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Consider the 
spectral 
curve:

⌃ : w2 = z2 + 2m

#

C = C

This geometry tells us about the physics of a 
single N=2 hypermultiplet of mass m
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This hypermultiplet is encoded in 
a spectral network W on C:   
[Gaiotto-Moore-Neitzke,’11] 
[Klemm-Lerche-Mayr-Vafa-

Warner, ’96]
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This hypermultiplet is encoded in 
a spectral network W on C:  
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The hypermultiplet is encoded in 
a spectral network W on C:  
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This hypermultiplet is encoded in 
a spectral network W on C:  
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This hypermultiplet is encoded in 
a spectral network W on C:  
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This hypermultiplet is encoded in 
a spectral network W on C:  

# = 0+



Consider flat SL(2) 
connections on C in a 

bundle E with an irregular 
singularity at infinity  

Such flat SL(2) 
connections are not just 
characterised by their 
monodromy, but also 

come with Stokes data
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Their moduli space 
has complex 

dimension 2 if we fix 
a trivialisation of E 

at infinity  
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Choose sections  

rsi(z) = 0

that are 
asymptotically 

small
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Then we may 
“abelianize” the flat 

connection 
[GMN,’11] 
[HN,’13]
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More precisely, we 
want to do this for 
either resolution
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Finding such a 
gauge implies 

that we can lift 
the flat 

connection to a 
GL(1) flat 

connection on 
the spectral 

cover



Introduce an A and 
B-cycle on the 
spectral cover
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X� = HolArab

Y � = HolBrab

Then we find the 
invariants:



We call
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X = X� = X+

the spectral 
coordinates with 

respect to the 
network with 

saddle
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are Darboux 
coordinates on the 

moduli space of 
irregular flat 
connections

x = logX

y = log Y



There is a distinguished 1-dimensional complex 
Lagrangian subspace of flat SL(2) connections, 

locally given by 

(�✏2@2
z + z2 + 2m) y(z) = 0

This is the so-called space of opers



What are the spectral coordinates X and Y 
restricted to this subspace? 
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L = space of harmonic oscillator opers
M = moduli space of irregular flat connections
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L = space of harmonic oscillator opers
M = moduli space of irregular flat connections
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The generating function of the subspace of opers in 
the spectral coordinates reads

and we find
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This is a baby example of a proposal by Nekrasov, 
Rosly and Shatashvili saying that: 

The effective twisted superpotential for a theory of 
class S is equal to the generating function of opers on C 

in a special choice of Darboux coordinates

(where they defined these coordinates for K=2 on a 
surface C with regular punctures)



Compactification of the six-dimensional (2,0) 
theory X[su(K)] on a Riemann surface C

defines a four-dimensional N=2 theory 
T=S[K,C,D] of class S 
[Gaiotto, GMN,’11]
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For instance, UV gauge couplings are identified with 
the complex structure parameters of C

Microscopic properties of T encoded in the surface C 
together with some defect data D at the punctures. 
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Each spectral curve 

characterises a Coulomb vacuum of the theory T
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The low energy of T is encoded in the prepotential F

the periods are defined by
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The prepotential F may be computed from first principles 
by considering a deformation of T

Equivariant localisation leads to the Nekrasov partition 
function    

ZNek
(a, ✏1, ✏2) = expF(a, ✏1, ✏2)
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Instead, if we only turn on only one deformation 
parameter

the resulting theory preserves N=(2,2) super-Poincare 
symmetry
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In the infra-red limit T has an effective two-dimensional 
description in terms of abelian twisted chiral multiplets, 

coupled to an effective twisted superpotential 
[Nekrasov-Shatashvili,’09]

fW e↵ = lim✏2!0 ✏2 F(✏1 = ✏, ✏2)

which can be computed if T has a Lagrangian 
prescription
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For theories of class S the effective twisted 
superpotential is the Yang-Yang function of the 

quantised Hitchin system  
[Nekrasov-Shatashvili,’09]

The opers are the eigenvalues of this 
quantum integrable system



The building blocks of superconformal N=2 theories of class 
S[K,C,D] are the three-punctured spheres

where the Y are Young diagrams with K boxes
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For K=2 there is a single building block

corresponding to a half-hypermultiplet in the 
trifundamental representation 
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Gluing two of these building blocks

leads to the superconformal SU(2) theory 
coupled to four hypermultiplets
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They introduced Darboux coordinates on the moduli space 
of flat SL(2) connections with regular singularities on C

This is the main example for NRS:

And noticed that the brane of opers is characterised 
by the Fuchsian differential equation

also known as Heun’s oper
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The NRS Darboux coordinates may be found as well by 
abelianizing with respect to a so-called Fenchel-Nielsen 

network [H-Kidwai,’17][H-Neitzke,’13]



defined by a Strebel differential
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Changing the phase slightly

there are two resolutions of the network

The NRS coordinates are obtained as the spectral 
coordinates: 

Y =
p
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X = X� = X+



Geometric recipe:

L = space of Heun’s 
opers

M=moduli space of flat connections on 
4-punctured sphere

M

L

y=dW/dx



1)     Compute the monodromy representation for any 
flat connection on the 4-punctured sphere in terms of 

the NRS Darboux coordinates 

Geometric recipe:

2)     Compute the monodromy representation for the 
Heun differential equation in an expansion of q 

3)       Extract the generating function of Heun opers by 
comparing the two results 



The monodromy representation of the Heun 
differential equation may be computed by 

perturbing in q

q

In the limit q->0 the Heun opers are described as a 
hypergeometric oper on either three-punctured sphere
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As a result we find [H-Kidwai,’17]: 

with
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This computation may be generalised to any theory 
of class S, by computing the generating function of 
opers in terms of the spectral coordinates defined by 

a (higher rank) Fenchel-Nielsen network



What is spectral network on C? 
[Gaiotto-Moore-Neitzke,’12]

u = ('2, . . . ,'K)

This defines a ramified spectral covering of degree K over C

First fix a tuple of k-differentials over C

⌃ : �K + '2�
K�2 + . . .+ 'K = 0 ⇢ T ⇤C



What is spectral network on C?

The trajectories of the spectral network are 
then defined as paths on C obeying

Now fix a phase
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A (higher rank) Fenchel-Nielsen network is defined by a 
generalised Strebel differential 

e�i#
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A
� 2 R

for a choice of A-cycles on the spectral curve



q

Another example is the superconformal SU(3) theory 
coupled to six hypermultiplets
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Generalizations of the NRS Darboux coordinates are 
found as spectral coordinates for the higher Fenchel-

Nielsen network [H-Kidwai,’17]



The space of opers is parametrised by generalised 
Heun’s opers [H-Kidwai,’17]

These are found from generic Fuchsian opers of degree 3 
on the four-punctured sphere by restrictions at the 

minimal punctures:

This enforces that two of solutions at the minimal 
puncture are holomorphic at that puncture, and thus that 

the monodromy around the minimal puncture is 
diagonalizable

(z � z⇤)y
000(z) + p1(z)y

00(z) + p2(z)y
0(z) + p3(z)y(z) = 0

analytic



Following our geometric recipe we compute the 
generating function of opers by perturbing in the 

complex structure parameter q

This again yields the known NS effective twisted 
superpotential

Interestingly, the superconformal SU(2) and SU(3) 
computations give the superpotential in a 

perturbation theory in q, but exact in the Omega-
deformation parameter



Not all theories of class S have such a simple Lagrangian 
prescription. Perhaps the simplest example is

which corresponds to the intrinsically strongly coupled  
E6 Minahan-Nemeschansky theory
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The Coulomb vacua in the 
massless limit are 
characterised by:
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 Higher rank Fenchel-Nielsen networks are labeled by 
a choice of A-cycle on the spectral curve 

[H-Neitzke,’16]

e�i#A

I

A
� 2 R

Found at critical 
phases for which:

(123)

(123)

(123)

2

3

2 3
2

3

(123)

(123

(123)

2

3

3

1
1 2A = p�1 + q�2



(123)

(123

(123)

23
32

13
31

2112

Simplest network appears when (p,q)=(1,0):



23

32

13
31

32
23

12

21

21
12

31
13

(13)

(23)

(21)

21

12

31
13

13

31

23

32

21

12

23

32

23

32

31

13

23

32

13

31

21
12

21

12

13

31

(23)

(13)

(21)

For (p,q)=(1,2): For (p,q)=(1,3):



For the simplest Fenchel-Nielsen network, we find the 
monodromy representation [H-Neitzke,’17]:
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The brane of opers is parametrised by general Fuchsian 
differential equations of degree 3 on the three-punctured 

sphere. 

Unlike for (generalized) hypergeometric differential 
equations, their monodromies cannot be computed 

analytically in terms of known functions



Yet, we can compute asymptotic expansion in the Omega-
deformation parameter using the WKB properties of the 

spectral coordinates

where
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The exact result for X may be found by Borel resummation 
with respect to the spectral network

The asymptotic result for the generating function of 
opers is not very sensitive on the chosen spectral 

network

This relates the NRS proposal to other proposals 
computing the effective twisted superpotentials using 

quantum periods

Can we compare our E6 result??



How do we motivate the NRS correspondence?



cigar metric

Let’s consider theory T in the background: 

⇥✏ R2

this background still preserves 2d N=(2,2)
IR physics governed by the NS effective twisted 

superpotential
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On the other hand, the Omega deformation can be 
undone away from the tip of the cigar in favour of a field 

redefinition [Nekrasov-Witten,’10]
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Let’s consider theory T in the background: 

Compactifying T on the circle is described in the IR by a 
3d sigma model into the Hitchin moduli space
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The Hitchin moduli space is hyperkahler with parameter

⇣ 2 P1

⇣ 2 {0,1}

structure of an 
integrable 

system 

B u = ('2, . . . ,'K)

moduli space of Higgs bundles



moduli space M of flat SL(K,C) connections⇣ 2 C⇤

r =
R

⇣
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L = space of opers

distinguished complex Lagrangian

M
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Let’s go back to the background: 

IR description as a 3d sigma model into the Hitchin 
moduli space with complex structure  

⇣ =
✏

|✏|

with an additional brane wrapping the space of opers 
[Nekrasov-Witten,’10]



Also boundary condition at infinity of the cigar

In 4d this boundary condition preserves a 3d 
N=2 subalgebra, labelled by a phase 
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General IR boundary conditions are specified by
(u,#)

together with a choice of A and B-cycles on the 
corresponding spectral curve 

this data defines a set of spectral coordinates

(Xi, Yi)

 on the moduli space of flat SL(K) connections



L 

Reducing to zero modes in the r-direction, we find a 
2d sigma model with superpotential  

[Kapustin-Saulina]
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The NS computation corresponds to a special type 
of boundary condition

It may be obtained through a UV-IR duality wall:

UV theory IR theory

Re(e�i#Z) = c

Im(e�i#Z) = t Im(e�i#Z0)



The IR theory is characterised by the light particles with  

Im(e�i#Z) = 0

In particular, in a weakly coupled gauge theory the light 
particles are the W-bosons found in the Fenchel-Nielsen 

network determined by

Im(e�i#

I

A
�) = 0

This is precisely the Strebel condition! An IR boundary 
condition is then given by setting Y=1

The IR boundary condition is a standard Neumann 
boundary condition



Using this UV-IR duality wall we have built a set of UV 
boundary conditions corresponding to (higher) Fenchel-

Nielsen networks 

For theories of class S of a Lagrangian type the resulting 
generating function of opers is equal to the effective 

twisted superpotential

For other IR boundary conditions (corresponding to 
generic spectral networks) the generating function of 

opers also has a physical interpretation



B

u u’
Walking 

along a path 
from u to 

any other u’

the spectral 
network 
undergoes 

flips 

this corresponds to coupling the 
3d boundary to an abelian 3d 

theory  
[Dimofte-Gaiotto-Veen,’13]

the generating function of opers is the effective twisted 
superpotential of the total theory 


