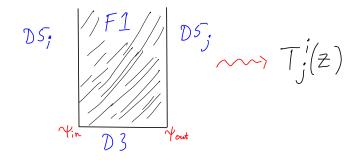
- There is a Wilson line whose operators are the monopole operators in the linear quiver gauge theory.
- Therefore there is a homomorphism from the Yangian to this algebra.
- Recover the result of Bullimore, Dimofte, Gaiotto and Braverman, Finkelberg, Kamnitzer, Kodera, Nakajima, Webster, Weekes.

For type D and E quivers there is a similar construction. (Rational and elliptic cases should work too, but these are more subtle). Yangian action comes from RTT presentation. Gauge theory: leading term in the action comes from a fundamental Wilson line (top) exchanging a gluon with a general Wilson line (bottom).



String theory: fundamental Wilson line on D5 comes from F1. Incoming/outgoing states come from boundary conditions on the F1. Gluon also comes form F1.

Conclude that to leading order the action of the Yangian on the 3*d* gauge theory is given by



Apply *S*-duality: recover the leading term for Yangian action as written down by BDG and BFKKNWW (by monopole operators).

Decoupling

Subtle point: how do we decouple the NS5 (or D5) brane dynamics to recover precisely the 3d N = 4 theory? Recall:

- *D*5 branes on x_0, \ldots, x_5 in \mathbb{R}^{10} .
- *D*3 branes on *x*₀, *x*₄, *x*₅, *x*₈.
- RR 2-form $dC_2 = dx_3 (dx_4 dx_5 dx_6 dx_7)$.

On the D3 brane, impose Dirichlet boundary conditions at $x_8 = \pm \infty$.

On the *D*5 brane, if $z = x_2 + ix_3$ is the holomorphic direction in the effective 4*d* theory, as $z \to \infty$ ask that all fields vanish.

Compactifying the *D*5 brane theory on *z*-plane to x_0 , x_1 , x_4 , x_5 directions gives trivial theory after twisting (infinitely massive). Compactifying *D*3 on x_8 line gives 3*d* N = 4 theory.

Therefore, compactifying *entire* D3-D5 *system* gives 3d N = 4 theory in an Ω background.

Other examples of this process

- Nekrasov-Shatashvili for finite quivers: consider D2-NS5 system, apply T and S-duality to get an F1-D5 system and relate to integrable spin systems.
- 3*d* N = 4 for affine quivers: C., 1705:02500. Related to a line defect in 5*d* Chern-Simons type theory, and the algebra $U_{\hbar}(\mathfrak{gl}_n[z_1, z_2])$.
- Maulik-Okounkov and Etingof-Schiffman result that the affine Yangian acts on cohomology of instanton moduli spaces. This comes from considering surface defect in 5d Chern-Simons theory in C., 1610.04144. (Only proved from this point of view at a special value of the parameters).

In the 5d case the RTT presentation has not yet been derived from the point of view of field theory.