W-algebras, moduli of sheaves on surfaces, and AGT

Andrei Neguț
MIT
26.7.2017

The AGT correspondence

- Alday-Gaiotto-Tachikawa found a connection between:

$$
[4 \mathrm{D} \mathcal{N}=2 \text { gauge theory for } U(r)] \leftrightarrow\left[A_{r-1} \text { Toda field theory }\right]
$$

The AGT correspondence

- Alday-Gaiotto-Tachikawa found a connection between:

$$
[4 \mathrm{D} \mathcal{N}=2 \text { gauge theory for } U(r)] \leftrightarrow\left[A_{r-1} \text { Toda field theory }\right]
$$

- Specifically, the Nekrasov partition function for the LHS should match conformal blocks for the W-algebra of type $\mathfrak{g l}_{r}$.

The AGT correspondence

- Alday-Gaiotto-Tachikawa found a connection between:

$$
[4 \mathrm{D} \mathcal{N}=2 \text { gauge theory for } U(r)] \leftrightarrow\left[A_{r-1} \text { Toda field theory }\right]
$$

- Specifically, the Nekrasov partition function for the LHS should match conformal blocks for the W-algebra of type $\mathfrak{g l}_{r}$.
- In the pure gauge theory, the mathematical connection was established by Maulik-Okounkov and Schiffmann-Vasserot,

The AGT correspondence

- Alday-Gaiotto-Tachikawa found a connection between:

$$
[4 \mathrm{D} \mathcal{N}=2 \text { gauge theory for } U(r)] \leftrightarrow\left[A_{r-1} \text { Toda field theory }\right]
$$

- Specifically, the Nekrasov partition function for the LHS should match conformal blocks for the W-algebra of type $\mathfrak{g l}_{r}$.
- In the pure gauge theory, the mathematical connection was established by Maulik-Okounkov and Schiffmann-Vasserot,
- who defined an action of the W-algebra on the cohomology group H of the moduli space \mathcal{M} of sheaves/instantons on \mathbb{A}^{2}.

The AGT correspondence

- Alday-Gaiotto-Tachikawa found a connection between:

$$
[4 \mathrm{D} \mathcal{N}=2 \text { gauge theory for } U(r)] \leftrightarrow\left[A_{r-1} \text { Toda field theory }\right]
$$

- Specifically, the Nekrasov partition function for the LHS should match conformal blocks for the W-algebra of type $\mathfrak{g l}_{r}$.
- In the pure gauge theory, the mathematical connection was established by Maulik-Okounkov and Schiffmann-Vasserot,
- who defined an action of the W-algebra on the cohomology group H of the moduli space \mathcal{M} of sheaves/instantons on \mathbb{A}^{2}.
- Then the Nekrasov partition function is $\langle\mathbf{1}, \mathbf{1}\rangle$, where $\mathbf{1}$ is the unit cohomology class, which one can uniquely determine based on how the W-algebra acts on it (the Gaiotto state).

The Ext operator

- Things are even more interesting in the presence of matter. Mathematically, matter in the bifundamental representation:

$$
\mathbb{C}^{r_{1}} \otimes \mathbb{C}_{r_{2}}{ }^{r_{1}} \curvearrowleft U\left(r_{1}\right) \times U\left(r_{2}\right)
$$

The Ext operator

- Things are even more interesting in the presence of matter. Mathematically, matter in the bifundamental representation:

$$
\mathbb{C}^{r_{1}} \otimes \mathbb{C}_{r_{2}}{ }^{r_{2}} \curvearrowleft U\left(r_{1}\right) \times U\left(r_{2}\right)
$$

- is encoded in the Ext operator of Carlsson-Okounkov:

$$
A_{m}: H \rightarrow H, \quad A_{m}=p_{1 *}\left[c\left(\operatorname{Ext}{ }^{\bullet}\left(\mathcal{F}^{\prime}, \mathcal{F}\right), m\right) \cdot p_{2}^{*}\right]
$$

The Ext operator

- Things are even more interesting in the presence of matter. Mathematically, matter in the bifundamental representation:

$$
\mathbb{C}^{r_{1}} \otimes \mathbb{C}^{r_{2}{ }^{*}} \curvearrowleft U\left(r_{1}\right) \times U\left(r_{2}\right)
$$

- is encoded in the Ext operator of Carlsson-Okounkov:

$$
\left.A_{m}: H \rightarrow H, \quad A_{m}=p_{1 *}\left[c\left(\operatorname{Ext} \mathcal{F}^{\bullet}, \mathcal{F}^{\prime}, \mathcal{F}\right), m\right) \cdot p_{2}^{*}\right]
$$

- Therefore, AGT for linear quiver gauge theories follows if one presents A_{m} as an "intertwiner" of the W-algebra action on H

The Ext operator

- Things are even more interesting in the presence of matter. Mathematically, matter in the bifundamental representation:

$$
\mathbb{C}^{r_{1}} \otimes \mathbb{C}^{r_{2}{ }^{*}} \curvearrowleft U\left(r_{1}\right) \times U\left(r_{2}\right)
$$

- is encoded in the Ext operator of Carlsson-Okounkov:

$$
A_{m}: H \rightarrow H, \quad A_{m}=p_{1 *}\left[c\left(\operatorname{Ext}{ }^{\bullet}\left(\mathcal{F}^{\prime}, \mathcal{F}\right), m\right) \cdot p_{2}^{*}\right]
$$

- Therefore, AGT for linear quiver gauge theories follows if one presents A_{m} as an "intertwiner" of the W-algebra action on H
- We will prove this by q-deforming everything, redefining the W-algebra action, and proving that A_{m} "commutes" with it.

The Ext operator

- Things are even more interesting in the presence of matter. Mathematically, matter in the bifundamental representation:

$$
\mathbb{C}^{r_{1}} \otimes \mathbb{C}_{r_{2} *} \curvearrowleft U\left(r_{1}\right) \times U\left(r_{2}\right)
$$

- is encoded in the Ext operator of Carlsson-Okounkov:

$$
\left.A_{m}: H \rightarrow H, \quad A_{m}=p_{1 *}\left[c\left(\operatorname{Ext} \mathcal{F}^{\bullet}, \mathcal{F}^{\prime}, \mathcal{F}\right), m\right) \cdot p_{2}^{*}\right]
$$

- Therefore, AGT for linear quiver gauge theories follows if one presents A_{m} as an "intertwiner" of the W-algebra action on H
- We will prove this by q-deforming everything, redefining the W-algebra action, and proving that A_{m} "commutes" with it.
- Since our construction is purely geometric, it makes sense for sheaves on surfaces S more general than the affine plane \mathbb{A}^{2}

Deformation

- Mathematically, deformation refers to two related processes:

Deformation

- Mathematically, deformation refers to two related processes:
- Replacing the cohomology of \mathcal{M} by its algebraic K-theory:

$$
H \rightsquigarrow K=K_{\text {equiv }}(\mathcal{M})=\bigoplus_{n=0}^{\infty} K_{\text {equiv }}\left(\mathcal{M}_{n}\right)
$$

which entails replacing $4 \mathrm{D} \mathcal{N}=2$ by $5 \mathrm{D} \mathcal{N}=1$ gauge theory.

Deformation

- Mathematically, deformation refers to two related processes:
- Replacing the cohomology of \mathcal{M} by its algebraic K-theory:

$$
H \rightsquigarrow K=K_{\text {equiv }}(\mathcal{M})=\bigoplus_{n=0}^{\infty} K_{\text {equiv }}\left(\mathcal{M}_{n}\right)
$$

which entails replacing $4 \mathrm{D} \mathcal{N}=2$ by $5 \mathrm{D} \mathcal{N}=1$ gauge theory.

- Replacing Lie algebras by quantum groups, e.g. $\mathfrak{g} \rightsquigarrow U_{q}(\mathfrak{g})$ or:

Heisenberg $\rightsquigarrow{ }_{q}$ Heisenberg $=\frac{\mathbb{Z}\left[q_{1}^{ \pm 1}, q_{2}^{ \pm 1}\right]\left\langle a_{n}\right\rangle_{n \in \mathbb{Z} \backslash 0}}{\left[a_{-m}, a_{n}\right]=\delta_{m}^{n} \frac{n\left(1-q_{1}^{n}\right)\left(1-q_{2}^{n}\right)\left(1-q^{r n}\right)}{1-q^{n}}}$

Deformation

- Mathematically, deformation refers to two related processes:
- Replacing the cohomology of \mathcal{M} by its algebraic K-theory:

$$
H \rightsquigarrow K=K_{\text {equiv }}(\mathcal{M})=\bigoplus_{n=0}^{\infty} K_{\text {equiv }}\left(\mathcal{M}_{n}\right)
$$

which entails replacing $4 \mathrm{D} \mathcal{N}=2$ by $5 \mathrm{D} \mathcal{N}=1$ gauge theory.

- Replacing Lie algebras by quantum groups, e.g. $\mathfrak{g} \rightsquigarrow U_{q}(\mathfrak{g})$ or:

$$
\text { Heisenberg } \rightsquigarrow{ }_{q} \text { Heisenberg }=\frac{\mathbb{Z}\left[q_{1}^{ \pm 1}, q_{2}^{ \pm 1}\right]\left\langle a_{n}\right\rangle_{n \in \mathbb{Z} \backslash 0}}{\left[a_{-m}, a_{n}\right]=\delta_{m}^{n} \frac{n\left(1-q_{1}^{n}\right)\left(1-q_{2}^{n}\right)\left(1-q^{r n}\right)}{1-q^{n}}}
$$

- More generally, we will consider the deformed W-algebra of Feigin-Frenkel and Awata-Kubo-Odake-Shiraishi. In type $\mathfrak{g l}_{1}$, this algebra is ${ }_{q}$ Heisenberg, while for $\mathfrak{s l}_{2}$, it deforms Virasoro.

The deformed W-algebra

- The original definition of the ${ }_{q} \mathrm{~W}$-algebra is via free fields:

The deformed W-algebra

- The original definition of the ${ }_{q} \mathrm{~W}$-algebra is via free fields:
- ${ }_{q} \mathcal{W}_{r}$ is defined as the subalgebra generated by $W_{d, k}$ given by:

$$
W_{k}(x)=\sum_{1 \leq s_{1} \leq \ldots \leq s_{k} \leq r}: \prod_{i=1}^{k} u_{s_{i}} \exp \left[\sum_{n=1}^{\infty} \frac{b_{-n}^{\left(s_{i}\right)}}{n x^{-n}}\right] \exp \left[\sum_{n=1}^{\infty} \frac{b_{n}^{\left(s_{i}\right)}}{n x^{n}}\right]:
$$

The deformed W-algebra

- The original definition of the ${ }_{q} \mathrm{~W}$-algebra is via free fields:

$$
{ }_{q} \mathcal{W}_{r} \subset \mathcal{H}_{r}=\frac{\mathbb{Z}\left[q_{1}^{ \pm 1}, q_{2}^{ \pm 1}\right]\left\langle b_{n}^{(i)}\right\rangle \underset{n}{1 \leq i \leq \mathbb{Z} \backslash 0}}{\left[b_{-n}^{(i)}, b_{m}^{(j)}\right]=\delta_{m}^{n} n\left(1-q_{1}^{n}\right)\left(1-q_{2}^{n}\right)\left(1-\delta_{i \neq j} q^{\left.-n \delta_{i<j}\right)}\right.}
$$

- ${ }_{q} \mathcal{W}_{r}$ is defined as the subalgebra generated by $W_{d, k}$ given by:

$$
W_{k}(x)=\sum_{1 \leq s_{1} \leq \ldots \leq s_{k} \leq r}: \prod_{i=1}^{k} u_{s_{i}} \exp \left[\sum_{n=1}^{\infty} \frac{b_{-n}^{\left(s_{i}\right)}}{n x^{-n}}\right] \exp \left[\sum_{n=1}^{\infty} \frac{b_{n}^{\left(s_{i}\right)}}{n x^{n}}\right]:
$$

- More intrinsically, ${ }_{q} \mathcal{W}_{r}$ can be described as the algebra generated by symbols $W_{d, k}$ modulo relations such as:

$$
\begin{gathered}
W_{k}(x) W_{1}(y) \zeta\left(\frac{x}{y q^{k}}\right)-W_{1}(y) W_{k}(x) \zeta\left(\frac{y}{x q}\right)= \\
=\frac{\left(q_{1}-1\right)\left(q_{2}-1\right)}{q-1}\left[\delta\left(\frac{x}{y q^{k}}\right) W_{k+1}(x)-\delta\left(\frac{y}{x q}\right) W_{k+1}(y)\right]
\end{gathered}
$$

The Verma module and the vertex operator

- Let $u_{1}, \ldots, u_{r} \in \mathbb{C}$. Define the Verma module of ${ }_{q} \mathcal{W}_{r}$ as:

$$
M={ }_{q} \mathcal{W}_{r} / \text { right ideal }\left(W_{d, k}, W_{0, k}-e_{k}\left(u_{1}, \ldots, u_{r}\right)\right)_{1 \leq k \leq r}^{d>0}
$$ and similarly define M^{\prime} with the parameters u_{i} replaced by u_{i}^{\prime}.

The Verma module and the vertex operator

- Let $u_{1}, \ldots, u_{r} \in \mathbb{C}$. Define the Verma module of ${ }_{q} \mathcal{W}_{r}$ as:

$$
M={ }_{q} \mathcal{W}_{r} / \text { right ideal }\left(W_{d, k}, W_{0, k}-e_{k}\left(u_{1}, \ldots, u_{r}\right)\right)_{1 \leq k \leq r}^{d>0}
$$

and similarly define M^{\prime} with the parameters u_{i} replaced by u_{i}^{\prime}.

- For $m \in \mathbb{C}$, the vertex operator will almost be an intertwiner:

$$
\Phi_{m}: M^{\prime} \longrightarrow M
$$

The Verma module and the vertex operator

- Let $u_{1}, \ldots, u_{r} \in \mathbb{C}$. Define the Verma module of ${ }_{q} \mathcal{W}_{r}$ as:

$$
M={ }_{q} \mathcal{W}_{r} / \text { right ideal }\left(W_{d, k}, W_{0, k}-e_{k}\left(u_{1}, \ldots, u_{r}\right)\right)_{1 \leq k \leq r}^{d>0}
$$

and similarly define M^{\prime} with the parameters u_{i} replaced by u_{i}^{\prime}.

- For $m \in \mathbb{C}$, the vertex operator will almost be an intertwiner:

$$
\Phi_{m}: M^{\prime} \longrightarrow M
$$

- as it isn't required to commute with ${ }_{q} \mathcal{W}_{r}$ on the nose. Instead:

$$
\begin{equation*}
\left[\Phi_{m}, W_{k}(x)\right]_{m^{k}} \cdot\left(1-\frac{m^{r}}{q^{r-k} x} \frac{u_{1} \ldots u_{r}}{u_{1}^{\prime} \ldots u_{r}^{\prime}}\right)=0 \tag{1}
\end{equation*}
$$

for all $k \geq 1$, where $[A, B]_{s}=A B-s B A$.

The Verma module and the vertex operator

- Let $u_{1}, \ldots, u_{r} \in \mathbb{C}$. Define the Verma module of ${ }_{q} \mathcal{W}_{r}$ as:

$$
M={ }_{q} \mathcal{W}_{r} / \text { right ideal }\left(W_{d, k}, W_{0, k}-e_{k}\left(u_{1}, \ldots, u_{r}\right)\right)_{1 \leq k \leq r}^{d>0}
$$

and similarly define M^{\prime} with the parameters u_{i} replaced by u_{i}^{\prime}.

- For $m \in \mathbb{C}$, the vertex operator will almost be an intertwiner:

$$
\Phi_{m}: M^{\prime} \longrightarrow M
$$

- as it isn't required to commute with ${ }_{q} \mathcal{W}_{r}$ on the nose. Instead:

$$
\begin{equation*}
\left[\Phi_{m}, W_{k}(x)\right]_{m^{k}} \cdot\left(1-\frac{m^{r}}{q^{r-k}} \frac{u_{1} \ldots u_{r}}{u_{1}^{\prime} \ldots u_{r}^{\prime}}\right)=0 \tag{1}
\end{equation*}
$$

for all $k \geq 1$, where $[A, B]_{s}=A B-s B A$.

- Lemma: the endomorphism Φ_{m} is uniquely determined, up to constant multiple, by property (1).

The main Theorem

- Theorem (\mathbf{N}) There exists an action ${ }_{q} \mathcal{W}_{r} \curvearrowright K$, for which the latter is isomorphic to the Verma module M.

Moreover, the Ext operator $A_{m}: K^{\prime} \rightarrow K$ is equal to the vertex operator $\Phi_{m}: M^{\prime} \rightarrow M$, up to a simple exponential.

The main Theorem

- Theorem (\mathbf{N}) There exists an action ${ }_{q} \mathcal{W}_{r} \curvearrowright K$, for which the latter is isomorphic to the Verma module M.

Moreover, the Ext operator $A_{m}: K^{\prime} \rightarrow K$ is equal to the vertex operator $\Phi_{m}: M^{\prime} \rightarrow M$, up to a simple exponential.

- The second part is an intersection-theoretic computation, once we give a geometric definition of the action in first part.

The main Theorem

- Theorem (\mathbf{N}) There exists an action ${ }_{q} \mathcal{W}_{r} \curvearrowright K$, for which the latter is isomorphic to the Verma module M.

Moreover, the Ext operator $A_{m}: K^{\prime} \rightarrow K$ is equal to the vertex operator $\Phi_{m}: M^{\prime} \rightarrow M$, up to a simple exponential.

- The second part is an intersection-theoretic computation, once we give a geometric definition of the action in first part.
- We define the action of $W(x, y)=\sum_{d \in \mathbb{Z}}^{k>0} \frac{W_{d, k}}{x^{d}(-y)^{k}}$ on K as:

$$
W\left(x, y D_{x}\right)=L\left(x, y D_{x}\right) \cdot E(y) \cdot U\left(x, y D_{x}\right)
$$

where D_{x} is the difference operator $f(x) \rightsquigarrow f(x q)$

The main Theorem

- Theorem (\mathbf{N}) There exists an action ${ }_{q} \mathcal{W}_{r} \curvearrowright K$, for which the latter is isomorphic to the Verma module M.

Moreover, the Ext operator $A_{m}: K^{\prime} \rightarrow K$ is equal to the vertex operator $\Phi_{m}: M^{\prime} \rightarrow M$, up to a simple exponential.

- The second part is an intersection-theoretic computation, once we give a geometric definition of the action in first part.
- We define the action of $W(x, y)=\sum_{d \in \mathbb{Z}}^{k>0} \frac{W_{d, k}}{x^{d}(-y)^{k}}$ on K as:

$$
W\left(x, y D_{x}\right)=L\left(x, y D_{x}\right) \cdot E(y) \cdot U\left(x, y D_{x}\right)
$$

where D_{x} is the difference operator $f(x) \rightsquigarrow f(x q)$

- and L, E, U are geometric endomorphisms of K that are lower triangular, diagonal, and upper triangular, respectively.

The moduli space of sheaves

- Explicitly, our \mathcal{M} is the moduli space of framed sheaves:

$$
\left(\mathcal{F} \text { torsion-free sheaf on } \mathbb{P}^{2},\left.\mathcal{F}\right|_{\infty} \stackrel{\phi}{=} \mathcal{O}_{\infty}^{\oplus r}\right)
$$

The moduli space of sheaves

- Explicitly, our \mathcal{M} is the moduli space of framed sheaves:

$$
\left(\mathcal{F} \text { torsion-free sheaf on } \mathbb{P}^{2},\left.\mathcal{F}\right|_{\infty} \stackrel{\phi}{=} \mathcal{O}_{\infty}^{\oplus r}\right)
$$

- There is an action of $T=\mathbb{C}^{*} \times \mathbb{C}^{*} \times\left(\mathbb{C}^{*}\right)^{r}$ on \mathcal{M}, where the first two factors act on \mathbb{P}^{2} and the third factor acts on ϕ.

The moduli space of sheaves

- Explicitly, our \mathcal{M} is the moduli space of framed sheaves:

$$
\left(\mathcal{F} \text { torsion-free sheaf on } \mathbb{P}^{2},\left.\mathcal{F}\right|_{\infty} \stackrel{\phi}{\cong} \mathcal{O}_{\infty}^{\oplus r}\right)
$$

- There is an action of $T=\mathbb{C}^{*} \times \mathbb{C}^{*} \times\left(\mathbb{C}^{*}\right)^{r}$ on \mathcal{M}, where the first two factors act on \mathbb{P}^{2} and the third factor acts on ϕ.
- Let K denote the equivariant K-theory of \mathcal{M}, whose elements are formal differences of T-equivariant vector bundles on \mathcal{M}.

The moduli space of sheaves

- Explicitly, our \mathcal{M} is the moduli space of framed sheaves:

$$
\left(\mathcal{F} \text { torsion-free sheaf on } \mathbb{P}^{2},\left.\mathcal{F}\right|_{\infty} \stackrel{\phi}{=} \mathcal{O}_{\infty}^{\oplus r}\right)
$$

- There is an action of $T=\mathbb{C}^{*} \times \mathbb{C}^{*} \times\left(\mathbb{C}^{*}\right)^{r}$ on \mathcal{M}, where the first two factors act on \mathbb{P}^{2} and the third factor acts on ϕ.
- Let K denote the equivariant K-theory of \mathcal{M}, whose elements are formal differences of T-equivariant vector bundles on \mathcal{M}.
- Since vector bundles can be tensored with T-representations, K is a module over the ring $\mathbb{Z}\left[q_{1}^{ \pm 1}, q_{2}^{ \pm 1}, u_{1}^{ \pm 1}, \ldots, u_{r}^{ \pm 1}\right]$.

K-theory and partitions

- An r-partition will be a collection of r usual partitions:

$$
\boldsymbol{\lambda}=\left(\lambda^{(1)}, \ldots, \lambda^{(r)}\right) \quad \text { where } \quad \lambda^{(k)}=\left(\lambda_{1}^{(k)} \geq \lambda_{2}^{(k)} \geq \ldots\right)
$$

and we will write $|\boldsymbol{\lambda}|$ for the sum of the sizes of the $\lambda^{(k)}$.

K-theory and partitions

- An r-partition will be a collection of r usual partitions:

$$
\boldsymbol{\lambda}=\left(\lambda^{(1)}, \ldots, \lambda^{(r)}\right) \quad \text { where } \quad \lambda^{(k)}=\left(\lambda_{1}^{(k)} \geq \lambda_{2}^{(k)} \geq \ldots\right)
$$

and we will write $|\boldsymbol{\lambda}|$ for the sum of the sizes of the $\lambda^{(k)}$.

- T-fixed points of \mathcal{M} are indexed by r-partitions, specifically:

$$
\mathcal{F}_{\boldsymbol{\lambda}}=I_{\lambda^{(1)}} \oplus \ldots \oplus I_{\lambda^{(r)}}
$$

where $I_{\lambda} \subset \mathbb{C}[x, y]$ is the monomial ideal of "shape" λ.

K-theory and partitions

- An r-partition will be a collection of r usual partitions:

$$
\boldsymbol{\lambda}=\left(\lambda^{(1)}, \ldots, \lambda^{(r)}\right) \quad \text { where } \quad \lambda^{(k)}=\left(\lambda_{1}^{(k)} \geq \lambda_{2}^{(k)} \geq \ldots\right)
$$

and we will write $|\boldsymbol{\lambda}|$ for the sum of the sizes of the $\lambda^{(k)}$.

- T-fixed points of \mathcal{M} are indexed by r-partitions, specifically:

$$
\mathcal{F}_{\boldsymbol{\lambda}}=I_{\lambda^{(1)}} \oplus \ldots \oplus I_{\lambda^{(r)}}
$$

where $I_{\lambda} \subset \mathbb{C}[x, y]$ is the monomial ideal of "shape" λ.

- A convenient basis of (a localization of) K is given by:

$$
|\boldsymbol{\lambda}\rangle=\left(\text { skyscraper skeaf of } \mathcal{F}_{\boldsymbol{\lambda}}\right) \in K
$$

K-theory and partitions

- An r-partition will be a collection of r usual partitions:

$$
\boldsymbol{\lambda}=\left(\lambda^{(1)}, \ldots, \lambda^{(r)}\right) \quad \text { where } \quad \lambda^{(k)}=\left(\lambda_{1}^{(k)} \geq \lambda_{2}^{(k)} \geq \ldots\right)
$$

and we will write $|\boldsymbol{\lambda}|$ for the sum of the sizes of the $\lambda^{(k)}$.

- T-fixed points of \mathcal{M} are indexed by r-partitions, specifically:

$$
\mathcal{F}_{\boldsymbol{\lambda}}=I_{\lambda^{(1)}} \oplus \ldots \oplus I_{\lambda(r)}
$$

where $I_{\lambda} \subset \mathbb{C}[x, y]$ is the monomial ideal of "shape" λ.

- A convenient basis of (a localization of) K is given by:

$$
|\boldsymbol{\lambda}\rangle=\left(\text { skyscraper skeaf of } \mathcal{F}_{\boldsymbol{\lambda}}\right) \in K
$$

- Given a box \square at coordinates (i, j) in the Young diagram of the constituent partition $\lambda^{(k)}$ of an r-partition $\boldsymbol{\lambda}$, we call:

$$
z_{\square}=u_{k} q_{1}^{i} q_{2}^{j} \quad \text { the weight of } \square
$$

The correspondences

- The operator $E(y)$ is multiplication by the exterior algebra of the universal sheaf, and therefore its matrix coefficients are:

$$
\langle\boldsymbol{\lambda}| E(y)|\boldsymbol{\mu}\rangle=\delta_{\boldsymbol{\lambda}}^{\mu} \prod_{i=1}^{r}\left(1-\frac{u_{i}}{y}\right) \prod_{\square \in \boldsymbol{\lambda}} \zeta\left(\frac{z_{\square}}{y}\right)
$$

The correspondences

- The operator $E(y)$ is multiplication by the exterior algebra of the universal sheaf, and therefore its matrix coefficients are:

$$
\langle\boldsymbol{\lambda}| E(y)|\boldsymbol{\mu}\rangle=\delta_{\boldsymbol{\lambda}}^{\mu} \prod_{i=1}^{r}\left(1-\frac{u_{i}}{y}\right) \prod_{\square \in \boldsymbol{\lambda}} \zeta\left(\frac{z_{\square}}{y}\right)
$$

- For any $d \geq 1$, let us consider the following locus:

$$
\mathfrak{Z}_{d}=\left\{\mathcal{F}_{0} \supset \ldots \supset \mathcal{F}_{d} \text { sheaves, } x \in \mathbb{A}^{2} \text {, s.t. } \mathcal{F}_{k-1} / \mathcal{F}_{k} \cong \mathcal{O}_{x} \forall k\right\}
$$

The correspondences

- The operator $E(y)$ is multiplication by the exterior algebra of the universal sheaf, and therefore its matrix coefficients are:

$$
\langle\boldsymbol{\lambda}| E(y)|\boldsymbol{\mu}\rangle=\delta_{\lambda}^{\mu} \prod_{i=1}^{r}\left(1-\frac{u_{i}}{y}\right) \prod_{\square \in \boldsymbol{\lambda}} \zeta\left(\frac{z_{\square}}{y}\right)
$$

- For any $d \geq 1$, let us consider the following locus:

$$
\mathfrak{Z}_{d}=\left\{\mathcal{F}_{0} \supset \ldots \supset \mathcal{F}_{d} \text { sheaves, } x \in \mathbb{A}^{2} \text {, s.t. } \mathcal{F}_{k-1} / \mathcal{F}_{k} \cong \mathcal{O}_{x} \forall k\right\}
$$

- This space comes endowed with maps $\pi_{-}^{(d)}, \pi_{+}^{(d)}: \mathfrak{Z}_{d} \rightarrow \mathcal{M}$ that remember only \mathcal{F}_{0} and \mathcal{F}_{d}, respectively,

The correspondences

- The operator $E(y)$ is multiplication by the exterior algebra of the universal sheaf, and therefore its matrix coefficients are:

$$
\langle\boldsymbol{\lambda}| E(y)|\boldsymbol{\mu}\rangle=\delta_{\lambda}^{\mu} \prod_{i=1}^{r}\left(1-\frac{u_{i}}{y}\right) \prod_{\square \in \boldsymbol{\lambda}} \zeta\left(\frac{z_{\square}}{y}\right)
$$

- For any $d \geq 1$, let us consider the following locus:

$$
\mathfrak{Z}_{d}=\left\{\mathcal{F}_{0} \supset \ldots \supset \mathcal{F}_{d} \text { sheaves, } x \in \mathbb{A}^{2} \text {, s.t. } \mathcal{F}_{k-1} / \mathcal{F}_{k} \cong \mathcal{O}_{x} \forall k\right\}
$$

- This space comes endowed with maps $\pi_{-}^{(d)}, \pi_{+}^{(d)}: \mathfrak{Z}_{d} \rightarrow \mathcal{M}$ that remember only \mathcal{F}_{0} and \mathcal{F}_{d}, respectively,
- and with line bundles $\mathcal{L}_{1}, \ldots, \mathcal{L}_{d}$ on \mathfrak{Z}_{d} that keep track of the length one quotients $\mathcal{F}_{0} / \mathcal{F}_{1}, \ldots, \mathcal{F}_{d-1} / \mathcal{F}_{d}$.

The operators

- $L(x, y)$ and $U(x, y)$ are adjoint, so let's focus on the first one:

$$
L(x, y):=\sum_{d=0}^{\infty} \pi_{+*}^{(d)}\left(\frac{x^{d}}{1-\frac{y}{\mathcal{L}_{1}}} \cdot \pi_{-}^{(d) *}\right): K \rightarrow K\left[\left[x, y^{-1}\right]\right]
$$

The operators

- $L(x, y)$ and $U(x, y)$ are adjoint, so let's focus on the first one:

$$
L(x, y):=\sum_{d=0}^{\infty} \pi_{+*}^{(d)}\left(\frac{x^{d}}{1-\frac{y}{\mathcal{L}_{1}}} \cdot \pi_{-}^{(d) *}\right): K \rightarrow K\left[\left[x, y^{-1}\right]\right]
$$

- Therefore, the matrix coefficients of $L(x, y)$ are given by:

$$
\begin{aligned}
&\langle\boldsymbol{\lambda}| L(x, y)|\boldsymbol{\mu}\rangle= \sum_{\text {tableau of shape } \boldsymbol{\lambda} \backslash \boldsymbol{\mu}}^{T \text { a standard Young }} \frac{x^{|\boldsymbol{\lambda} \backslash \boldsymbol{\mu}|}}{\left(1-\frac{y}{z_{1}}\right) \prod_{i=1}^{|\boldsymbol{\lambda} \backslash \boldsymbol{\mu}|-1}\left(1-\frac{q z_{i}}{z_{i+1}}\right)} \\
& \prod_{1 \leq i<j \leq|\boldsymbol{\lambda} \backslash \boldsymbol{\mu}|} \zeta\left(\frac{z_{j}}{z_{i}}\right) \prod_{i=1}^{|\boldsymbol{\lambda} \backslash \boldsymbol{\mu}|}\left[\prod_{\square \in \boldsymbol{\mu}} \zeta\left(\frac{z_{i}}{z_{\square}}\right) \prod_{j=1}^{r}\left(1-\frac{z_{i} q}{u_{j}}\right)\right]
\end{aligned}
$$

The operators

- $L(x, y)$ and $U(x, y)$ are adjoint, so let's focus on the first one:

$$
L(x, y):=\sum_{d=0}^{\infty} \pi_{+*}^{(d)}\left(\frac{x^{d}}{1-\frac{y}{\mathcal{L}_{1}}} \cdot \pi_{-}^{(d) *}\right): K \rightarrow K\left[\left[x, y^{-1}\right]\right]
$$

- Therefore, the matrix coefficients of $L(x, y)$ are given by:

$$
\begin{aligned}
&\langle\boldsymbol{\lambda}| L(x, y)|\boldsymbol{\mu}\rangle= \sum_{\text {tableau of shape } \boldsymbol{\lambda} \backslash \boldsymbol{\mu}}^{T \text { a standard Young }} \frac{x^{|\boldsymbol{\lambda} \backslash \boldsymbol{\mu}|}}{\left(1-\frac{y}{z_{1}}\right) \prod_{i=1}^{|\boldsymbol{\lambda} \backslash \boldsymbol{\mu}|-1}\left(1-\frac{q z_{i}}{z_{i+1}}\right)} \\
& \prod_{1 \leq i<j \leq|\boldsymbol{\lambda} \backslash \boldsymbol{\mu}|} \zeta\left(\frac{z_{j}}{z_{i}}\right) \prod_{i=1}^{|\boldsymbol{\lambda} \backslash \boldsymbol{\mu}|}\left[\prod_{\square \in \boldsymbol{\mu}} \zeta\left(\frac{z_{i}}{z_{\square}}\right) \prod_{j=1}^{r}\left(1-\frac{z_{i} q}{u_{j}}\right)\right]
\end{aligned}
$$

- where we recall that a standard Young tableau is a labeling of the boxes of $\boldsymbol{\lambda} \backslash \boldsymbol{\mu}$ with the numbers $1,2, \ldots$ such that the numbers increase as we go up and to the right. Also $z_{i}=z_{\square}$.

Replacing \mathbb{A}^{2} with a general surface S

- Up to some conjectures, everything can be made sense of when our sheaves live over a general smooth surface S.

Replacing \mathbb{A}^{2} with a general surface S

- Up to some conjectures, everything can be made sense of when our sheaves live over a general smooth surface S.
- The moduli space \mathcal{M} will parametrize stable sheaves on S.

Replacing \mathbb{A}^{2} with a general surface S

- Up to some conjectures, everything can be made sense of when our sheaves live over a general smooth surface S.
- The moduli space \mathcal{M} will parametrize stable sheaves on S.
- The ${ }_{q} W$-algebra that acts on $K_{\mathcal{M}}$ still has generators $W_{d, k}$, but the structure constants $\in \mathbb{Z}\left[q_{1}^{ \pm 1}, q_{2}^{ \pm 1}\right]$ now depend on:
$\left\{q_{1}, q_{2}\right\}=$ Chern roots of the cotangent bundle of S

Replacing \mathbb{A}^{2} with a general surface S

- Up to some conjectures, everything can be made sense of when our sheaves live over a general smooth surface S.
- The moduli space \mathcal{M} will parametrize stable sheaves on S.
- The ${ }_{q} W$-algebra that acts on $K_{\mathcal{M}}$ still has generators $W_{d, k}$, but the structure constants $\in \mathbb{Z}\left[q_{1}^{ \pm 1}, q_{2}^{ \pm 1}\right]$ now depend on:

$$
\left\{q_{1}, q_{2}\right\}=\text { Chern roots of the cotangent bundle of } S
$$

- To be completely precise, the generators $W_{d, k} \in{ }_{q} \mathcal{W}_{r}$ will give rise not to endomorphisms of $K_{\mathcal{M}}$, but to maps $K_{\mathcal{M}} \rightarrow K_{\mathcal{M} \times S}$

Replacing \mathbb{A}^{2} with a general surface S

- Up to some conjectures, everything can be made sense of when our sheaves live over a general smooth surface S.
- The moduli space \mathcal{M} will parametrize stable sheaves on S.
- The ${ }_{q} W$-algebra that acts on $K_{\mathcal{M}}$ still has generators $W_{d, k}$, but the structure constants $\in \mathbb{Z}\left[q_{1}^{ \pm 1}, q_{2}^{ \pm 1}\right]$ now depend on:

$$
\left\{q_{1}, q_{2}\right\}=\text { Chern roots of the cotangent bundle of } S
$$

- To be completely precise, the generators $W_{d, k} \in{ }_{q} \mathcal{W}_{r}$ will give rise not to endomorphisms of $K_{\mathcal{M}}$, but to maps $K_{\mathcal{M}} \rightarrow K_{\mathcal{M} \times S}$
- Finally, the parameter m that defines the Ext bundle and the operator A_{m}, will now be a K-theory class on S.

