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The AGT correspondence

I Alday-Gaiotto-Tachikawa found a connection between:[
4D N = 2 gauge theory for U(r)

]
↔
[
Ar−1 Toda field theory

]

I Specifically, the Nekrasov partition function for the LHS
should match conformal blocks for the W –algebra of type glr .

I In the pure gauge theory, the mathematical connection was
established by Maulik-Okounkov and Schiffmann-Vasserot,

I who defined an action of the W –algebra on the cohomology
group H of the moduli space M of sheaves/instantons on A2.

I Then the Nekrasov partition function is 〈1, 1〉, where 1 is the
unit cohomology class, which one can uniquely determine
based on how the W –algebra acts on it (the Gaiotto state).
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The Ext operator

I Things are even more interesting in the presence of matter.
Mathematically, matter in the bifundamental representation:

Cr1 ⊗ Cr2∗ x U(r1)× U(r2)

I is encoded in the Ext operator of Carlsson-Okounkov:

Am : H → H, Am = p1∗
[
c
(

Ext•(F ′,F),m
)
· p∗2
]

I Therefore, AGT for linear quiver gauge theories follows if one
presents Am as an “intertwiner” of the W –algebra action on H

I We will prove this by q–deforming everything, redefining the
W –algebra action, and proving that Am “commutes” with it.

I Since our construction is purely geometric, it makes sense for
sheaves on surfaces S more general than the affine plane A2
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Deformation

I Mathematically, deformation refers to two related processes:

I Replacing the cohomology of M by its algebraic K–theory:

H  K = Kequiv(M) =
∞⊕
n=0

Kequiv(Mn)

which entails replacing 4D N = 2 by 5D N = 1 gauge theory.

I Replacing Lie algebras by quantum groups, e.g. g Uq(g) or:

Heisenberg qHeisenberg =
Z[q±11 , q±12 ]〈an〉n∈Z\0

[a−m, an] = δnm
n(1−qn1 )(1−qn2 )(1−qrn)

1−qn

I More generally, we will consider the deformed W –algebra of
Feigin-Frenkel and Awata-Kubo-Odake-Shiraishi. In type gl1,
this algebra is qHeisenberg, while for sl2, it deforms Virasoro.
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The deformed W –algebra

I The original definition of the qW–algebra is via free fields:

qWr ⊂ Hr =
Z[q±11 , q±12 ]〈b(i)n 〉1≤i≤rn∈Z\0

[b
(i)
−n, b

(j)
m ] = δnmn(1− qn1)(1− qn2)(1− δi 6=jq−nδi<j )

I qWr is defined as the subalgebra generated by Wd ,k given by:

Wk(x) =
∑

1≤s1≤...≤sk≤r
:

k∏
i=1

usi exp

[ ∞∑
n=1

b
(si )
−n

nx−n

]
exp

[ ∞∑
n=1

b
(si )
n

nxn

]
:

I More intrinsically, qWr can be described as the algebra
generated by symbols Wd ,k modulo relations such as:

Wk(x)W1(y)ζ

(
x

yqk

)
−W1(y)Wk(x)ζ

(
y

xq

)
=

=
(q1 − 1)(q2 − 1)

q − 1

[
δ

(
x

yqk

)
Wk+1(x)− δ

(
y

xq

)
Wk+1(y)

]

Andrei Negut, W-algebras, moduli of sheaves on surfaces, and AGT



The deformed W –algebra

I The original definition of the qW–algebra is via free fields:

qWr ⊂ Hr =
Z[q±11 , q±12 ]〈b(i)n 〉1≤i≤rn∈Z\0

[b
(i)
−n, b

(j)
m ] = δnmn(1− qn1)(1− qn2)(1− δi 6=jq−nδi<j )

I qWr is defined as the subalgebra generated by Wd ,k given by:

Wk(x) =
∑

1≤s1≤...≤sk≤r
:

k∏
i=1

usi exp

[ ∞∑
n=1

b
(si )
−n

nx−n

]
exp

[ ∞∑
n=1

b
(si )
n

nxn

]
:

I More intrinsically, qWr can be described as the algebra
generated by symbols Wd ,k modulo relations such as:

Wk(x)W1(y)ζ

(
x

yqk

)
−W1(y)Wk(x)ζ

(
y

xq

)
=

=
(q1 − 1)(q2 − 1)

q − 1

[
δ

(
x

yqk

)
Wk+1(x)− δ

(
y

xq

)
Wk+1(y)

]

Andrei Negut, W-algebras, moduli of sheaves on surfaces, and AGT



The deformed W –algebra

I The original definition of the qW–algebra is via free fields:

qWr ⊂ Hr =
Z[q±11 , q±12 ]〈b(i)n 〉1≤i≤rn∈Z\0

[b
(i)
−n, b

(j)
m ] = δnmn(1− qn1)(1− qn2)(1− δi 6=jq−nδi<j )

I qWr is defined as the subalgebra generated by Wd ,k given by:

Wk(x) =
∑

1≤s1≤...≤sk≤r
:

k∏
i=1

usi exp

[ ∞∑
n=1

b
(si )
−n

nx−n

]
exp

[ ∞∑
n=1

b
(si )
n

nxn

]
:

I More intrinsically, qWr can be described as the algebra
generated by symbols Wd ,k modulo relations such as:

Wk(x)W1(y)ζ

(
x

yqk

)
−W1(y)Wk(x)ζ

(
y

xq

)
=

=
(q1 − 1)(q2 − 1)

q − 1

[
δ

(
x

yqk

)
Wk+1(x)− δ

(
y

xq

)
Wk+1(y)

]
Andrei Negut, W-algebras, moduli of sheaves on surfaces, and AGT



The Verma module and the vertex operator

I Let u1, ..., ur ∈ C. Define the Verma module of qWr as:

M = qWr

/
right ideal (Wd ,k ,W0,k − ek(u1, ..., ur ))d>0

1≤k≤r

and similarly define M ′ with the parameters ui replaced by u′i .

I For m ∈ C, the vertex operator will almost be an intertwiner:

Φm : M ′ −→ M

I as it isn’t required to commute with qWr on the nose. Instead:

[Φm,Wk(x)]mk ·
(

1− mr

qr−kx

u1...ur
u′1...u

′
r

)
= 0 (1)

for all k ≥ 1, where [A,B]s = AB − sBA.

I Lemma: the endomorphism Φm is uniquely determined, up to
constant multiple, by property (1).
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The main Theorem

I Theorem (N) There exists an action qWr y K , for which
the latter is isomorphic to the Verma module M.

Moreover, the Ext operator Am : K ′ → K is equal to the
vertex operator Φm : M ′ → M, up to a simple exponential.

I The second part is an intersection-theoretic computation,
once we give a geometric definition of the action in first part.

I We define the action of W (x , y) =
∑k>0

d∈Z
Wd,k

xd (−y)k on K as:

W (x , yDx) = L(x , yDx) · E (y) · U(x , yDx)

where Dx is the difference operator f (x) f (xq)

I and L,E ,U are geometric endomorphisms of K that are lower
triangular, diagonal, and upper triangular, respectively.
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The moduli space of sheaves

I Explicitly, our M is the moduli space of framed sheaves:(
F torsion-free sheaf on P2, F|∞

φ∼= O⊕r∞
)

I There is an action of T = C∗ × C∗ × (C∗)r on M, where the
first two factors act on P2 and the third factor acts on φ.

I Let K denote the equivariant K–theory of M, whose elements
are formal differences of T–equivariant vector bundles on M.

I Since vector bundles can be tensored with T–representations,
K is a module over the ring Z[q±11 , q±12 , u±11 , ..., u±1r ].
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K–theory and partitions

I An r–partition will be a collection of r usual partitions:

λ = (λ(1), ..., λ(r)) where λ(k) = (λ
(k)
1 ≥ λ(k)2 ≥ ...)

and we will write |λ| for the sum of the sizes of the λ(k).

I T–fixed points of M are indexed by r–partitions, specifically:

Fλ = Iλ(1) ⊕ ...⊕ Iλ(r)

where Iλ ⊂ C[x , y ] is the monomial ideal of “shape” λ.

I A convenient basis of (a localization of) K is given by:

|λ〉 =
(

skyscraper skeaf of Fλ

)
∈ K

I Given a box � at coordinates (i , j) in the Young diagram of
the constituent partition λ(k) of an r–partition λ, we call:

z� = ukq
i
1q

j
2 the weight of �.

Andrei Negut, W-algebras, moduli of sheaves on surfaces, and AGT



K–theory and partitions

I An r–partition will be a collection of r usual partitions:

λ = (λ(1), ..., λ(r)) where λ(k) = (λ
(k)
1 ≥ λ(k)2 ≥ ...)

and we will write |λ| for the sum of the sizes of the λ(k).

I T–fixed points of M are indexed by r–partitions, specifically:

Fλ = Iλ(1) ⊕ ...⊕ Iλ(r)

where Iλ ⊂ C[x , y ] is the monomial ideal of “shape” λ.

I A convenient basis of (a localization of) K is given by:

|λ〉 =
(

skyscraper skeaf of Fλ

)
∈ K

I Given a box � at coordinates (i , j) in the Young diagram of
the constituent partition λ(k) of an r–partition λ, we call:

z� = ukq
i
1q

j
2 the weight of �.

Andrei Negut, W-algebras, moduli of sheaves on surfaces, and AGT



K–theory and partitions

I An r–partition will be a collection of r usual partitions:

λ = (λ(1), ..., λ(r)) where λ(k) = (λ
(k)
1 ≥ λ(k)2 ≥ ...)

and we will write |λ| for the sum of the sizes of the λ(k).

I T–fixed points of M are indexed by r–partitions, specifically:

Fλ = Iλ(1) ⊕ ...⊕ Iλ(r)

where Iλ ⊂ C[x , y ] is the monomial ideal of “shape” λ.

I A convenient basis of (a localization of) K is given by:

|λ〉 =
(

skyscraper skeaf of Fλ

)
∈ K

I Given a box � at coordinates (i , j) in the Young diagram of
the constituent partition λ(k) of an r–partition λ, we call:

z� = ukq
i
1q

j
2 the weight of �.
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The correspondences

I The operator E (y) is multiplication by the exterior algebra of
the universal sheaf, and therefore its matrix coefficients are:

〈λ|E (y)|µ〉 = δµλ

r∏
i=1

(
1− ui

y

) ∏
�∈λ

ζ

(
z�
y

)

I For any d ≥ 1, let us consider the following locus:

Zd = {F0 ⊃ ... ⊃ Fd sheaves, x ∈ A2, s.t. Fk−1/Fk
∼= Ox ∀k}

I This space comes endowed with maps π
(d)
− , π

(d)
+ : Zd →M

that remember only F0 and Fd , respectively,

I and with line bundles L1, ...,Ld on Zd that keep track of the
length one quotients F0/F1, ...,Fd−1/Fd .
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The operators

I L(x , y) and U(x , y) are adjoint, so let’s focus on the first one:

L(x , y) :=
∞∑
d=0

π
(d)
+∗

(
xd

1− y
L1
· π(d)∗−

)
: K → K [[x , y−1]]

I Therefore, the matrix coefficients of L(x , y) are given by:

〈λ|L(x , y)|µ〉 =

T a standard Young∑
tableau of shape λ\µ

x |λ\µ|(
1− y

z1

)∏|λ\µ|−1
i=1

(
1− qzi

zi+1

)
∏

1≤i<j≤|λ\µ|

ζ

(
zj
zi

) |λ\µ|∏
i=1

∏
�∈µ

ζ

(
zi
z�

) r∏
j=1

(
1− ziq

uj

)
I where we recall that a standard Young tableau is a labeling of

the boxes of λ\µ with the numbers 1, 2, ... such that the
numbers increase as we go up and to the right. Also zi = z�i .
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Replacing A2 with a general surface S

I Up to some conjectures, everything can be made sense of
when our sheaves live over a general smooth surface S .

I The moduli space M will parametrize stable sheaves on S .

I The qW –algebra that acts on KM still has generators Wd ,k ,
but the structure constants ∈ Z[q±11 , q±12 ] now depend on:

{q1, q2} = Chern roots of the cotangent bundle of S

I To be completely precise, the generators Wd ,k ∈ qWr will give
rise not to endomorphisms of KM, but to maps KM → KM×S

I Finally, the parameter m that defines the Ext bundle and the
operator Am, will now be a K–theory class on S .
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