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This talk is based on:

@ MTH, Matilde Marcolli, Ingmar Saberi, Bogdan Stoica, Tensor
networks, p-adic fields, and algebraic curves: arithmetic and
the AdSs/CFT, correspondence, arXiv:1605.07639

@ Steven S. Gubser, MTH, Christian Jepsen, Matilde Marcolli,
Sarthak Parikh, Ingmar Saberi, Bogdan Stoica, Brian Trundy,
Edge length dynamics on graphs with applications to p-adic
AdS/CFT, arXiv:1612.09580

@ Gubser, MTH, Jepsen, Parikh, Saberi, Stoica, Trundy, Signs
of the time: Melonic theories over diverse number systems,
arXiv:1707.01087

@ additional work in progress
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Overview
@ Introduction and motivation
@ Informal review of p-adic numbers
@ Correspondence for scalar fields
@ p-adic field theories
o A bulk action

@ Conclusions and future work
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Introduction and motivation

e AdS/CFT remarkably successful over the last 20 years; exact
equivalance between gravity in Anti-de Sitter space (AdS) to
a conformal field theory (CFT) at the AdS boundary.!

'Maldacena, Adv. Theor. Math. Phys.2,231(1998); Witten, (1998);

Gubser, Klebanov, Polyakov, Phys. Lett. (1998)
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Introduction and motivation

e AdS/CFT remarkably successful over the last 20 years; exact
equivalance between gravity in Anti-de Sitter space (AdS) to
a conformal field theory (CFT) at the AdS boundary.!

@ Best understood examples realized by brane configurations in
string theory; ex 4d N = 4 SYM <+ AdSs x S°.

@ Possible to understand model independent aspects;
AdS3/CFT,, geometry from entanglement (Ryu-Takayanagi),
BTZ black hole and Riemann surfaces, renewed interest in
AdS,/CFT; and SYK models, etc.

@ Strong/weak duality, many challenges remain...

'Maldacena, Adv. Theor. Math. Phys.2,231(1998); Witten, (1998);
Gubser, Klebanov, Polyakov, Phys. Lett. (1998)
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Recent attempts at discrete toy models

@ Emphasis on quantum information, tensor networks
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Recent attempts at discrete toy models
@ Emphasis on quantum information, tensor networks

e Ex: AdS/MERA, Holographic error correcting codes

from F.Pastawski, B.Yoshida, D.Harlow, J.Preskill, Holographic quantum error-correcting codes: Toy

models for the bulk/boundary correspondence, JHEP 06 (2015) 149
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Recent attempts at discrete toy models
@ Emphasis on quantum information, tensor networks

e Ex: AdS/MERA, Holographic error correcting codes

from F.Pastawski, B.Yoshida, D.Harlow, J.Preskill, Holographic quantum error-correcting codes: Toy
models for the bulk/boundary correspondence, JHEP 06 (2015) 149
@ Discrete models leave something to be desired; break
symmetries, don’t have field theory dynamics, full boundary
theory unclear
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Are there discrete versions of AdS/CFT
that are more similar to continuum models?
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Hints from mathematics:

@ In low dimensions, the spacetime of the conformal field theory
is an algebraic curve over a field;

CFT, : P}(C)
CFTy : PY(R)
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Hints from mathematics:

@ In low dimensions, the spacetime of the conformal field theory
is an algebraic curve over a field;

CFT, : P}(C)
CFTy : PY(R)

@ It's possible to construct algebraic curves over fields other
than R or C.

@ We can complete the rationals Q with respect to another
norm; the p-adic norm.
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Brief review of p-adic numbers

@ As opposed to the usual real norm on Q (here denoted | - |,)
for any x € Q we can write

x = p“(a/b), a,bLp

where p is any prime number.
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Brief review of p-adic numbers

@ As opposed to the usual real norm on Q (here denoted | - |,)
for any x € Q we can write

x = p“(a/b), a,bLp
where p is any prime number.
@ The p-adic norm is then defined as

x[p=p"".

This norm has power law behavior and only takes on discrete
values.

o Ex: 0], =0, [p| =p7t [anp" + ans1p" T 4. =p7" ...
e Ultrametric: |x + y|p, < max(|x|p,|y|p)
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p-adics, continued

@ By a theorem of Ostrowski, every nontrivial norm on Q is
equivalent to |- | or |+ |oo-
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p-adics, continued

@ By a theorem of Ostrowski, every nontrivial norm on Q is
equivalent to | - [, or | - |-

@ A p-adic number is a power series

(o]
x:p”Zanp”, a,€0,....,p—1

n=0

This is a Cauchy sequence that convergences in the p-adic
norm; their set defines the field of the p-adic numbers Q.
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p-adics, continued

@ By a theorem of Ostrowski, every nontrivial norm on Q is
equivalent to | - [, or | - |-

@ A p-adic number is a power series

(o]
x:p"Zanp", a,€0,....,p—1
n=0

This is a Cauchy sequence that convergences in the p-adic
norm; their set defines the field of the p-adic numbers Q.

@ (Much of what we do will work for a finite extension of Qp,
such as Qp or more generally K.)

9/32



Visualizing Qp

Q>
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Hints from physics:

@ p-adic string theory: replace the open bosonic string boundary
PY(R) with P}(Qp) (the target space is still smooth.)

?Brekke, Freund, Olson, Witten; Nucl. Phys. B302 (1988)
*Wilson, Kogut (1974); Kadanoff (1966); Dyson (1969); Lerner, Missarov

(1989)
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Hints from physics:

@ p-adic string theory: replace the open bosonic string boundary
PY(R) with P}(Qp) (the target space is still smooth.)

@ Veneziano amplitude?:
A (k) :[@ dx|x|fs7k2|1 — x[lavka
P

@ Hierarchical models, spin blocking, position space RG:
Typically consider bi-local stat mech models; hierarchical
power law correlations?

ot b o dob gt 4ot bbb

n 01 2 3 45 6 7 8 9 10 11 12 13 14 15

?Brekke, Freund, Olson, Witten; Nucl. Phys. B302 (1988)
*Wilson, Kogut (1974); Kadanoff (1966); Dyson (1969); Lerner, Missarov
(1989)
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Similarities between R and Q,

e Q, has translational symmetries, P}(Q,) has conformal

transformations of the form

SL(2,Qp) : x —

ax+ b
cx+d
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Similarities between R and Q,
e Q, has translational symmetries, P}(Q,) has conformal
transformations of the form
ax+ b
cx+d

SL(2,Qp) : x —

@ Unique translation invariant Haar measure dx, allows us to do

integrals, ex:
/ dx =1
Zp

e Exists a space of well behaved (locally constant) functions on
Qp spanned by translation eigenfunctions:

Xp(kx) _ e27ri{kx}p

where {-}, is the fractional part. The Fourier transform is

¢(X) _ / eZiﬂ{kx}pq’b\(k) dk

p
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R and Qp: the Adeles

@ There exist adelic formulas relating functions of reals and
functions of p-adics, ex:

H|X’p:1

p

(where the product is over all p and c0.)
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P

(where the product is over all p and c0.)

@ More interesting examples from Tate's thesis:

1
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functions of p-adics, ex:
H x[p=1
P

(where the product is over all p and c0.)

@ More interesting examples from Tate's thesis:

1

oS = T Gals) = AT (5/2)
[Tce(s) = =*2r(s/2¢(s), <o) =3
P n=1

o Adelic Veneziano amplitudes: ], Aj(ki) = 1
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Holography for scalar fields: The bulk

@ In ordinary AdS/CFT, we can work in Euclidean space, the
bulk are cosets:

PGL(2,C)
. 3 _ ’ . ol
Bulk: H” = 75(](2) , Boundary: P*(C)
PGL(2,R)
LT ’ . ol
Bulk: H* = s02) Boundary: P*(R)

Boundary conformal transformations <> isometries of bulk.

*Y. Manin, M. Marcolli, Adv. Theor. Math. Phys. 5 (2001)
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Holography for scalar fields: The bulk

@ In ordinary AdS/CFT, we can work in Euclidean space, the
bulk are cosets:

PGL(2,C)
. 3 _ ’ . ol
Bulk: H” = 75(](2) , Boundary: P*(C)
PGL(2,R)
LT ’ . ol
Bulk: H* = s02) Boundary: P*(R)

Boundary conformal transformations <> isometries of bulk.

e Idea is to replace R or C by Q, or some extension.*

*Y. Manin, M. Marcolli, Adv. Theor. Math. Phys. 5 (2001)
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totally geodesic surface
bulk = H3

= PGL(2,C)/PSU(2)

boundary = P*(C)
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Euclidean black hole solutions can also be understood algebraically,
as quotients of empty AdS by Schottky groups.
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For Qp, the relevant coset space is
Tp = PGL(2,Qp)/PGL(2,Zp)

This is discrete space known as the Bruhat-Tits Tree, the infinite
tree of uniform valence p + 1 we saw earlier.
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(p = 3) example:

bulk = T,

geodesics = PGL(2, Qp)/PGL(27 ZP)

boundary = P1(Qp)
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Bruhat-Tits tree of K = (Q; and geodesics
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Just as before, we can obtain black holes by quotienting this
geometry by free subgroups.

p-adic Banados—Teitelboim—Zanelli black hole with K = Q3
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Scalar fields on the bulk Bruhat=Tits tree T@p

@ Study a scalar field on vertices of the tree with action

Stree = 3 5(6(v) — 6())? + 3 V(9(v))

(w’)

®Zabrodin, Comm. Math. Phys. (1989)
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Scalar fields on the bulk Bruhat-Tits tree Tq,
@ Study a scalar field on vertices of the tree with action
1
Stree = Z §(¢(V) - ¢(V/))2 + Z V(é(v))
(w') v

@ Linearized equation of motion is the lattice Laplacian
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Stree = Z §(¢(V) - ¢(V/))2 + Z V(é(v))
(w') v

@ Linearized equation of motion is the lattice Laplacian

Oo(v) =) _(&(v) = ¢(v)) = m3(v)

!

5

v
@ The un-normalized bulk to bulk Green's function is

—Ad(v.v) \where d(v, V') is the integer bulk distance

~1
(p(A = 1)Gp(—A)
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Scalar fields on the bulk Bruhat-Tits tree Tq,
@ Study a scalar field on vertices of the tree with action
1
Stree = Z §(¢(V) - ¢(V/))2 + Z V(é(v))
(w') v

@ Linearized equation of motion is the lattice Laplacian

Oo(v) =) _(&(v) = ¢(v)) = m3(v)

!

5

v
@ The un-normalized bulk to bulk Green's function is

—Ad(v.v) \where d(v, V') is the integer bulk distance

-1
(A -1)G(-1)
@ Bulk to boundary propagator labled by x € Qp:

Ga(v,V)=p

my=p>+p"2 —(p+1)

KA(V, X) = piAdX(V)

with di(v) = 0 at root vertex and dy(v) — —o0 as v — x.
®Zabrodin, Comm. Math. Phys. (1989)
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Scalar fields (cont.)

e For A real, min of m,% at A = 1/2 — p-adic BF bound on the
mass:

my > —(v/p— 1)

22/32



Scalar fields (cont.)

@ For A real, min of mf, at A =1/2 — p-adic BF bound on the
mass:

my > —(/p—1)°
e Following Witten (1998), for boundary ¢o(x) we can
reconstruct bulk solutions by superposition:

¢p(28)

)= A1)

/ dx ¢o(x)Ka(v, x)
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Scalar fields (cont.)

@ For A real, min of mf, at A =1/2 — p-adic BF bound on the
mass:

my > —(/p—1)°
e Following Witten (1998), for boundary ¢o(x) we can
reconstruct bulk solutions by superposition:

¢p(24) /dx do(x)Ka(v,x)

¢>(V) = Cp(2A IR 1) )

@ Holographic ansatz: (exp prdx $oO)cpT = e Stree(®)| 4,
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@ In this example, possible to integrate out the bulk, giving
non-local boundary action:

(¢o(x) — do(x))?

X35

S[6] ~ / dxc’

p
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@ Bulk fields of mass m, couple to boundary scalars with two
point function:

1

X =
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@ In this example, possible to integrate out the bulk, giving
non-local boundary action:

(¢o(x) — do(x))?

X35

S[6] ~ / dxc’

p

@ Bulk fields of mass m, couple to boundary scalars with two
point function:

1

X =

(0(x)O0(x)) ~

@ Three and four point functions computed by Gubser et al,
detailed agreement with ordinary AdS/CFT.
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p-adic conformal field theory

@ Global SL(2,Qp)-symmetries (primaries), no local conformal
algebra (no descendants) ((that we know of))®

bn(x) = [ex + d|2Bdn(x)

@ Correlation function between two primary fields inserted at x
and y (scaling dimension A,)

(Dm()on(y)) = —2nm

|X—)/|p

(just as we obtained from the bulk.)

@ Ultrametricity strongly constrains the form of 3-point and
4-point functions; determined exactly by operator product
expansion (OPE) coefficients. This has a nice interpretation in
terms of geodesic Witten diagrams.

8E. Melzer, Non-Archimedean conformal field theories, Int. Journal of

Modern Physics (1989)
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The free boson
@ Quadratic action for a scalar field with A = 0:

Sp[d)] — / dXdX/(¢(X) — ¢(X,))2

2
p ’X_X/|P

dxdx’ -+ - . . ’
° Ixix)flf, is invariant under SL(2,Qp) acting on x, x’.

@ Pathl integral: C-valued fields so usual form
Z, = [ D¢ el

Zp[J] = /D¢ exp <—5p[<z5] —i—[@ J(x’)gb(x')dx')

25/32



Green functions

@ Green functions for the non-local (Vladimirov) derivative
Ip)G(x —x') = —0(x — x')

o Momentum space: G(k) = —X‘(k—lﬁ:)
k(x" — k
SRy R CCEL P e P
o Iklp o |Klp
@ Regularization at kK — 0 and p-adic Gamma function
Fp(0) = T80

a—0

. 1 T, _
jim /@px(ku)]k\g dk = lim [p(0)[ul,"

@ obtain 2-point function behavior (with a — 0)

x —x'

(0@ (x)¢(x')[0) ~ log
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Non-renormalization

@ p-adic field theories have strong non-renormalization
properties due to ultrametricity. A la Wilson's discrete RG, we
can integrate out one shell of loop momentum:

1

h(w)= [ dwidwrdws §(w1+wr+w3—w)G(w1)G(w2)G(ws3),
Ok

where the G(w) ~ ﬁ are momentum space propagators. We
p

can u substitute O1 = w1 — w to get:
h(w) = h(0) — Kinetic term never renormalized.

@ Can use this to compute anomalous dimensions in O(N).”
"Gubser, Jepsen, Parikh, Trundy; arXiv:1703.04202
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Sign characters and SYK-like models

@ To define fermions, we need Grassmann variables as well as
sgn(t) characters; quadratic characters of Q, which square to
the identity. These generalize the ordinary sign function of the
reals needed for time ordered correlators of fermions.

o Considered p-adic versions of Klebanov-Tarnopolsky-Witten
models with fermions in O(N)3 flavor group (SYK-like):

1
Stee = [ de g (e sen(@)v ()

Sint _ /Q dt gwabcd}ab/c’,gba'bc’wa/b’c

P

Pairs of indices are contracted either with § or with a fixed
antisymmetric matrix €; and the sign character may be either
“odd" or “even.” (Differs from the real sign character.)
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In the limit of large N, with g>N3 fixed, the leading-order
Schwinger-Dyson equation is

G=F+0q(g’N3)GxG3«+F.

Solve in the IR to obtain universal limiting behavior:

G(e) = bR It (2N

where
1

m = _O'Qr(ﬂ—l/Z,sgn)r(Trl/Z,sgn)'

(I is the Gelfand-Graev Gamma function.) Scaling in the IR limit
is completely independent of the spectral parameter of the UV
theory! Universal Kitaev IR.

29/32



Dynamics of Edge Lengths
First attempt at bulk gravity: graph curvature as defined in

@ Y. Lin, L. Lu, and S.-T. Yau, Ricci curvature of graphs, Tohoku

Math. J. (2) 63 (2011), no. 4 605-627

(o)
Iy

Ricci without Riemann tensor in terms of transport distance
(Wasserstein distance of measures) between nearby balls: for
graphs probability distribution )y, (t) (small t)

d
1——JD(:;°)1‘ X = Xg

-1
Ux(t) = ‘Z;‘JX t X ~ Xp
X0
0 otherwise
D,, lapse function and d;(xo) = >, . a L

oo dxox Normalization factor
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Ricci curvature on a graph with edge lengths a,,

1 1 1 1 1 1
Kxyy = —— | — — — | + — - S
i Dxaxy (axy Z axx,-) Dy axy (axy Z a}/}/i)

1

@ For uniform tree of valence p+ 1, e.o.m. solved by config
with all edges of equal length a, = a and
Dy = dy(x) = (p +1)/a% we get:
p—1

Kxy = — b1

independent of scale a. Constant negative curvature on shell!

@ Linearizing the above action gives a massless mode
corresponding to small edge length fluctuations.
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Further work (in progress)

@ Precise pair of bulk/boundary theories; bulk interpretation of
p-adic O(N), SYK models, connection to p-adic string?

@ Reconstructing real AdS/CFT from p-adic through adelic
formulas

@ Holographic entanglement entropy, bulk geodesics agree with
R-T formula

@ Better connection to holographic codes, algebraic curves over
PY(Fp)

@ Higher dimensional cases, Bruhat-Tits buildings, Drinfeld
plane, symmetric spaces
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