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Dimension Action Quantum
group

Algebraic
geometry

3
∫

CS(A) Uq(g) ??

4
∫

dzCS(A) Yangian,
quantum
loop group,
elliptic quan-
tum group

Cohomology
of finite
quiver
varieties

5
∫

dz1dz2CS(A) Two variable
quantum
groups,
affine Yan-
gians

Cohomology
of affine
quiver
varieties

6
∫

dz1dz2dz3CS(A) ?? ??



In this talk:
Explain how to see quantum groups directly from 4d gauge
theory.
Use this to show from first principles why certain physical
systems have Yangian symmetry.



Background

On R2 × C with coordinates x , y and z, there is a gauge theory
with fundamental field

A = Axdx + Aydy + Azdz (1)

and Chern-Simons action∫
dzCS(A). (2)

The theory is topological in the x − y plane and
holomorphic in the z-plane.
Representations of g give Wilson line operators in the
x − y plane.



R-matrix from Wilson lines

Put this theory on R2 × C, gauge group
SU(2).
Consider Wilson lines at z,w ∈ C for
the spin 1/2 representation of SU(2),
which cross in the topological plane.
The space of states at the end of each
Wilson line is C2.
Gluon exchange leads to the R-matrix

R(z − w) : C2
z ⊗ C2

w → C2
w ⊗ C2

z .

Theorem
This is the R-matrix for zero-field six-vertex
model (related to XXX spin chain).
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Yang-Baxter equation

The Yang-Baxter equation follows from topological invariance of
the theory on R2:

1



Framing anomaly

Classically, Wilson lines must live at a constant value of z.

At the quantum level, if they bend they shift in the z plane:
1

Here h∨ is the dual Coxeter number.



Where does the Yangian algebra come from?
1 Koszul dual of local operators. (Too abstract!)
2 RTT presentation (recent work with Witten and Yamazaki).

We will show that for any Wilson line in the theory, the Yangian
acts on the states at the end of the Wilson line.



Take g = gln, consider vertical Wilson
line in the fundamental representation
at z ∈ C, arbitrary horizontal Wilson
line W .
Place incoming/outgoing states 〈i |
and |j〉 on the fundamental Wilson
line. 〈i |

|j〉

W

z

This gives an operator

T i
j (z) : W →W .

If we expand near z ∼ ∞, we find operators

T i
j (z) = δi

j + z−1t i
j [0] + z−2t i

j [1] + . . .



The operators t i
j [k ] will give a representation of the Yangian.

Commutation relations are deduced from crossing vertical
Wilson lines:

〈i |

|j〉

〈k |

|l〉

zz ′

=
∑

R ik
rs(z − z ′)

〈r |

|j〉

〈s|

|l〉

zz ′



Topological invariance means location of crossing of vertical
lines doesn’t matter:

〈i |

|j〉

〈k |

|l〉

zz ′

=

〈i |

|j〉

〈k |

|l〉

z z ′

This leads to the relation∑
r ,s

R ik
rs(z − z ′)T r

j (z ′)T s
l (z) =

∑
r ,s

T i
r (z)T k

s (z ′)Rrs
jl (z − z ′).

This is the RTT relation for the Yangian for gln.



This explains the Yangian for gln. What about other groups?
We need extra relations. These come form vertices.

Classically we can make a gauge invariant configuration where
k Wilson lines in representations V1, . . . ,Vk meet with an
invariant tensor

v ∈ V1 ⊗ · · · ⊗ Vk

at the vertex.

V1

V2V3

V4

V5 V6

v



At the quantum level there may be anomalies to quantizing the
vertices. These come from Feynman diagrams:

V2

V1V6

V5

V4 V3

A



Formula for the anomaly:

∂zX a

 ∑
1≤i<j≤n

(θij − π)f a
bc tb;i tc;j

 v .

This is a linear map g→ V1 ⊗ · · · ⊗ Vn. X is ghost field.

Anomalies can potentially be cancelled by varying 2
parameters:

1 The angles between the Wilson lines in the topological
plane.

2 The position of the Wilson lines in the z-plane.
By the framing anomaly these are equivalent.



With 3 Wilson lines V1,V2,V3 we can cancel the anomalies if
there are exactly two copies of g in V1 ⊗ V2 ⊗ V3.

If the quadratic Casimir acts by ci on Vi then the angles
between the three Wilson lines are given by the formula

θ12 = π − π (c1 − c2 − c3)(c2 − c3 − c1)

−c2
1 − c2

2 − c2
3 + 2c1c2 + 2c1c3 + 2c2c3

θ23 = π − π (c2 − c3 − c1)(c3 − c1 − c2)

−c2
1 − c2

2 − c2
3 + 2c1c2 + 2c1c3 + 2c2c3

θ31 = π − π (c3 − c1 − c2)(c1 − c2 − c3)

−c2
1 − c2

2 − c2
3 + 2c1c2 + 2c1c3 + 2c2c3



Examples

1 V1 = V2 = V fundamental representation of sln, V3 = ∧2V .

θ12 = π n−1
n

θ23 = π 2
n

θ31 = π n−1
n

VV

∧2V ∗

2 g = so(4n), V1 = S+, V2 = S−, V3 = C4n, invariant tensor
Γ ∈ S+ ⊗ S− ⊗ C4n

θ12 = π n
2n−1

θ23 = π 2n−2
2n−1

θ31 = π n
2n−1

C4n

S+S− Γ



1 V is the fundamental representation of sln,

det ∈ V⊗n V

VV

V

V V

det

is a vertex with angles 2π/n.
2 V is the fundamental representation of G2, invariant 3-form

Ω ∈ V⊗3

V

VV

Ω

defines a vertex with angles 2π/3.



Vertices add relations to the RTT algebra. We can cross a
vertex with a horizontal line:

v

z0 z1 z2 z3 z4 z5

i0 i1 i2 i3 i4 i5

k0
k1

k2 k3

k4

k5

=
∑

k0,...,k5
vk0,...,k5T k0

i0
(z0) . . .T k5

i5
(z5)



Vertices add relations to the RTT algebra. We can cross a
vertex with a horizontal line:

v

z0 z1 z2 z3 z4 z5

i0 i1 i2 i3 i4 i5

=

v

z0 z1 z2 z3 z4 z5

i0 i1 i2 i3 i4 i5

∑
k0,...,k5

vk0,...,k5T k0
i0

(z0) . . .T k5
i5

(z5) = vi0,...,i5



Examples : quantum determinant. V fundamental
representation of sln, vertex coming from det (n = 6).

det

z z + 1
3~h∨ z + 2

3~h∨ z + 3
3~h∨ z + 4

3~h∨ z + 5
3~h∨

2π
62π

6

2π
6 2π

6

2π
6

2π
6



Examples : quantum determinant. V fundamental
representation of sln, vertex coming from det (n = 6).

det

z z + 1
3~h∨ z + 2

3~h∨ z + 3
3~h∨ z + 4

3~h∨ z + 5
3~h∨

2π
62π

6

2π
6 2π

6

2π
6

2π
6



Examples : quantum determinant. V fundamental
representation of sln, vertex coming from det (n = 6).

This gives the relation (using h∨ = n for sln)∑
kr

Alt(k0, . . . , kn−1)T k0
i0

(z)T k1
i1

(z + 2~) · · ·T kn−1
in−1

(z + 2(n−1)~)

= Alt(i0, . . . , in−1), (3)

which is the quantum determinant. This presents the Yangian
for sln.



Other groups

For all simple groups except E8 this method produces a
presentation of the Yangian (and the quantum loop group,
elliptic quantum group) directly from field theory. Strategy:

1 Present the group as the automorphisms of its smallest
dimensional representation preserving a list of invariant
tensors.

2 Lift these invariant tensors to vertices between Wilson
lines.

3 Add the corresponding relations to the RTT relation.

son, sp2n: quadratic relation from invariant tensor in V⊗2.
G2, F4: quadratic plus cubic relation in lowest-dimesional
representation (7 and 26)
E6 : only a cubic relation from the invariant tensor in 27⊗3.
E7 : quadratic plus quartic relations from invariant tensors
in powers of 56.



The quartic relation for E7:

56

56 56

56

z − ~h∨
9

z z − ~h∨
9

z

1463

=

56

56 56

56

z − ~h∨
9

z z − ~h∨
9

z

1463



Why is this useful? We can embed certain physical systems in
the 4d gauge theory. They will then acquire Yangian (or
quantum loop group / elliptic quantum group) symmetry,
explaining many results in the physics literature.

1 Two-dimensional integrable field theories can be
engineered by considering surface operators instead of
line operator. This explains why they have quantum group
symmetry, and gives many new examples.

2 Twisted supersymmetric gauge theories can be realized by
embedding the 4d gauge theory in string theory and
applying string dualities. Explains quantum group
symmetry here (e.g. Nekrasov-Shatashvili,
Maulik-Okounkov, ... ).

3 In this talk I will explain why the Yangian appears in the
algebra of monopole operators in 3d N = 4 gauge
theories. This is a result of Bullimore, Dimofte, Gaiotto and
Braverman, Finkelberg, Kamnitzer, Kodera, Nakajima,
Webster, Weekes.



Embedding the 4d gauge theory in string theory

Consider a D5 brane on x0, . . . , x5 in R10

Introduce Ramond-Ramond 2 -form with

dC2 = dx3 (dx4dx5 − dx6dx7)

Theorem (C., J. Yagi)
After performing a twist the theory on the D5 brane is the 4d
Chern-Simons theory related to the Yangian.

Topological directions are x0, x1, holomorphic plane is x2, x3.
This set up is T -dual to M-theory on

S1 × R2 × R2 ×
(

S1 × Cq × C−q

)
(4)

with M5 brane on underlined directions.



1 F1 ending on m D5’s gives Wilson line in the fundamental
representation V .

2 N D3 wrapping x0, x4, x5, x8 passing through m D5 gives a
Wilson line in (Sym∗ V )⊗N .

3 S-duality: takes us to N D3’s passing through m NS5’s,
and so linear quiver gauge theory.

N N N N N N

Presence of RR-form in S-dual setting means the linear quiver
gauge theory is in an Ω-background.



Conclusion
1 There is a Wilson line whose operators are the monopole

operators in the linear quiver gauge theory.
2 Therefore there is a homomorphism from the Yangian to

this algebra.
3 Recover the result of Bullimore, Dimofte, Gaiotto and

Braverman, Finkelberg, Kamnitzer, Kodera, Nakajima,
Webster, Weekes.

For type D and E quivers there is a similar construction.
(Rational and elliptic cases should work too, but these are more
subtle).



Yangian action comes from RTT presentation. Gauge theory:
leading term in the action comes from a fundamental Wilson
line (top) exchanging a gluon with a general Wilson line
(bottom). 1



String theory: fundamental Wilson line on D5 comes from F1.
Incoming/outgoing states come from boundary conditions on
the F1. Gluon also comes form F1.

Conclude that to leading order the action of the Yangian on the
3d gauge theory is given by

1

Apply S-duality: recover the leading term for Yangian action as
written down by BDG and BFKKNWW (by monopole operators).



Decoupling

Subtle point: how do we decouple the NS5 (or D5) brane
dynamics to recover precisely the 3d N = 4 theory?
Recall:

D5 branes on x0, . . . , x5 in R10.
D3 branes on x0, x4, x5, x8.
RR 2-form dC2 = dx3 (dx4dx5 − dx6dx7).

On the D3 brane, impose Dirichlet boundary conditions at
x8 = ±∞.

On the D5 brane, if z = x2 + ix3 is the holomorphic direction in
the effective 4d theory, as z →∞ ask that all fields vanish.

Compactifying the D5 brane theory on z-plane to x0, x1, x4, x5
directions gives trivial theory after twisting (infinitely massive).
Compactifying D3 on x8 line gives 3d N = 4 theory.

Therefore, compactifying entire D3-D5 system gives 3d N = 4
theory in an Ω background.



Other examples of this process

1 Nekrasov-Shatashvili for finite quivers: consider D2-NS5
system, apply T and S-duality to get an F1-D5 system and
relate to integrable spin systems.

2 3d N = 4 for affine quivers: C., 1705:02500. Related to a
line defect in 5d Chern-Simons type theory, and the
algebra U~(gln[z1, z2]).

3 Maulik-Okounkov and Etingof-Schiffman result that the
affine Yangian acts on cohomology of instanton moduli
spaces. This comes from considering surface defect in 5d
Chern-Simons theory in C., 1610.04144. (Only proved
from this point of view at a special value of the
parameters).

In the 5d case the RTT presentation has not yet been derived
from the point of view of field theory.


