Gauge theories and
Bethe eigenfunctions
based on Quasimap counts and Bethe eigefunctions, Mina Aganagic \& A.O., arXiv:1704.08746
"Bethe Ansatz" is the art and science of finding spectra and eigenfunction in quantum integrable systems with a quantum group symmetry

Bethe Ansatz" is the art and science of finding spectra and eigenfunctions in quantum integrable systems with a quantum group symmetry

Quantum groups (quantum loop algebras)
If of is a Lie algebra, then so is $g\left[t^{ \pm 1}\right]=$ Laurent poly with values in of

Quantum groups (quantum loop algebras)
If of is a Lie algebra, then so is $g\left[t^{ \pm 1}\right]=$ Laurent poly with values in of Has representations of the form

$$
\Rightarrow V_{1}\left(a_{1}\right) \otimes V_{2}\left(a_{2}\right) \otimes \ldots \otimes V_{n}\left(a_{n}\right)
$$ a representation

of of
evaluate at $t=a_{1}$

Quantum groups (quantum loop algebras)
If of is a Lie algebra, then so is $g\left[t^{ \pm 1}\right]=$ Laurent poly with values in of Has representations of the form with values in of

$$
\rightarrow V_{1}\left(a_{1}\right) \otimes V_{2}\left(a_{2}\right) \otimes \ldots \otimes V_{n}\left(a_{n}\right)
$$ a representation

of
evaluate at
$t=a_{1}$
A quantum group $U_{\hbar}(\hat{g})$ is a deformation such that

$$
V_{1}\left(a_{1}\right) \otimes V_{2}\left(a_{2}\right) \nLeftarrow V_{2}\left(a_{2}\right) \otimes V_{1}\left(a_{1}\right)
$$

R-matrices
For generic a_{1} / a_{2} there is a nontrivial intertwine

$$
\begin{aligned}
& V_{1}\left(a_{1}\right) \otimes V_{2}\left(a_{2}\right) \\
& V_{2}\left(a_{2}\right) \otimes V_{1}\left(a_{1}\right)
\end{aligned}
$$

$$
R_{V_{1}, V_{2}}\left(a_{1} / a_{2}\right)
$$

$\imath_{\text {rational function }}$ of a_{1} / a_{2} vertex interaction in integrable vertex models
R-matrices
For generic a_{1} / a_{2} there is a nontrivial intertwine

$$
V_{1}\left(a_{1}\right) \otimes V_{2}\left(a_{2}\right)
$$

$$
X=X Y B
$$

$$
R_{V_{1}, V_{2}}\left(a_{1} / a_{2}\right)
$$

$$
\gamma \quad v_{1, v_{2}} \uparrow
$$

R-matrices
For generic a_{1} / a_{2} there is a nontrivial intertwine

$$
V_{1}\left(a_{1}\right) \otimes V_{2}\left(a_{2}\right)
$$

One can reconstruct the whole quantum group from R-matrices [Faddeev-Reshetikbin-Takhtajan]

Quantum integrals of motion

Quantum integrals of motion
 a.k.a Baxter Subalgebra in
physical space
Here $z \in e^{f} \subset u_{\hbar}(\hat{g})$ where $f \subset$ of are diagonal matrices quasiperiodic boundary

Quantum integrals of motion a.k.a Baxter Subalgebra in

physical space
Here

$$
z \in e^{f} c u_{\hbar}(\hat{g})
$$

where $f c$ of are diagonal matrices
Commute for all W and u for fixed z
quasiperiodic boundary conditions

The textbook Bethe ansal3 diagonalizes these for

$$
\begin{aligned}
& o f=s l_{2} \\
& V=\mathbb{C}^{2}\left(a_{1}\right) \otimes \ldots \otimes \mathbb{C}^{2}\left(a_{n}\right)
\end{aligned}
$$

The textbook Bethe amsal3 diagonalizes these for

$$
\begin{aligned}
& g=s l_{2} \\
& V=\mathbb{C}^{2}\left(a_{1}\right) \otimes \ldots \otimes \mathbb{C}^{2}\left(a_{n}\right)
\end{aligned}
$$

$$
\text { of length } n
$$

the challenge is to do it for a very general of (including ∞-dimensional)

The textbook Bethe amsal3 diagonalizes these for

$$
\begin{aligned}
& g=s l_{2} \\
& V=\mathbb{C}^{2}\left(a_{1}\right) \otimes \ldots \otimes \mathbb{C}^{2}\left(a_{n}\right)
\end{aligned}
$$

$\operatorname{spin} \frac{1}{2}$ chain of length n
the challenge is to do it for a very general of (including ∞-dimensional)

A move general problem is to solve certain q_{0}-difference eq. for

$$
\Psi\left(a_{1}, \ldots, a_{n}\right) \in V_{1}\left(a_{1}\right) \otimes \ldots \otimes V_{n}\left(a_{n}\right)
$$

concretely, the Quantum Knizhnik-Zamolodchikov eq. for

$$
\text { reads } \Psi\left(a_{1}, \ldots, a_{n}\right) \in V_{1}\left(a_{1}\right) \otimes \ldots \otimes V_{n}\left(a_{n}\right)
$$

$$
\Psi\left(q a_{1}, \ldots, a_{n}\right)=(z \otimes 1 \otimes \ldots \otimes 1) R_{V_{1}, V_{n}} \ldots R_{V_{1} V_{2}} \Psi
$$

[I. Frenkel - N. ReshetiKhin]
[F. Smirnov]
concretely, the Quantum Kmizhnik-Zamolodchikov eq. for

$$
\text { reads } \Psi\left(a_{1}, \ldots, a_{n}\right) \in V_{1}\left(a_{1}\right) \otimes \ldots \otimes V_{n}\left(a_{n}\right)
$$

$$
\Psi\left(q a_{1}, \ldots, a_{n}\right)=(z \otimes 1 \otimes \ldots \otimes 1) R_{V_{1}, V_{n}} \ldots R_{V_{1} V_{2}} \Psi
$$

there are commuting "dynamical" equations in z
[Etingof, Felder, Tarasov, Varchemko,...]
concretely, the Quantum Kmizhnik-Zamolodchikov eq. for

$$
\text { reads } \Psi\left(a_{1}, \ldots, a_{n}\right) \in V_{1}\left(a_{1}\right) \otimes \ldots \otimes V_{n}\left(a_{n}\right)
$$

$$
\Psi\left(q a_{1}, \ldots, a_{n}\right)=(z \otimes 1 \otimes \ldots \otimes 1) R_{V_{1}, V_{n}} \ldots R_{V_{1} V_{2}} \Psi
$$

there are commuting "dynamical" equations in z
as $q \rightarrow 1$ become an eigenvalue problem
a generalization of Bethe Ansatz is the search for integral solutions of the q-difference equations
in the $q \rightarrow 1$ limit, we get
$\frac{\partial}{\partial x_{i}} S=0<$ Bethe equations for "Bethe roots" x_{1}, x_{2}, \ldots
in the $q \rightarrow 1$ limit, we get
$\frac{\partial}{\partial x_{i}} S=0<$ Bethe equations for "Bethe roots" x_{1}, x_{2}, \ldots.
$a_{i} \frac{\partial}{\partial a_{i}} S \leadsto$ eigenvalues of the $g K Z$ operators, etc.
in the $q \rightarrow 1$ limit, we get
$\frac{\partial}{\partial x_{i}} S=0 \longleftarrow$ Bethe equations for
"Bethe roots" x_{1}, x_{2}, \ldots
$a_{i} \frac{\partial}{\partial a_{i}} S=$ eigenvalues of the $g K Z$ operators, etc.
and the map
Hilbert space $\left.\ni \alpha \mapsto f_{\alpha}\right|_{\text {Bethe }} \in \begin{gathered}\text { functions on the } \\ \text { spectrum }\end{gathered}$
is the diagonalization!

So, the main problem is to find functions

Hilbert space $V \ni \alpha \longmapsto f_{\alpha}\left(x_{1}, x_{2}, \ldots\right)$
"off-shell Bethe function"
$\nearrow_{\text {name introduce l by Babajian }}$

So, the main problem is to find
Hilbert space $V \Rightarrow \alpha \longmapsto f_{\alpha}\left(x_{1}, x_{2}, \ldots\right)$
"off-shell Bethe function"
and this is the problem we solve in the setup discovered by Nekrasov and Shatashvili

It embeds the problem in Sd susy gauge theories on

$$
M^{3}=\cdots \times S^{1}
$$

\uparrow Riemann surface C

NS correspondence
records the weight of α, e.g. The number of \uparrow gauge group $=\prod_{i=1} U\left(v_{i}\right)$ $\uparrow \downarrow \downarrow \uparrow \uparrow \downarrow \downarrow \downarrow \uparrow \downarrow \downarrow \downarrow$

NS correspondence
records the weight of α, e.g. The number of \uparrow gauge group $=\prod_{i=1} U\left(v_{i}\right)$

$$
\text { the Bethe roots }\left(\begin{array}{ccc}
x_{i 1} & & \\
& x_{i 2} & \\
\\
& & \ddots \\
& & \ddots \\
\\
& & \\
x_{i v_{i}}
\end{array}\right)
$$

live in the maximal torus of the gauge group

NS correspondence
records the weight of α, e.g. The number of \uparrow

$$
\text { gauge group }=\prod_{i=1} U\left(v_{i}\right)
$$

the Bethe roots $\left(\begin{array}{cccc}x_{i 1} & & & \\ & x_{i 2} & & \\ & & \ddots & \\ 0 & & x_{i v_{i}}\end{array}\right)$
live in the maximal torus of the gauge group
integration over is just a projection onto gange-invariaut States by H. Weyl

NS correspondence records the weight of α, gauge group $=\prod_{i=1} U\left(v_{i}\right)$ e.g. The number of \uparrow

$$
S^{\text {here act }}\left(\begin{array}{cc}
a_{1} & \\
a_{1} & 0 \\
0 & \ddots
\end{array}\right)
$$

matter $=\Theta \mathbb{C}^{v_{i}} \otimes$ flavor space W_{i}

NS correspondence records the weight of α, e.g. the number of \uparrow

$$
\text { gauge group }=\prod_{i=1} U\left(v_{i}\right)
$$

$$
L^{\text {here act }}\left(\begin{array}{cc}
a_{1} & \\
a_{1} & 0 \\
0_{2} & \ddots
\end{array}\right)
$$

matter $=\bigoplus \mathbb{C}^{v_{i}} \otimes$ flavor space W_{i}
\bigoplus bifundamental $\left(\mathbb{T}^{v_{i}}\right)^{*} \otimes \mathbb{C}^{v_{j}}$

$$
i \longrightarrow j
$$

$$
\text { quiver }=\text { Dynkin } \star \text { diagram of of }
$$

NS correspondence records the weight of α, e.g. the number of \uparrow

$$
\text { gauge group }=\prod_{i=1} U\left(v_{i}\right)
$$

$$
L^{\text {here act }}\left(\begin{array}{cc}
a_{1} & \\
a_{1} & 0 \\
0_{2} & \ddots
\end{array}\right)
$$

matter $=\bigoplus \mathbb{C}^{v_{i}} \otimes$ flavor space W_{i}
\bigoplus bifundamental $\left(\mathbb{T}^{v_{i}}\right)^{*} \otimes \mathbb{C}^{v_{j}}$
$i \longrightarrow j$

$$
\text { quiver }=\text { Dynkin } \star \text { diagram of of }
$$

\bigoplus duals, for more susy

NS correspondence

Hilbert space of the
$=$ line operators quantum integrable system

already is a module over a certain (smaller) quantum group by the original construction of Nakajima
mathematically, the suss indices for

$$
M^{3}=\cdots \times S^{1}
$$

are integrals in K-theory of the space of (quasi-) maps

weighted by $z^{\text {deg } g \text { multiindex, a subject both }}$ formally and conceptually related to other kinds of curve counting such as Gromov-witten theories (\sim top strings)
in particular, the subject has the quantum K-theory ring, with structure constants given by

as well as the quantum q-difference equations, which record the response to tevisting the geometry over \mathbb{T}^{1}

One of the key insights of NS:

$$
\begin{array}{r}
\text { quantum } K \text {-theory }=\begin{array}{l}
\text { symm. } \\
\text { polynomials } \\
\text { ring }
\end{array} / \text { Bethe } x_{i j} / \text { equations } \\
\text { standard generators, Chen roots of } \\
\text { universal bundles }
\end{array}
$$

See [Pushkar-Smirnov-Zeitlin] for a discussion aimed at mathematicians
the problem may be studied from a geometric representation theory angle
[Maulik-0.] and one of the end results of this analysis is
Theorem [A.O., A.Smirnov-A.O.] gK + dynamical eg + are the quantum difference equations for $M_{\text {figs }}$ where the step q is the equivariaut variable that rotates the domain of the quasimap

Now back to the main problem of Bethe anzat3:
"off-shell Bethe function"
the Hilbert space
of a QIS $\rightarrow \alpha \longrightarrow f_{\alpha}\left(x_{1}, x_{2}, \ldots\right)$
[NS] \|

$$
K_{\text {eq }}\left(M_{\text {figs }}\right) \xrightarrow{\bullet[A 0]}
$$

\uparrow
observables

Now back to the main problem of Bethe anzat3:
"off-shell Bethe function"
the Hilbert space
of a QISS $\rightarrow \alpha \longrightarrow f_{\alpha}\left(x_{1}, x_{2}, \ldots\right)$

Now back to the main problem of Bethe anzat3:

observables in our paper, we give several equivalent descriptions of this map, some of which make no explicit reference to gauge theories
mathematically, the dictionary

$$
K_{\text {eq }}\left(M_{\text {figs }}\right) \longrightarrow \begin{aligned}
& \text { representations } \\
& \text { of the gauge group }
\end{aligned}
$$

is given by 2 -point functions with

time $a \times$ approaches
Description \#1 $f_{\alpha}(x)$ is the descendent observable that corresponds to the relative observable α

Description \#2 $f_{\alpha}(x)$ is the stable envelope

$$
K_{\text {eq }}\left(\mathcal{M}_{\text {tliggs }}\right) \longrightarrow K_{\text {eq }}\left(\left[\begin{array}{c}
\vee_{\text {mange }}^{\text {ambient stack }} \\
\overbrace{\text { no stability }}^{\text {matter }} /
\end{array}\right)\right.
$$

in the style of Halpern-Leistner-Manlik-A.O.

This is the $q \rightarrow 0$ limit of the elliptic stable envelopes of [Aganagic-0.], which are boundary conditions for gauge theories in question

$$
\partial M^{3}=\text { toms }
$$

Description \#3 $f_{\alpha}(x)$ is a matrix element of R-matrix

specific eigenvector of $u_{\hbar}(\hat{f})$ this specializes to the $B\left(x_{1}\right) B\left(x_{2}\right) \ldots|\phi\rangle$ formula for of $=s_{2}$

Description \#4
Explicit abelianization formula
in the style of Shenfeld-Smirnov

Quasimap counts and Bethe eigenfunctions
Mina Aganagic, Andrei Okounkov
(Submitted on 27 Apr 2017)
We associate an explicit equivalent descendent insertion to any relative insertion in quantum K explicit formula for off-shell Bethe eigenfunctions for general quantum loop algebras associated the corresponding quantum Knizhnik-Zamolodchikov and dynamical q-difference equations.

Subjects: Mathematical Physics (math-ph); High Energy Physics - Theory (hep-th); Algebraic Geometry (n) Cite as: arXiv:1704.08746 [math-ph] (or arXiv:1704.08746v1 [math-ph] for this version)
as a T-module. In particular, the A-weights in V are given by minus contents of the boxes. As a polarization, we may take

$$
\begin{aligned}
T^{1 / 2} & =V+\left(t_{1}-1\right) \operatorname{Hom}(V, V) \\
& =\sum x_{i}+\left(t_{1}-1\right) \sum_{i, j} x_{i} / x_{j}
\end{aligned}
$$

where $\left\{x_{i}\right\}$ are the Chern roots of V. A fixed point is specified by the assignment of x_{i} to the boxes of λ, up to permutation.

If we take t_{1} to be a repelling weight for A then

$$
T_{\gtrless}^{1 / 2}=\sum_{c(i) \gtrless 0} x_{i}+t_{1} \sum_{c(i) \gtrless c(j)+1} x_{i} / x_{j}-\sum_{c(i) \gtrless c(j)} x_{i} / x_{j}
$$

where

$$
T_{>}^{1 / 2}=T_{\text {attracting }}^{1 / 2}, \quad T_{<}^{1 / 2}=T_{\text {repelling }}^{1 / 2},
$$

and $c(i)$ is the content of the box in λ assigned to x_{i}. Therefore, up to an \hbar multiple, we have

$$
\mathbf{f}_{\lambda}=\text { symmetrization of } \frac{\Pi_{1} \Pi_{2}}{\Pi_{3}}
$$

where

$$
\Pi_{1}=\prod_{c(i)<0}\left(1-x_{i}\right) \prod_{c(i)>0}\left(t_{1} t_{2}-x_{i}\right)
$$

and

$$
\begin{aligned}
\Pi_{2} & =\prod_{c(i)<c(j)+1}\left(x_{j}-t_{1} x_{i}\right) \prod_{c(i)>c(j)+1}\left(t_{2} x_{j}-x_{i}\right) \\
\Pi_{3} & =\prod_{c(i)<c(j)}\left(x_{j}-x_{i}\right) \prod_{c(i)>c(j)}\left(t_{1} t_{2} x_{j}-x_{i}\right) .
\end{aligned}
$$

These are formulas for K-theoretic stable envelopes for $\operatorname{Hilb}\left(\mathbb{C}^{2}, n\right)$ with the polarization and slope as in Proposition 7. They are a dirgt K-theoretic generalization of the formulas from $[48,50]$.

Note that in all cases treated by the formy) a (79) the slope is near an integral line bundle. Much more interesting functions appear at fractional they seem to be not required in the contekt of Bethe Ansatz.
3.2 .7

The proof of Proposition 7 takes several stros. As a first step. clarify the geometric meaning of the formula (79).

We separate the numerator and denominator in (75) writing

$$
\left(T^{1 / 2}\right)_{\text {repelling }} \oplus \hbar\left(T^{1 / 2}\right)_{\text {attracting }}=\rho_{+}-\rho_{-}
$$

why is geometry effective in proving explicit formulas like? for a number of both theoretical and very practical reasons such as:

- it lets one be inexplicit about many features of R, or $U_{\hbar}(\hat{o j})$, or \ldots
- it automatically selects the right contour of integration
- it is awfully good at showing that poles cancel

