Outline

B-model for knot homology

Alexei Oblomkov (joint work with L. Rozansky)

July 26, 2017

String-Math 2017, University of Hamburg and DESY Hamburg.
1 History
2 Path to B-model
3 KSR model interpretation

Jones polynomial

Jones polynomial, V. Jones 1984

$$
\begin{gathered}
V(O)=q^{1 / 2}+q^{-1 / 2} \\
q^{-1} V\left(L_{+}\right)-q V\left(L_{-}\right)=\left(q^{1 / 2}-q^{-1 / 2}\right) V\left(L_{0}\right)
\end{gathered}
$$

Physics of knots

■ Witten provided an interpretation of Jones polynomial as $2+1$ quantum Yang Mills, 1989

Physics of knots

- Witten provided an interpretation of Jones polynomial as $2+1$ quantum Yang Mills, 1989
■ Ooguri-Vafa interpret HOMFLY-PT polynomial in term of sigma model of conifold, 1999

Physics of knots

- Witten provided an interpretation of Jones polynomial as $2+1$ quantum Yang Mills, 1989
■ Ooguri-Vafa interpret HOMFLY-PT polynomial in term of sigma model of conifold, 1999

Physics of knots

- Witten provided an interpretation of Jones polynomial as $2+1$ quantum Yang Mills, 1989
■ Ooguri-Vafa interpret HOMFLY-PT polynomial in term of sigma model of conifold, 1999

Khovanov homology

$$
V\left(4_{1}\right)=q^{-5}+q^{-1}(-1)+q^{1}+q(-1)+q^{5}
$$

Khovanov homology

$$
\operatorname{Kh}\left(4_{1}\right)=q^{-5} t^{-2}+q^{-1} t^{-1}+q^{1} t^{0}+q t+q^{5} t^{2}
$$

Theorem (Khovanov 2000)
For every link L there are graded spaces $H_{K h}^{*}(L)$ such that

$$
\sum_{i}(-1)^{i} \operatorname{dim}_{q}\left(H_{K h}^{i}(L)\right)=V(L) .
$$

HOMFLY-PT homology

J. Hoste, A. Ocneaunu, K. Millet, P. Freyd, W. Lickorich; J. Przytycki, P. Traczyk; V. Jones 1985

HOMFLY-PT polynomial

$$
\begin{gathered}
P(O)=\left(a^{-1}-a\right) /\left(q^{1 / 2}-q^{-1 / 2}\right) \\
a^{-1} P\left(L_{+}\right)-a P\left(L_{-}\right)=\left(q^{1 / 2}-q^{-1 / 2}\right) P\left(L_{0}\right) .
\end{gathered}
$$

HOMFLY-PT homology

J. Hoste, A. Ocneaunu, K. Millet, P. Freyd, W. Lickorich; J.

Przytycki, P. Traczyk; V. Jones 1985
HOMFLY-PT polynomial

$$
\begin{gathered}
P(O)=\left(a^{-1}-a\right) /\left(q^{1 / 2}-q^{-1 / 2}\right) \\
a^{-1} P\left(L_{+}\right)-a P\left(L_{-}\right)=\left(q^{1 / 2}-q^{-1 / 2}\right) P\left(L_{0}\right)
\end{gathered}
$$

Theorem (Khovanov-Rozansky, 2007, 2008)

For every link L there are doubly graded spaces $H_{K h R}^{*}(L)$ such that

$$
P(L)=\sum_{i}(-1)^{i} \operatorname{dim}_{q, a} H_{K h R}^{i}(L) .
$$

Braids and links

Elements $\sigma_{i}, i=1, \ldots, n-1$ generate Br_{n}

Figure: Generator σ_{i}

Braids and links

Elements $\sigma_{i}, i=1, \ldots, n-1$ generate $B r_{n}$

Figure: Generator σ_{i}

Figure: Closure $L(\beta)$ of the braid β

Geometric construction for KhR homology

Geometric version of the construction of KhR homology, Williamson, Webster 2009

$$
\begin{gathered}
B r_{n} \ni \beta \mapsto \Phi_{\beta} \in \operatorname{Perv}\left(B_{n} \backslash G L_{n} / B_{n}\right) \\
H_{K h R}^{*}(L(\beta))=\left(H^{*}\left(G L_{n} / B_{n}^{\Delta}, \Phi_{\beta}\right), d_{c h r}\right) .
\end{gathered}
$$

Geometric construction for KhR homology

Geometric version of the construction of KhR homology, Williamson, Webster 2009

$$
\begin{gathered}
B r_{n} \ni \beta \mapsto \Phi_{\beta} \in \operatorname{Perv}\left(B_{n} \backslash G L_{n} / B_{n}\right) \\
H_{K h R}^{*}(L(\beta))=\left(H^{*}\left(G L_{n} / B_{n}^{\Delta}, \Phi_{\beta}\right), d_{c h r}\right) .
\end{gathered}
$$

Here the homology $H^{*}\left(G L_{n} / B_{n}^{\Delta}\right)$ acquires double grading from two weight filtration and $d_{c h r}$ is the chromotagraphic differential.

A/B model?

$\operatorname{Pevr}\left(B_{n} \backslash G L_{n} / B_{n}\right)=B_{n}$-equivariant constructible sheaves on $F I_{n}=$ $\operatorname{Fuk}_{B_{n}}\left(T^{*} F I_{n}\right)=A-$ model for $T^{*} F I_{n}$

A/B model?

$\operatorname{Pevr}\left(B_{n} \backslash G L_{n} / B_{n}\right)=B_{n}$-equivariant constructible sheaves on $F I_{n}=$
$\operatorname{Fuk}_{B_{n}}\left(T^{*} F I_{n}\right)=A-$ model for $T^{*} F I_{n}$

Question

What is the B-model version of the construction? How we can compute KhR homology with coherent instead of constructible sheaves?

Torus knots

Mathematicians need some examples to make a reasonable guess for B-model. Torus links are in some sense exactly solvable and provide lots of data for a guess.

Torus knots

Mathematicians need some examples to make a reasonable guess for B-model. Torus links are in some sense exactly solvable and provide lots of data for a guess.
(3,2)

$(4,3)$

(5.4)

(8,5)

(5,2)

(7,2)

(8,7)

Torus knots

$$
\begin{gathered}
\operatorname{cox}_{n}=\sigma_{1} \cdot \sigma_{2} \cdots \sigma_{n-1} \\
T_{m, n}=L\left(\operatorname{cox}_{n}^{m}\right)
\end{gathered}
$$

Figure: $\operatorname{cox}_{n} \in B r_{n}$

Torus knots

$$
\begin{gathered}
\operatorname{cox}_{n}=\sigma_{1} \cdot \sigma_{2} \cdots \sigma_{n-1} \\
T_{m, n}=L\left(\operatorname{cox}_{n}^{m}\right)
\end{gathered}
$$

Figure: $\operatorname{cox}_{n} \in B r_{n}$
Conjecture (Gorsky, O. Rasmussen, Shende, 2012, Aganagic Shakirov, 2011)

$$
H_{K h R}^{*}\left(T_{n, 1+n k}\right)=H^{0}\left(Z, \Lambda^{\bullet} \mathcal{B} \otimes L^{k}\right), \quad Z \subset \operatorname{Hilb}_{n}\left(\mathbb{C}^{2}\right)
$$

Hilbert schemes

Definition

$\operatorname{Hilb}_{n}\left(\mathbb{C}^{2}\right)$ is the manifold that parameterizes ideals $I \subset \mathbb{C}[x, y]$ of codimension n.

Hilbert schemes

Definition

$\operatorname{Hilb}_{n}\left(\mathbb{C}^{2}\right)$ is the manifold that parameterizes ideals $/ \subset \mathbb{C}[x, y]$ of codimension n.

$$
H C: \operatorname{Hilb}_{n}\left(\mathbb{C}^{2}\right) \rightarrow \text { Sym }^{n} \mathbb{C}^{2}, \quad H C(I)=\operatorname{supp}(\mathbb{C}[x, y] / I)
$$

Hilbert schemes

Definition

$\operatorname{Hilb}_{n}\left(\mathbb{C}^{2}\right)$ is the manifold that parameterizes ideals $/ \subset \mathbb{C}[x, y]$ of codimension n.

$$
\begin{aligned}
& H C: \operatorname{Hilb}_{n}\left(\mathbb{C}^{2}\right) \rightarrow \operatorname{Sym}^{n} \mathbb{C}^{2}, \quad H C(I)=\operatorname{supp}(\mathbb{C}[x, y] / I) . \\
& Z=H C^{-1}(n \cdot(0,0)),\left.\quad \mathcal{B}^{\vee}\right|_{I}=\mathbb{C}[x, y] / I, \quad L=\operatorname{det}(\mathcal{B}) .
\end{aligned}
$$

Hilbert schemes

Definition

$\operatorname{Hilb}_{n}\left(\mathbb{C}^{2}\right)$ is the manifold that parameterizes ideals $/ \subset \mathbb{C}[x, y]$ of codimension n.

$$
\begin{aligned}
& H C: \operatorname{Hilb}_{n}\left(\mathbb{C}^{2}\right) \rightarrow \operatorname{Sym}^{n} \mathbb{C}^{2}, \quad H C(I)=\operatorname{supp}(\mathbb{C}[x, y] / I) . \\
& Z=H C^{-1}(n \cdot(0,0)),\left.\quad \mathcal{B}^{\vee}\right|_{I}=\mathbb{C}[x, y] / I, \quad L=\operatorname{det}(\mathcal{B}) .
\end{aligned}
$$

The $T_{s c}=\mathbb{C}^{*} \times \mathbb{C}^{*}$ action on \mathbb{C}^{2} induces the action on $\operatorname{Hilb}_{n}\left(\mathbb{C}^{2}\right)$, hence double grading on $H^{i}\left(Z, L^{k} \otimes \Lambda^{m} \mathcal{B}\right)$.

Quiver

Quiver

$\operatorname{Hilb}_{n}\left(\mathbb{C}^{2}\right)$ as quiver variety

$$
\begin{gathered}
\mu: T^{*} \mathfrak{g l}(n) \rightarrow \mathfrak{g l}(n), \quad \mu(X, Y)=X Y-Y X, \\
\operatorname{Hilb}_{n}\left(\mathbb{C}^{2}\right)=\mu^{-1}(0)^{s t a b} / G L_{n} .
\end{gathered}
$$

Conjecture (Gorsky, O., Rasmussen, Shende 2012; Gorsky, Negut, Rasmussen 2016)

There is (a canonical) way to construct for $\beta \in B r_{n}$ there is $\mathcal{F}_{\beta} \in D_{T_{s c}}^{\text {coh }}\left(\right.$ FHilb $\left._{n}\left(\mathbb{C}^{2}\right)\right)$ such that

$$
H_{K h R}^{k}(L(\beta))=H^{*}\left(F H i l b_{n}^{d g}, \mathcal{F}_{\beta} \otimes \Lambda^{k} \mathcal{B}\right) .
$$

Conjecture (Gorsky, O., Rasmussen, Shende 2012; Gorsky, Negut, Rasmussen 2016)

There is (a canonical) way to construct for $\beta \in B r_{n}$ there is $\mathcal{F}_{\beta} \in D_{T_{s c}}^{\text {coh }}\left(\right.$ FHilb $\left._{n}\left(\mathbb{C}^{2}\right)\right)$ such that

$$
H_{K h R}^{k}(L(\beta))=H^{*}\left(F H i l b_{n}^{d g}, \mathcal{F}_{\beta} \otimes \Lambda^{k} \mathcal{B}\right)
$$

$$
\text { FHilb }_{n}=\left\{\mathbb{C}[x, y]=I_{0} \supset I_{1} \supset \cdots \supset I_{n}\right\} .
$$

This variety is very singular but it has a natural dg scheme structure.

Conjecture (Gorsky, O., Rasmussen, Shende 2012; Gorsky, Negut, Rasmussen 2016)

There is (a canonical) way to construct for $\beta \in B r_{n}$ there is $\mathcal{F}_{\beta} \in D_{T_{s c}}^{c o h}\left(\right.$ FHilb $\left._{n}\left(\mathbb{C}^{2}\right)\right)$ such that

$$
H_{K h R}^{k}(L(\beta))=H^{*}\left(F H i l b_{n}^{d g}, \mathcal{F}_{\beta} \otimes \Lambda^{k} \mathcal{B}\right)
$$

$$
\text { FHilb }_{n}=\left\{\mathbb{C}[x, y]=I_{0} \supset I_{1} \supset \cdots \supset I_{n}\right\} .
$$

This variety is very singular but it has a natural dg scheme structure.

Theorem (O., Rozansky 2016)
The conjecture is true if we adjust slightly $D_{T_{s c}}^{c o h}(\ldots)$

Free Hilbert scheme

$\mathfrak{b}, \mathfrak{n}$ are upper and strictly upper triangular matrices.

Free Hilbert scheme

$\mathfrak{b}, \mathfrak{n}$ are upper and strictly upper triangular matrices.

FHilb $_{n}^{\text {free }}(\mathbb{C})=\{(X, Y, v) \in \mathfrak{b} \times \mathfrak{n} \times V \mid \mathbb{C}\langle X, Y\rangle v=V\} / G L_{n}$.

Free Hilbert scheme

$\mathfrak{b}, \mathfrak{n}$ are upper and strictly upper triangular matrices.

$$
\begin{aligned}
& \operatorname{FHilb}_{n}^{\text {free }}(\mathbb{C})=\{(X, Y, v) \in \mathfrak{b} \times \mathfrak{n} \times V \mid \mathbb{C}\langle X, Y\rangle v=V\} / G L_{n} . \\
& \qquad D_{T_{s c}}^{\text {per }}=\left\{\ldots \xrightarrow{d_{1}} \mathcal{C}_{0} \xrightarrow{d_{0}} \mathcal{C}_{1} \xrightarrow{d_{1}} \mathcal{C}_{0} \xrightarrow{d_{0}} \ldots \mid \mathcal{C}_{i} \text { are coherent }\right\} .
\end{aligned}
$$

Free Hilbert scheme

$\mathfrak{b}, \mathfrak{n}$ are upper and strictly upper triangular matrices.

$$
\begin{aligned}
& \text { FHilb } b_{n}^{\text {free }}(\mathbb{C})=\{(X, Y, v) \in \mathfrak{b} \times \mathfrak{n} \times V \mid \mathbb{C}\langle X, Y\rangle v=V\} / G L_{n} . \\
& \qquad D_{T_{s c}}^{\text {per }}=\left\{\ldots \xrightarrow{d_{1}} \mathcal{C}_{0} \xrightarrow{d_{0}} \mathcal{C}_{1} \xrightarrow{d_{1}} \mathcal{C}_{0} \xrightarrow{d_{0}} \ldots \mid \mathcal{C}_{i} \text { are coherent }\right\} .
\end{aligned}
$$

Theorem (O., Rozansky 2016)

For every $\beta \in B r_{n}$ there is $\mathcal{F}_{\beta} \in D_{T_{s c}}^{p e r}\left(\operatorname{FHilb}{ }_{n}^{\text {free }}(\mathbb{C})\right)$ such that

$$
\begin{gathered}
\operatorname{supp}\left(\mathcal{H}^{\bullet}(\mathcal{F})\right) \subset \operatorname{FHilb}_{n}(\mathbb{C}) \text { and } \\
H^{*}(\beta)=\mathbb{H}\left(\mathcal{F}_{\beta} \otimes \Lambda^{*} \mathcal{B}\right) \text { is } \mathrm{HOMFLY}-\mathrm{PT} \text { homology of } L(\beta) .
\end{gathered}
$$

Partial twists

Figure: Element $\delta_{i} \in B r_{n}$

$$
T w_{k}=\delta_{n} \cdots \delta_{k}
$$

is a full twist on last $n-k$ strands.

Partial twists

Figure: Element $\delta_{i} \in B r_{n}$

$$
T w_{k}=\delta_{n} \cdots \delta_{k}
$$

is a full twist on last $n-k$ strands.

$$
\left.\mathcal{L}_{i}\right|_{\iota_{\bullet}}=I_{i} / I_{i+1} .
$$

Partial twists

Figure: Element $\delta_{i} \in B r_{n}$

$$
T w_{k}=\delta_{n} \cdots \delta_{k}
$$

is a full twist on last $n-k$ strands.

$$
\left.\mathcal{L}_{i}\right|_{I_{\bullet}}=I_{i} / I_{i+1} .
$$

Theorem (O., Rozansky 2017)

$$
\Phi_{\beta \cdot \delta_{k}}=\Phi_{\beta} \otimes \mathcal{L}_{k} .
$$

Coxeter links

$$
\pi: \text { FHilb }_{n} \rightarrow \text { Hilb }_{n}, \quad F Z=\pi^{-1}(Z) .
$$

Coxeter links

$$
\pi: \text { FHilb }_{n} \rightarrow \text { Hilb }_{n}, \quad F Z=\pi^{-1}(Z)
$$

Theorem (O., Rozansky 2017)

$$
\Phi_{c o x_{n}}=\left[\mathcal{O}_{F Z}\right]^{v i r} .
$$

Coxeter links

$$
\pi: \text { FHilb }_{n} \rightarrow \text { Hilb }_{n}, \quad F Z=\pi^{-1}(Z)
$$

Theorem (O., Rozansky 2017)

$$
\Phi_{c o x_{n}}=\left[\mathcal{O}_{F Z}\right]^{v i r} .
$$

There is an extension of the theorem to the case of

$$
\operatorname{cox}_{S}=\prod_{i \in S} \sigma_{i}, \quad S \subset\{1, \ldots, n-1\} .
$$

Thus homology of the Coxeter link $L\left(\operatorname{cox}_{S} \cdot \delta^{\vec{k}}\right)$ is given by the homology of $\left[\mathcal{O}_{F Z_{S}}\right]^{\text {vir }} \otimes \mathcal{L}^{\vec{k}}$.

Coxeter links

How large is the class of Coxeter links?

Alexei Oblomkov (joint work with L. Rozansky)
B-model for knot homology

Coxeter links

How large is the class of Coxeter links?
Powers of the full twist
If $S=\emptyset$ then $\operatorname{cox}_{S}=1$ and $L\left(\prod_{i} \delta_{i}^{m}\right)=T_{n, m n}$.

Coxeter links

How large is the class of Coxeter links?
Powers of the full twist
If $S=\emptyset$ then $\operatorname{cox}_{S}=1$ and $L\left(\prod_{i} \delta_{i}^{m}\right)=T_{n, m n}$.

Torus knots

If $S=\{1, \ldots, n-1\}$ then $\operatorname{cox}_{S}=\operatorname{cox}_{n}$. Set $k_{i}=\left\lfloor\frac{i m}{n}\right\rfloor-\left\lfloor\frac{(i-1) m}{n}\right\rfloor$ then $L\left(\operatorname{cox}_{n} \prod_{i} \delta_{i}^{k_{i}}\right)=T_{m, n}$, for $(m, n)=1$.

Coxeter links

How large is the class of Coxeter links?
Powers of the full twist
If $S=\emptyset$ then $\operatorname{cox}_{S}=1$ and $L\left(\prod_{i} \delta_{i}^{m}\right)=T_{n, m n}$.

Torus knots

If $S=\{1, \ldots, n-1\}$ then $\operatorname{cox}_{S}=\operatorname{cox}_{n}$. Set $k_{i}=\left\lfloor\frac{i m}{n}\right\rfloor-\left\lfloor\frac{(i-1) m}{n}\right\rfloor$ then $L\left(\operatorname{cox}_{n} \prod_{i} \delta_{i}^{k_{i}}\right)=T_{m, n}$, for $(m, n)=1$.

We expect to have some explicit formulas for links that are obtained from unknot by the Coxeter cabling procedure.

KSR outline

Kapustin, Saulina and Rozansky proposed a realization of the 3D topological field theory, 2008.

Three-category 3 Cat $_{\text {sym }}$

$$
\left.\begin{array}{c}
\operatorname{Obj}\left(3 C_{\text {st }}^{\text {sym }}\right.
\end{array}\right)=\{\text { holomorphic symplectic manifolds }\} \text { } \begin{aligned}
& \operatorname{Hom}(X, Y)=\{(F, L, f: F \rightarrow L), L \subset X \times Y \text { is Lagrangian }\} .
\end{aligned}
$$

KSR outline

Kapustin, Saulina and Rozansky proposed a realization of the 3D topological field theory, 2008.

Three-category 3Cat sym

$\operatorname{Obj}\left(3\right.$ Cat $\left._{\text {sym }}\right)=\{$ holomorphic symplectic manifolds $\}$ $\operatorname{Hom}(X, Y)=\{(F, L, f: F \rightarrow L), L \subset X \times Y$ is Lagrangian $\}$.
$(F, L, f) \in \operatorname{Hom}(X, Y)\left(G, L^{\prime}, g\right) \in \operatorname{Hom}(Y, W)$ compose to

$$
\left(H, L^{\prime \prime}, h\right), \quad H:=(F \times W) \times X \times Y \times W(X \times G)
$$

and $h: H \rightarrow X \times W, L^{\prime \prime}=h(H)$.

KSR outline

$$
f: X \rightarrow Z, \quad g: Y \rightarrow Z \text { then } X \times_{Z} Y=\{(x, y) \mid f(x)=g(y)\} .
$$

KSR outline

$$
f: X \rightarrow Z, \quad g: Y \rightarrow Z \text { then } X \times_{Z} Y=\{(x, y) \mid f(x)=g(y)\} .
$$

For $(F, L, f),\left(F^{\prime}, L^{\prime}, f^{\prime}\right) \in \operatorname{Hom}(X, Y)$ we have

$$
\operatorname{Hom}\left((F, L, f),\left(F^{\prime}, L^{\prime}, f^{\prime}\right)\right):=D^{\operatorname{per}}\left(F \times_{x \times y} F^{\prime}\right),
$$

KSR outline

$$
f: X \rightarrow Z, \quad g: Y \rightarrow Z \text { then } X \times_{Z} Y=\{(x, y) \mid f(x)=g(y)\} .
$$

For $(F, L, f),\left(F^{\prime}, L^{\prime}, f^{\prime}\right) \in \operatorname{Hom}(X, Y)$ we have

$$
\operatorname{Hom}\left((F, L, f),\left(F^{\prime}, L^{\prime}, f^{\prime}\right)\right):=D^{p e r}\left(F \times_{x \times Y} F^{\prime}\right),
$$

For our purposes we will need smaller three-category 3Cat man.

3Cat ${ }_{\text {man }}$

3Cat man

$$
\begin{gathered}
\operatorname{Obj}\left(3 \operatorname{Cat}_{\text {man }}\right)=\{\text { complex manifolds }\} \\
\operatorname{Hom}(X, Y)=\{(Z, w) \mid w: X \times Z \times Y \rightarrow \mathbb{C}\}
\end{gathered}
$$

3Cat ${ }_{\text {man }}$

3Cat man

$$
\begin{gathered}
\operatorname{Obj}\left(3 \text { Cat }_{\text {man }}\right)=\{\text { complex manifolds }\} \\
\operatorname{Hom}(X, Y)=\{(Z, w) \mid w: X \times Z \times Y \rightarrow \mathbb{C}\}
\end{gathered}
$$

For $(Z, w) \in \operatorname{Hom}(X, Y),\left(Z^{\prime}, w^{\prime}\right) \in \operatorname{Hom}(Y, W)$:

$$
(Z, w) \circ\left(Z^{\prime}, w^{\prime}\right)=\left(Z \times Y \times Z^{\prime}, w^{\prime}-w\right) \in \operatorname{Hom}(X, W)
$$

3Cat ${ }_{\text {man }}$

3Cat man

$$
O b j\left(3 C a t_{\text {man }}\right)=\{\text { complex manifolds }\}
$$

$$
\operatorname{Hom}(X, Y)=\{(Z, w) \mid w: X \times Z \times Y \rightarrow \mathbb{C}\}
$$

For $(Z, w) \in \operatorname{Hom}(X, Y),\left(Z^{\prime}, w^{\prime}\right) \in \operatorname{Hom}(Y, W)$:

$$
(Z, w) \circ\left(Z^{\prime}, w^{\prime}\right)=\left(Z \times Y \times Z^{\prime}, w^{\prime}-w\right) \in \operatorname{Hom}(X, W)
$$

For $(Z, w),\left(Z^{\prime}, w^{\prime}\right) \in \operatorname{Hom}(X, Y)$ we have

$$
\operatorname{Hom}\left((Z, w),\left(Z^{\prime}, w^{\prime}\right)\right)=M F\left(X \times Z \times Z^{\prime} \times Y, w^{\prime}-w\right)
$$

Matrix Factorizations

$$
W \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] .
$$

Matrix Factorizations

$$
W \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] .
$$

Matrix Factorizations, Eisenbud 1980

$$
\begin{gathered}
M F\left(\mathbb{C}^{n}, W\right)=\left\{\ldots \xrightarrow{d_{0}} M_{1} \xrightarrow{d_{1}} M_{0} \xrightarrow{d_{0}} M_{1} \ldots\right\} \\
d_{0} \circ d_{1}=d_{1} \circ d_{0}=W, \quad M_{i}=\mathbb{C}\left[x_{1}, \ldots, x_{m}\right] \otimes \mathbb{C}^{m_{i}} .
\end{gathered}
$$

Matrix Factorizations

$$
W \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] .
$$

Matrix Factorizations, Eisenbud 1980

$$
\begin{gathered}
M F\left(\mathbb{C}^{n}, W\right)=\left\{\ldots \xrightarrow{d_{0}} M_{1} \xrightarrow{d_{1}} M_{0} \xrightarrow{d_{0}} M_{1} \ldots\right\} \\
d_{0} \circ d_{1}=d_{1} \circ d_{0}=W, \quad M_{i}=\mathbb{C}\left[x_{1}, \ldots, x_{m}\right] \otimes \mathbb{C}^{m_{i}} .
\end{gathered}
$$

Example

If $n=1$ and $W=x^{4}$ then following is an element of $M F(\mathbb{C}, W)$:

$$
\ldots \mathbb{C}[x] \xrightarrow{x} \mathbb{C}[x] \xrightarrow{x^{3}} \mathbb{C}[x] \xrightarrow{x} \ldots
$$

3 Cat $_{\text {sym }}$ vs 3 Cat $_{\text {man }}$

Functor 3 Cat $_{\text {man }} \rightarrow 3$ Catsym

$$
\begin{aligned}
X & \mapsto T^{*} X, \\
(Z, w) & \mapsto\left(F_{w}, L_{w}, \pi\right)
\end{aligned}
$$

3 Cat $_{\text {sym }}$ vs 3 Cat $_{\text {man }}$

Functor 3 Cat $_{\text {man }} \rightarrow 3$ Cat $_{\text {sym }}$

$$
\begin{aligned}
X & \mapsto T^{*} X, \\
(Z, w) & \mapsto\left(F_{w}, L_{w}, \pi\right)
\end{aligned}
$$

$$
Z \times T^{*} X \supset F_{w} \ni(z, x, p) \text { if } \partial_{z} w(z, x)=0, \quad p=\partial_{x} w(z, x)
$$

3 Cat $_{\text {sym }}$ vs 3 Cat $_{\text {man }}$

Functor 3 Cat $_{\text {man }} \rightarrow 3$ Cat $_{\text {sym }}$

$$
\begin{aligned}
X & \mapsto T^{*} X \\
(Z, w) & \mapsto\left(F_{w}, L_{w}, \pi\right)
\end{aligned}
$$

$$
Z \times T^{*} X \supset F_{w} \ni(z, x, p) \text { if } \partial_{z} w(z, x)=0, \quad p=\partial_{x} w(z, x)
$$

Let impose condition on $\left(Z_{i}, w_{i}\right): C r i t_{w} \subset\{w=0\}$, then we have

$$
M F\left(X \times Z_{1} \times Z_{2} \times Y, w_{1}-w_{2}\right) \rightarrow D^{p e r}\left(F_{w_{1}} \times T_{T^{*}(X \times Y)} F_{w_{2}}\right)
$$

Main example

3Cat $\mathfrak{g l}$

$$
\text { Obj }=\left\{\mathfrak{g l}_{n}, n \in \mathbb{Z}_{\geq 0}\right\},
$$

$\operatorname{Hom}\left(\mathfrak{g l}_{n}, \mathfrak{g l}_{m}\right)=\left\{Z\right.$ with Hamiltonian $G L_{n} \times G L_{m}$ action $\}$

Main example

$$
\text { Obj }=\left\{\mathfrak{g l}_{n}, n \in \mathbb{Z}_{\geq 0}\right\}
$$

$\operatorname{Hom}\left(\mathfrak{g l}_{n}, \mathfrak{g l}_{m}\right)=\left\{Z\right.$ with Hamiltonian $G L_{n} \times G L_{m}$ action $\}$

$$
\mathfrak{g l} \rightarrow 3 \text { Cat }_{\text {man }}
$$

$$
\operatorname{Hom}\left(\mathfrak{g l}_{n}, \mathfrak{g l}_{m}\right) \ni Z \mapsto\left(Z, w(x, z, y)=\mu_{n}(z)(x)-\mu_{m}(z)(y)\right)
$$

Moment maps: $\mu_{n}: Z \rightarrow \mathfrak{g l}_{n}^{*}, \quad \mu_{m}: Z \rightarrow \mathfrak{g l}_{m}^{*}$

Main example

Let a take $Z=T^{*} F I . T^{*} F I=\left\{(g, Y) \in G L_{n} \times \mathfrak{n}\right\} / B$ $\mu(g, Y)=A d_{g}(Y), \quad \phi=\left(Z, \operatorname{Tr}\left(X A d_{g} Y\right)\right) \in \operatorname{Hom}\left(\mathfrak{g l}_{n}, \mathfrak{g l}_{0}\right)$.

Main example

Let a take $Z=T^{*} F I . T^{*} F I=\left\{(g, Y) \in G L_{n} \times \mathfrak{n}\right\} / B$

$$
\mu(g, Y)=A d_{g}(Y), \quad \phi=\left(Z, \operatorname{Tr}\left(X A d_{g} Y\right)\right) \in \operatorname{Hom}\left(\mathfrak{g l}_{n}, \mathfrak{g l}_{0}\right) .
$$

$\operatorname{Hom}(\phi, \phi)$

$$
\begin{gathered}
M F_{n}=M F_{B^{2}}\left(\mathfrak{g l}_{n} \times G^{2} \times \mathfrak{n}^{2}, W\right) \\
W\left(X, g_{1}, Y_{1}, g_{2}, Y_{2}\right)=\operatorname{Tr}\left(X\left(A d_{g_{1}} Y_{1}-A d_{g_{2}} Y_{2}\right)\right)
\end{gathered}
$$

Main example

Let a take $Z=T^{*} F I . T^{*} F I=\left\{(g, Y) \in G L_{n} \times \mathfrak{n}\right\} / B$

$$
\mu(g, Y)=\operatorname{Ad}_{g}(Y), \quad \phi=\left(Z, \operatorname{Tr}\left(X A d_{g} Y\right)\right) \in \operatorname{Hom}\left(\mathfrak{g l}_{n}, \mathfrak{g l}_{0}\right) .
$$

$\operatorname{Hom}(\phi, \phi)$

$$
\begin{gathered}
M F_{n}=M F_{B^{2}}\left(\mathfrak{g l}_{n} \times G^{2} \times \mathfrak{n}^{2}, W\right) \\
W\left(X, g_{1}, Y_{1}, g_{2}, Y_{2}\right)=\operatorname{Tr}\left(X\left(A d_{g_{1}} Y_{1}-A d_{g_{2}} Y_{2}\right)\right)
\end{gathered}
$$

Theorem (O.-Rozansky, 2017)
For any n there is group homomorphism:

$$
\Psi: \quad B r_{n}^{a f f} \rightarrow\left(M F_{n}, \star\right) .
$$

Affine Braid group

Figure: New element $\Delta_{i} \in B r_{n}^{\text {aff }}$

Affine Braid group

Figure: New element $\Delta_{i} \in B r_{n}^{\text {aff }}$

Forgetful map: $B r_{n}^{a f f} \rightarrow B r_{n}$

$$
\text { for : } \Delta_{n} \mapsto 1, \quad \Delta_{k} \mapsto \delta_{k} .
$$

Framing

$$
X=\mathfrak{g l} l_{n} \times G^{2} \times \mathfrak{n}^{2} .
$$

Framing

$$
X=\mathfrak{g l}_{n} \times G^{2} \times \mathfrak{n}^{2} .
$$

Framed space

$$
X^{f r}=\left\{\left(X, g_{1}, Y_{1}, g_{2}, Y_{2}, v\right) \mid \mathbb{C}\left\langle\operatorname{Ad}_{g_{1}}^{-1}(X), Y_{1}\right\rangle v=\mathbb{C}^{n}\right\}
$$

Framing

$$
X=\mathfrak{g l} \mathfrak{l}_{n} \times G^{2} \times \mathfrak{n}^{2} .
$$

Framed space

$$
X^{f r}=\left\{\left(X, g_{1}, Y_{1}, g_{2}, Y_{2}, v\right) \mid \mathbb{C}\left\langle\operatorname{Ad}_{g_{1}}^{-1}(X), Y_{1}\right\rangle v=\mathbb{C}^{n}\right\}
$$

$$
f r: X^{f r} \rightarrow X, \quad f r^{*}: M F_{n} \rightarrow M F_{n}^{f r} .
$$

Theorem

$$
f r^{*} \circ \Psi=\Psi \circ \mathrm{for} .
$$

Knot homology

Embedding $j:$ FHilb ${ }^{\text {free }} \rightarrow X^{f r}$

$$
(X, Y) \mapsto(X, 1, Y, 1, Y)
$$

Knot homology

Embedding $j:$ FHilb ${ }^{\text {free }} \rightarrow X^{\text {fr }}$

$$
(X, Y) \mapsto(X, 1, Y, 1, Y)
$$

Main construction

$$
\mathcal{F}_{\beta}=j^{*}(\Psi(\beta)) \in M F\left(\text { FHilb }{ }^{\text {free }}, 0\right)=D^{\text {per }}\left(\text { FHilb }^{\text {free }}\right)
$$

Knot homology

Embedding $j:$ FHilb $^{\text {free }} \rightarrow X^{\text {fr }}$

$$
(X, Y) \mapsto(X, 1, Y, 1, Y)
$$

Main construction

$$
\mathcal{F}_{\beta}=j^{*}(\Psi(\beta)) \in M F\left(\text { FHilb }^{\text {free }}, 0\right)=D^{\text {per }}\left(\text { FHilb }^{\text {free }}\right)
$$

Theorem (O.-Rozansky 2016)
The triply graded vector space

$$
\mathbb{H}\left(\mathcal{F}_{\beta} \otimes \Lambda^{*} \mathcal{B}\right) \text { is an isotopy invariant of } L(\beta)
$$

Where is FHilb?

> Knorrer reduction: $M F_{n}=M F_{B_{n}^{2}}(\mathfrak{b} \times G \times \mathfrak{n}, \bar{W})$, $\bar{W}(X, g, Y)=\operatorname{Tr}\left(X A d_{g}(Y)\right)$.

Where is FHilb?

Knorrer reduction: $M F_{n}=M F_{B_{n}^{2}}(\mathfrak{b} \times G \times \mathfrak{n}, \bar{W})$, $\bar{W}(X, g, Y)=\operatorname{Tr}\left(X A d_{g}(Y)\right)$.
$\operatorname{Crit}(\bar{W}):\left[X, \operatorname{Ad}_{g} Y\right]=0, \quad \operatorname{Ad}_{g} Y \in \mathfrak{n}, \quad \operatorname{Ad}_{g} X \in \mathfrak{b}$.

Where is FHilb?

Knorrer reduction: $M F_{n}=M F_{B_{n}^{2}}(\mathfrak{b} \times G \times \mathfrak{n}, \bar{W})$,

$$
\bar{W}(X, g, Y)=\operatorname{Tr}\left(X A d_{g}(Y)\right)
$$

$\operatorname{Crit}(\bar{W}):\left[X, \operatorname{Ad}_{g} Y\right]=0, \quad \operatorname{Ad}_{g} Y \in \mathfrak{n}, \quad \operatorname{Ad}_{g} X \in \mathfrak{b}$.

Observation

$$
\frac{\partial \bar{W}}{\partial z} \text { is null-homotopic on } \mathcal{F} \in M F(Z, \bar{W})
$$

Where is FHilb?

Knorrer reduction: $M F_{n}=M F_{B_{n}^{2}}(\mathfrak{b} \times G \times \mathfrak{n}, \bar{W})$,

$$
\bar{W}(X, g, Y)=\operatorname{Tr}\left(X A d_{g}(Y)\right)
$$

$\operatorname{Crit}(\bar{W}):\left[X, \operatorname{Ad}_{g} Y\right]=0, \quad \operatorname{Ad}_{g} Y \in \mathfrak{n}, \quad \operatorname{Ad}_{g} X \in \mathfrak{b}$.

Observation

$$
\frac{\partial \bar{W}}{\partial z} \text { is null-homotopic on } \mathcal{F} \in M F(Z, \bar{W})
$$

$$
\bar{j}^{*}\left(\overline{\mathcal{F}}_{\beta}\right) \in M F_{B}(F \text { Hilbne free }, 0) \text { has homology support in } F \text { FHilb } b_{n}
$$

$g l(m \mid n)$ homology

$$
\begin{gathered}
\operatorname{FHilb}_{n}^{\text {free }}(\mathbb{C})=\{(X, Y, v) \in \mathfrak{b} \times \mathfrak{n} \times V \mid \mathbb{C}\langle X, Y\rangle v=V\} / G L_{n}, \\
\mathcal{B}_{(X, Y, v)}^{\vee}=V .
\end{gathered}
$$

$g /(m \mid n)$ homology

$\operatorname{FHilb}_{n}^{\text {free }}(\mathbb{C})=\{(X, Y, v) \in \mathfrak{b} \times \mathfrak{n} \times V \mid \mathbb{C}\langle X, Y\rangle v=V\} / G L_{n}$,

$$
\mathcal{B}_{(X, Y, v)}^{\vee}=V
$$

Section

$\phi_{m \mid n} \in H^{0}\left(\operatorname{FHilb}_{n}^{\text {free }}(\mathbb{C}), \mathcal{B}^{\vee}\right), \phi_{m \mid n}(X, Y, v)=X^{m} Y^{n} v$

$g I(m \mid n)$ homology

$$
\begin{gathered}
\text { FHilb free }(\mathbb{C})=\{(X, Y, v) \in \mathfrak{b} \times \mathfrak{n} \times V \mid \mathbb{C}\langle X, Y\rangle v=V\} / G L_{n}, \\
\mathcal{B}_{(X, Y, v)}^{\vee}=V .
\end{gathered}
$$

Section

$\phi_{m \mid n} \in H^{0}\left(F H i l b_{n}^{\text {free }}(\mathbb{C}), \mathcal{B}^{\vee}\right), \phi_{m \mid n}(X, Y, v)=X^{m} Y^{n} v$

Differential

$$
i_{\phi_{m \mid n}}: \Lambda^{i} \mathcal{B} \rightarrow \Lambda^{i-1} \mathcal{B}, d_{m \mid n}: \mathcal{F}_{\beta} \otimes \Lambda^{i} \mathcal{B} \rightarrow \mathcal{F}_{\beta} \otimes \Lambda^{i-1} \mathcal{B} .
$$

$g I(m \mid n)$ homology

$$
\begin{gathered}
\text { FHilb free }(\mathbb{C})=\{(X, Y, v) \in \mathfrak{b} \times \mathfrak{n} \times V \mid \mathbb{C}\langle X, Y\rangle v=V\} / G L_{n}, \\
\mathcal{B}_{(X, Y, v)}^{\vee}=V .
\end{gathered}
$$

Section

$\phi_{m \mid n} \in H^{0}\left(F H i l b_{n}^{\text {free }}(\mathbb{C}), \mathcal{B}^{\vee}\right), \phi_{m \mid n}(X, Y, v)=X^{m} Y^{n} v$

Differential

$i_{\phi_{m \mid n}}: \Lambda^{i} \mathcal{B} \rightarrow \Lambda^{i-1} \mathcal{B}, d_{m \mid n}: \mathcal{F}_{\beta} \otimes \Lambda^{i} \mathcal{B} \rightarrow \mathcal{F}_{\beta} \otimes \Lambda^{i-1} \mathcal{B}$.
Let $d_{\mathcal{F}}$ be the differential of $\mathcal{F}_{\beta} \in D^{\text {per }}\left(F \operatorname{Fill}_{n}^{\text {free }}(\mathbb{C})\right)$ and

$$
\mathbb{H}_{m \mid n}(\beta):=H\left(\mathcal{F}_{\beta} \otimes \Lambda^{\bullet} \mathcal{B}, d_{\mathcal{F}}+d_{m \mid n}\right)
$$

$g /(m \mid n)$ homology)

Theorem (O., Rozansky 2016)

The doubly graded vector space

$$
\mathbb{H}_{m \mid n}(\beta)
$$

is an isotopy invariant of $L(\beta)$.

$g /(m \mid n)$ homology)

Theorem (O., Rozansky 2016)

The doubly graded vector space

$$
\mathbb{H}_{m \mid n}(\beta)
$$

is an isotopy invariant of $L(\beta)$.

Conjecture [O., Rozansky 2016]

$$
\mathbb{H}(\beta)=H_{g l(m \mid n)}(L(\beta)) .
$$

Virtual sheaves

$F Z \subset \mathfrak{b} \times \mathfrak{n}$ and defined by the equations

$$
X_{i i}=X_{i+1, i+1},[X, Y]_{i, j}=0, \quad j-i>1
$$

Virtual sheaves

$F Z \subset \mathfrak{b} \times \mathfrak{n}$ and defined by the equations

$$
\begin{gathered}
X_{i i}=X_{i+1, i+1},[X, Y]_{i, j}=0, \quad j-i>1 \\
{\left[O_{F Z}\right]^{v i r}=K\left(X_{i i}-X_{i+1, i+1},[X, Y]_{i j}\right)}
\end{gathered}
$$

