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Fermion-boson correspondence

Fermion-boson correspondence in 1+1d has many avatars:

Free massless Dirac fermion ↔ free massless boson

Massive Thirring ↔ sine-Gordon

Free Majorana fermion ↔ quantum Ising chain/2d Ising model

Jordan-Wigner transformation for general fermionic systems on a 1d
lattice

I will focus on the latter and will explain how it can be generalized to
higher dimensions
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Spin chains

The Hilbert space of a spin chain is V = ⊗N
j=1Vj , where Vj ' C2.

The algebra of observables is ⊗N
j=1End(Vj) ' End(V ).

The Hamiltonian is

HB =
N∑
j=1

HB
j ,

where HB
j is an observable which has finite range ([HB

j ,Ok ] = 0 for
|j − k | � 0 for any observable Ok localized on site k).

We will denote by Xj ,Yj ,Zj the standard Pauli matrices acting on site j
only. We will assume that S =

∏
j Zj commutes with HB . Then the spin

chain has a Z2 symmetry.
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Fermionic chains

The Hilbert space of a fermionic chain is W = ⊗̂Wi , where W ' C1|1.

The algebra of observables is ⊗̂N
j=1End(Wj) ' Cl(2N), where Cl(2N) is

the complex Clifford algebra with 2N generators. This is a Z2-graded
algebra.

The Hamiltonian is

HF =
N∑
j=1

HF
j ,

where each HF
j is an even (bosonic) observable which has a finite range.

We will denote by cj , c
†
j the fermionic creation-annihilation operators

acting on site j .
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Jordan-Wigner transformation

Since Cl(2N) is isomorphic to a matrix algebra of size 2N × 2N , the
algebras of observables of the two models are abstractly isomorphic.

The Jordan-Wigner transformation is a special isomorphism which maps
even local observables of the fermionic chain to local observables of the
spin chain commuting with S :

cj 7→
1

2
(Xj + iYj)

j−1∏
k=1

Zk , c†j 7→
1

2
(Xj − iYj)

j−1∏
k=1

Zk

In particular, this implies:

c†j cj 7→
1

2
(1− Zj) , (−1)c

†
j cj 7→ Zj .

The inverse transformation is also easily written.

Anton Kapustin (California Institute of Technology)Bosonization on a lattice in higher dimensions July 24, 2017 6 / 24



The toric code

The toric code (Kitaev) is a soluble 2+1d lattice spin model whose ground
states reproduce topological Z2 gauge theory.

Let T be a triangulation of a 2d manifold. Let Ti , i = 0, 1, 2 be the set of
i-simplices of T .

The Hilbert space is ⊗e∈T1Ve , where Ve ' C2 ∀e. The algebra of
observables is generated by Xe ,Ye ,Ze , e ∈ T1.

The Hamiltonian is a sum of commuting projectors:

HT = t
∑
v∈T0

1

2
(1− Pv ) + t

∑
f ∈T2

1

2
(1− Pf ), t > 0,

where
Pv =

∏
e⊃v

Xe , Pf =
∏
e⊂f

Ze .
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The toric code vs. topological Z2 gauge theory

The space of ground states of the toric code is the image of the projector

Πtot =
∏
v

1

2
(1 + Pv )

∏
f

1

2
(1 + Pf )

The 2nd factor projects to states with trivial flux Pf ∈ {+1,−1} for every
f , the 1st factor imposes the Gauss law.

Alternatively, one can take the limit t →∞, or just take t to be finite, but
very large. This last option is preferred in condensed matter literature,
because then the Hilbert space is a product of local Hilbert spaces.

From the HEP viewpoint, imposing local constraints is fine too.
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Excitations of the toric code

The ground states of HT have zero energy and are in 1-1 correspondence
with elements of H1(T ,Z2). All excited states have energy Nt for some
natural number N.

The basic excitations E and M are localized at vertices and faces,
respectively, and have energy t. One can write a modified Hamiltonian
whose zero-energy states are forced to have E or M at a particular vertex
or face:

HT (v) = HT + tPv , HT (f ) = HT + tPf .

E and M particles are mutually nonlocal, with a π relative statistics. (To
see this, need to study operators which move E and M excitations
around.) So the composite of E and M behaves as an emergent fermion.
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Toric code in the cochain notation

It is convenient to use a cochain notation for the states and operators of
the toric code. Let Cp = Cp(T ,Z2) be the set of Z2-valued functions on
Tp. The coboundary operator δ : Cp → Cp+1 satisfies δ2 = 0.

V T has a basis
{
|α〉, α ∈ C 1

}
. The idempotent constraint operators Pv

and Pf look as follows in this basis:

Pv : |α〉 7→ |α + δ∆v 〉, Pf : |α〉 7→ (−1)(δα)[f ]|α〉,

where ∆v ∈ C 0 is a 0-cochain supported on the vertex v .
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Modified constraints in the cochain notation

M-particles naturally live on faces. Let βM2 ∈ C 2 describe an arbitrary
distribution of M particles. Define

Pf [βM2 ] : |α〉 7→ (−1)(δα−βM
2 )[f ]|α〉, Pv [βM2 ] = Pv .

E -particles naturally live on vertices, but we would like to associate them
with faces too. Let’s fix a branching structure on T , i.e. an orientation of
edges such that for every f ∈ T2 the oriented edges of f do not form a
closed loop. Then vertices of every f are ordered from 0 to 2. This allows
one to define an associative cup product Cp × Cq → Cp+q.

For any βE2 ∈ C 2 define

Pv [βE2 ] : |α〉 7→ (−1)
∫

∆v∪βE
2 |α + δ∆v 〉, Pf [βE2 ] = Pf .
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Modified Hamiltonians in the cochain notation

Since the idempotent observables Pv [βE2 ] and Pf [βE2 ] have finite range, we
can define a modified local Hamiltonian which depends on a distribution of
E -particles:

HT [βE2 ] = t
∑
v∈T0

1

2
(1− Pv [βE2 ]) + t

∑
f ∈T2

1

2
(1− Pf [βE2 ]).

It is a sum of commuting projectors.

Similarly we can define HT [βM2 ] which depends on a distribution of
M-particles.

But what we really want is a similar Hamiltonian in the presence of a
distribution of emergent fermions EM.
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Inserting emergent fermions

For any βEM2 ∈ C 2 define

Pv [βEM2 ] : |α〉 7→ (−1)
∫

∆v∪βEM
2 |α + δ∆v 〉,

Pf [βEM2 ] : |α〉 7→ (−1)(δα−βEM
2 )[f ]|α〉

These are commuting idempotents, which are also finite-range observables.
So we can define a local Hamiltonian which is a sum of commuting
projectors and depends on a distribution of EM particles:

HT [βEM2 ] = t
∑
v∈T0

1

2
(1− Pv [βEM2 ]) + t

∑
f ∈T2

1

2
(1− Pf [βEM2 ]).
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Spins on a 2d lattice

Consider a system of bosonic spins living on the faces of T . The Hilbert
space is V S = ⊗f ∈T2Vf , where Vf ' C2. The algebra of observables is

End(V S) = ⊗f ∈T2End(Vf ),

and is generated by Xf ,Yf ,Zf , f ∈ T2. A natural basis for V S is labeled
by βS2 ∈ C 2:

Zf |βS2 〉 = (−1)β
S
2 [f ]|βS2 〉.

Consider the total spin operator S =
∏

f Zf . The algebra of observables
commuting with S is generated by Zf , f ∈ T2, and ”hopping” operators

Se = XL(e)XR(e), e ∈ T1,

where L(e) is the face to the left of an oriented edge e, and R(e) is the
face to the right of e (here we use orientation on T ).
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Fermions on a 2d lattice

Similarly, let’s place the fermions on faces of T . The Hilbert space is
W = ⊗̂f ∈T2Wf , where Wf ' C1|1. The algebra of observables is

⊗̂f ∈T2End(Wf ),

and is generated by γf , γ
′
f , f ∈ T2, where γf , γ

′
f are generators of Cl(2).

The algebra of even observables is generated by (−1)Ff = iγf γ
′
f , f ∈ T2

(fermion parity on the face f ) and operators

SF
e = iγL(e)γ

′
R(e), e ∈ T1.
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Comparing bosonic and fermionic algebras

Similarities:

All these operators square to 1

Hopping operators Se anti-commute with Zf for f = L(e) and
f = R(e) and commute for all other f . The same applies to SF

e and
(−1)Ff .

Differences:

Se and S ′e commute for all e and e ′, while SF
e and SF

e′ sometimes
commute and sometimes anti-commute

For a fixed v , we have
∏

e⊃v Se = 1, but∏
e⊃v S

F
e = c(v)

∏
f⊃v (−1)Ff , where c(v) is a c-number sign.
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Emergent fermion attachment

To fix this, we need to attach to every ”spin-down” state at a face f an
emergent fermion EM from the toric code.

This means that we consider the product Hilbert space V S ⊗ V T with the
Hamiltonian

H0 = t
∑
v∈T0

(1− Pv [
1

2
(1− Z )]) + t

∑
f ∈T2

(1− Pf [
1

2
(1− Z )]),

where 1
2 (1− Z ) is a 2-cochain with values in operators on V S whose value

on face f is 1
2 (1− Zf ).

Then we define hopping operators for emergent fermions Ue as follows:

Ue : |α〉 7→ (−1)
∫
α∪∆e |α + ∆e〉,

where ∆e ∈ C 1 is the 1-cochain supported on e.
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Properties of the emergent fermion hopping operator

U2
e = 1.

Ue anti-commutes with (−1)δα[f ] if e ⊂ f and commutes with it
otherwise.

Ue and Ue′ commute for some pairs e, e ′ and anti-commute for
others, and the rule is the same as for SF

e and SF
e′ .

On the image of HT [βEM2 ], one has
∏

e⊃v Ue = c̃(v)
∏

f⊃v (−1)β
EM
2 [f ].

This is very similar to properties of SF
e , except that Ff (the number of

physical fermions modulo 2) is replaced with βEM2 (the number of
emergent fermions modulo 2), and the c-number sign c̃(v) is different.
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The 2d analog of the Jordan-Wigner transformation

Consider the following map:

(−1)Ff 7→ Zf , SF
e 7→ d(e)UeSe ,

where d(e) is some c-number sign depending on the edge. We claim that
provided a certain condition on d(e) is satisfied, this map induces a
homomorphism of algebras after projecting to the zero-energy states of the
Hamiltonian H0.

The condition on d(e) has the form
∏

e⊃v d(e) = c(v)c̃(v). That is, d(e)
is a 1-chain with values in Z2 which is a trivialization of the 0-chain
c(v)c̃(v). If it has a solution, one can get other solutions by adding a
closed 1-chain, i.e. a 1-cycle.

Further, a 1-cycle which is a boundary of a 2-cycle can be absorbed into
Se by redefining some Xf and Yf by a sign. Hence distinct possibilities for
d(e) can be labeled by elements of H1(T ,Z2) (if a solution exists at all).
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When does a solution for d(e) exist?

It turns out that c(v)c̃(v) is Poincare-dual to a 2-cocycle representing the
2nd Stiefel-Whitney class w2 ∈ H2(T ,Z2). If the space is orientable
manifold, this class is always trivial (in two dimensions), and a solution
d(e) exists.

In general, w2 is an obstruction to having a spin structure (provided w1

vanishes). So its trivialization defines a spin structure. Thus the 1-cycle
d(e) is a lattice representation of a spin structure.

Thus the 2d Jordan-Wigner transformation always exists, but is not
unique: distinct transformations are labeled by spin structures.

NB. The inverse of the above bosonization map was first described by
Bhardwaj, Gaiotto, AK, 2016 in the context of lattice TQFT. The
bosonization map in the above form was worked by Yu-An Chen and AK.
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Bosonization in general dimensions

It was argued in Gaiotto and AK, 2015 that bosonization exists in all
dimensions.

The idea is the same: find a topological system with emergent fermions
and attach these emergent fermions to spin excitations.

While it is well-known that 2+1d TQFTs can have emergent fermions, it is
less obvious how to engineer them in higher dimensions.

For example, Jackiw and Rebbi, 1976, showed how fermions can arise in a
purely bosonic 3+1d system, but their example is very far from being a
TQFT (involves Yang-Mills gauge fields and dynamical scalars).
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A TQFT with emergent fermions

Nevertheless, there is a universal solution for this problem in all
dimensions. Consider a Euclidean lattice system in d + 1 dimensions
whose only ”field” is a (d − 1)-cocycle B with values in Z2.

Postulate also that B 7→ B + δλ, where λ is a (d − 2)-cocycle, is a gauge
symmetry. Thus B is a topological (d − 1)-form gauge field with values in
Z2.

Now recall that there exist operations Sqq : Hp(X ,Z2) 7→ Hp+q(X ,Z2)
called Steenrod squares and consider the action

SX (B) =
1

2

∫
X
Sq2B ∈ R/Z,

so that the partition function is

ZX ∼
∑

[B]∈Hd−1(X ,Z2)

exp(2πiS(B)).

We claim that this TQFT has an excitation which is an emergent fermion.
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A d = 3 example

Here Sq2B = B ∪ B, so we get

SX (B) =
1

2

∫
X
B ∪ B.

Now we recall that on a closed orientable manifold B ∪ B = w2 ∪ B. Also,
impose the constraint δB = 0 using a Lagrange multiplier a ∈ C 1(X ,Z2).
We get:

S ′X (a,B) =
1

2

∫
X

(δa + w2) ∪ B.

Thus the Wilson loop exp(iπ
∫
γ a) is not a topological operator (because

δa 6= 0 on-shell). But if w2 = δη for some 1-cochain η, then

Wγ = exp(iπ

∫
γ

(a + η)),

where γ is a 1-cycle, is a topological observable.

This loop operator represents a worldline of an excitation which requires a
trivialization of w2 (i.e. a spin structure) for its definition.
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Jordan-Wigner in general dimensions

To get a d = 3 Jordan-Wigner transformation from this, one needs to
rewrite the above TQFT in the Hamiltonian form, construct ”hopping”
operators for the emergent fermion, and show that they obey the same
algebra as hopping operators for fermions.

The case of general d is similar: one just needs to use Wu’s formula
Sq2B = w2 ∪ B valid on any closed orientable (d + 1)-manifold and any
(d − 1)-cocycle B.

The details are being worked out.
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