Bootstrapping $\mathcal{N} \geqslant 2$ SCFTs

Madalena Lemos

String-Math 2017
 July 262017

Based on:
1312.5344 w/ C. Beem, P. Liendo, W. Peelaers, L. Rastelli and B. van Rees $1511.07449 \mathrm{w} / \mathrm{P}$. Liendo
$1702.05101 \mathrm{w} / \mathrm{M}$. Cornagliotto and V. Schomerus

Outline

(1) The (Super)conformal Bootstrap Program

Conformal bootstrap
Superconformal bootstrap
(2) A solvable subsector
(3) Constraining the space of $\mathcal{N}=2$ SCFTs
(4) $4 d \mathcal{N}=3$ SCFTs
(5) Summary and Outlook

Outline

(1) The (Super)conformal Bootstrap Program

Conformal bootstrap
Superconformal bootstrap
(2) A solvable subsector
(3) Constraining the space of $\mathcal{N}=2$ SCFTs
(4) $4 d \mathcal{N}=3$ SCFTs
(5) Summary and Outlook

The (Super)conformal Bootstrap Program

The (Super)conformal Bootstrap Program

What is the space of consistent (S)CFTs?

The (Super)conformal Bootstrap Program

What is the space of consistent (S)CFTs?
\rightarrow Maximally supersymmetric theories: well known list of theories

The (Super)conformal Bootstrap Program

What is the space of consistent (S)CFTs?
\rightarrow Maximally supersymmetric theories: well known list of theories
$\rightarrow \mathcal{N}=2$ theories: large known list of theories many lacking a Lagrangian description

The (Super)conformal Bootstrap Program

What is the space of consistent (S)CFTs?
\rightarrow Maximally supersymmetric theories: well known list of theories
$\rightarrow \mathcal{N}=3$ theories: not known to exist until García-Etxebarria and Regalado
$\rightarrow \mathcal{N}=2$ theories: large known list of theories many lacking a Lagrangian description

The (Super)conformal Bootstrap Program

What is the space of consistent (S)CFTs?
\rightarrow Maximally supersymmetric theories: well known list of theories
$\rightarrow \mathcal{N}=3$ theories: not known to exist until García-Etxebarria and Regalado
$\rightarrow \mathcal{N}=2$ theories: large known list of theories many lacking a Lagrangian description

Can we bootstrap specific theories?

The (Super)conformal Bootstrap Program

What is the space of consistent (S)CFTs?
\rightarrow Maximally supersymmetric theories: well known list of theories
$\rightarrow \mathcal{N}=3$ theories: not known to exist until García-Etxebarria and Regalado
$\rightarrow \mathcal{N}=2$ theories: large known list of theories many lacking a Lagrangian description

Can we bootstrap specific theories?
\rightarrow Particularly helpful if theory is uniquely fixed by a set of discrete data

Outline

(1) The (Super)conformal Bootstrap Program

Conformal bootstrap
Superconformal bootstrap
(2) A solvable subsector
(3) Constraining the space of $\mathcal{N}=2$ SCFTs
(4) $4 d \mathcal{N}=3$ SCFTs
(5) Summary and Outlook

Conformal Bootstrap

Conformal field theory defined by

Set of local operators and their correlation functions

Conformal Bootstrap

Conformal field theory defined by
Set of local operators and their correlation functions
CFT data
$\left\{\mathcal{O}_{\Delta, \ell, \ldots}(x)\right\}$ and

Conformal Bootstrap

Conformal field theory defined by
Set of local operators and their correlation functions
CFT data $\left\{\mathcal{O}_{\Delta, \ell, \ldots}(x)\right\}$ and
Operator Product Expansion
$\mathcal{O}_{1}(x) \mathcal{O}_{2}(0)=\sum_{k}$
$\lambda_{\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{k}}$
$\mathcal{O}_{k}(0)$

Conformal Bootstrap

Conformal field theory defined by
Set of local operators and their correlation functions
CFT data $\left\{\mathcal{O}_{\Delta, \ell, \ldots}(x)\right\}$ and

Operator Product Expansion
$\mathcal{O}_{1}(x) \mathcal{O}_{2}(0)=\sum_{k} \quad \lambda_{\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{k}} \quad \mathcal{O}_{k}(0)$
\rightarrow Finite radius of convergence

Conformal Bootstrap

Conformal field theory defined by
Set of local operators and their correlation functions
CFT data $\left\{\mathcal{O}_{\Delta, \ell, \ldots}(x)\right\}$ and

Operator Product Expansion
$\mathcal{O}_{1}(x) \mathcal{O}_{2}(0)=\sum_{\text {kprim. }} \lambda_{\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{k}} c\left(x, \partial_{x}\right) \mathcal{O}_{k}(0)$
\rightarrow Finite radius of convergence

Conformal Bootstrap

Conformal field theory defined by
Set of local operators and their correlation functions
CFT data $\left\{\mathcal{O}_{\Delta, \ell, \ldots}(x)\right\}$ and
Operator Product Expansion
$\mathcal{O}_{1}(x) \mathcal{O}_{2}(0)=\sum_{k p r i m} . \lambda_{\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{k}} c\left(x, \partial_{x}\right) \mathcal{O}_{k}(0)$
\rightarrow Finite radius of convergence
$\rightarrow n$-point function by recursive use of the OPE until $\langle\mathbb{1}\rangle=1$

Conformal Bootstrap

Conformal field theory defined by
Set of local operators and their correlation functions
CFT data
$\left\{\mathcal{O}_{\Delta, \ell, \ldots}(x)\right\}$ and $\left\{\lambda_{\mathcal{O}_{i} \mathcal{O}_{j} \mathcal{O}_{k}}\right\}$
Operator Product Expansion
$\mathcal{O}_{1}(x) \mathcal{O}_{2}(0)=\sum_{k p r i m} . \lambda_{\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{k}} c\left(x, \partial_{x}\right) \mathcal{O}_{k}(0)$
\rightarrow Finite radius of convergence
$\rightarrow n$-point function by recursive use of the OPE until $\langle\mathbb{1}\rangle=1$

Conformal Bootstrap

Conformal field theory defined by

Set of local operators and their correlation functions
CFT data
$\left\{\mathcal{O}_{\Delta, \ell, \ldots}(x)\right\}$ and $\left\{\lambda_{\mathcal{O}_{i} \mathcal{O}_{j} \mathcal{O}_{k}}\right\}$
Operator Product Expansion
$\mathcal{O}_{1}(x) \mathcal{O}_{2}(0)=\sum_{k p r i m .} \lambda_{\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{k}} c\left(x, \partial_{x}\right) \mathcal{O}_{k}(0)$
\rightarrow Finite radius of convergence
$\rightarrow n$-point function by recursive use of the OPE until $\langle\mathbb{1}\rangle=1$

CFT data strongly constrained

- Unitarity
- Associativity of the operator product algebra

Conformal Bootstrap

Crossing Symmetry
$\left\langle\left(\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right)\right) \mathcal{O}_{3}\left(x_{3}\right) \mathcal{O}_{4}\left(x_{4}\right)\right\rangle=$

Conformal Bootstrap

Crossing Symmetry
$\left\langle\mathcal{O}_{1}\left(x_{1}\right)\left(\mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{3}\left(x_{3}\right)\right) \mathcal{O}_{4}\left(x_{4}\right)\right\rangle=$

Outline

(1) The (Super)conformal Bootstrap Program

Conformal bootstrap
Superconformal bootstrap
(2) A solvable subsector
(3) Constraining the space of $\mathcal{N}=2$ SCFTs
(4) $4 d \mathcal{N}=3$ SCFTs
(5) Summary and Outlook

The Superconformal Bootstrap

- Various conformal families related by action of supercharges

The Superconformal Bootstrap

- Various conformal families related by action of supercharges
- Finite re-organization of an infinite amount of data

The Superconformal Bootstrap

- Various conformal families related by action of supercharges
- Finite re-organization of an infinite amount of data

Q: Is there a solvable truncation of the crossing equations?

The Superconformal Bootstrap

- Various conformal families related by action of supercharges
- Finite re-organization of an infinite amount of data

Q: Is there a solvable truncation of the crossing equations?
\rightarrow Yes, for $4 d \mathcal{N} \geqslant 2$ [Beem ML Liendo Peelaers Rastelli van Rees]

The Superconformal Bootstrap

- Various conformal families related by action of supercharges
- Finite re-organization of an infinite amount of data

Q: Is there a solvable truncation of the crossing equations?
\rightarrow Yes, for $4 d \mathcal{N} \geqslant 2$ [Beem ML Liendo Peelaers Rastelli van Rees] $6 d \mathcal{N}=(2,0)$ and $2 d \mathcal{N}=(0,4)$ [Beem Rastelli van Rees]

- Step 1: Solve this subsector
- (Step 2: Full blown numerics for the rest)

Outline

(1) The (Super)conformal Bootstrap Program Conformal bootstrap
Superconformal bootstrap
(2) A solvable subsector
(3) Constraining the space of $\mathcal{N}=2$ SCFTs
(4) $4 d \mathcal{N}=3$ SCFTs
(5) Summary and Outlook

Chiral algebra

Organize operators in representations of superconformal algebra
$\left\{\mathcal{O}_{\Delta,\left(j_{1}, j_{2}\right),}\right\}$

Chiral algebra

Organize operators in representations of superconformal algebra
$\{\mathcal{O}_{\Delta,\left(j_{1}, j_{2}\right),} \underbrace{R}_{S U(2)_{R}} \underbrace{r}_{U(1)_{r}}, f\}$

Chiral algebra

Organize operators in representations of superconformal algebra
$\{\mathcal{O}_{\Delta,\left(j_{1}, j_{2}\right),} \underbrace{R}_{S U(2)_{R}} \underbrace{r}_{U(1)_{r}}, f\}$
Claim
\rightarrow Pick a plane $\mathbb{R}^{2} \in \mathbb{R}^{4},(z, \bar{z}) \in \mathbb{R}^{2}$

Chiral algebra

Organize operators in representations of superconformal algebra
$\{\mathcal{O}_{\Delta,\left(j_{1}, j_{2}\right),} \underbrace{R}_{S U(2)_{R}} \underbrace{r}_{U(1)_{r}}, f\}$
Claim
\rightarrow Pick a plane $\mathbb{R}^{2} \in \mathbb{R}^{4},(z, \bar{z}) \in \mathbb{R}^{2}$
\rightarrow Restrict to operators with $\Delta=2 R+j_{1}+j_{2}$

Chiral algebra

Organize operators in representations of superconformal algebra
$\{\mathcal{O}_{\Delta,\left(j_{1}, j_{2}\right),} \underbrace{R}_{S U(2)_{R}} \underbrace{r}_{U(1)_{r}}, f\}$
Claim
\rightarrow Pick a plane $\mathbb{R}^{2} \in \mathbb{R}^{4},(z, \bar{z}) \in \mathbb{R}^{2}$
\rightarrow Restrict to operators with $\Delta=2 R+j_{1}+j_{2}$

$$
\left\langle\mathcal{O}_{1}^{I_{1}}\left(z_{1}, \bar{z}_{1}\right) \ldots \mathcal{O}_{n}^{I_{n}}\left(z_{n}, \bar{z}_{n}\right)\right\rangle
$$

Chiral algebra

Organize operators in representations of superconformal algebra
$\{\mathcal{O}_{\Delta,\left(j_{1}, j_{2}\right)}, \underbrace{R}_{S U(2)_{R}} \underbrace{r}_{U(1)_{r}}, f\}$
Claim
\rightarrow Pick a plane $\mathbb{R}^{2} \in \mathbb{R}^{4},(z, \bar{z}) \in \mathbb{R}^{2}$
\rightarrow Restrict to operators with $\Delta=2 R+j_{1}+j_{2}$

$$
u_{l_{1}}\left(\bar{z}_{1}\right) \ldots u_{I_{n}}\left(\bar{z}_{n}\right)\left\langle\mathcal{O}_{1}^{I_{1}}\left(z_{1}, \bar{z}_{1}\right) \ldots \mathcal{O}_{n}^{I_{n}}\left(z_{n}, \bar{z}_{n}\right)\right\rangle
$$

Chiral algebra

Organize operators in representations of superconformal algebra
$\{\mathcal{O}_{\Delta,\left(j_{1}, j_{2}\right)}, \underbrace{R}_{S U(2)_{R}} \underbrace{r}_{U(1)_{r}}, f\}$
Claim
\rightarrow Pick a plane $\mathbb{R}^{2} \in \mathbb{R}^{4},(z, \bar{z}) \in \mathbb{R}^{2}$
\rightarrow Restrict to operators with $\Delta=2 R+j_{1}+j_{2}$

$$
u_{l_{1}}\left(\bar{z}_{1}\right) \ldots u_{I_{n}}\left(\bar{z}_{n}\right)\left\langle\mathcal{O}_{1}^{I_{1}}\left(z_{1}, \bar{z}_{1}\right) \ldots \mathcal{O}_{n}^{I_{n}}\left(z_{n}, \bar{z}_{n}\right)\right\rangle=f\left(z_{i}\right)
$$

\rightarrow Meromorphic!

Chiral algebra

Why?

- Subsector $=$ Cohomology of nilpotent \mathbb{Q}

Chiral algebra

Why?

- Subsector $=$ Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q}+\mathcal{S}$

Chiral algebra

Why?

- Subsector $=$ Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q}+\mathcal{S}$
\rightarrow Cohomology at the origin \Rightarrow non-empty classes

Chiral algebra

Why?

- Subsector $=$ Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q}+\mathcal{S}$
\rightarrow Cohomology at the origin \Rightarrow non-empty classes $\Delta=2 R+j_{1}+j_{2}$

Chiral algebra

Why?

- Subsector $=$ Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q}+\mathcal{S}$
\rightarrow Cohomology at the origin \Rightarrow non-empty classes $\Delta=2 R+j_{1}+j_{2}$
- On plane

Chiral algebra

Why?

- Subsector $=$ Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q}+\mathcal{S}$
\rightarrow Cohomology at the origin \Rightarrow non-empty classes $\Delta=2 R+j_{1}+j_{2}$
- On plane

Chiral algebra

Why?

- Subsector $=$ Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q}+\mathcal{S}$
\rightarrow Cohomology at the origin \Rightarrow non-empty classes $\Delta=2 R+j_{1}+j_{2}$
- On plane

Chiral algebra

Why?

- Subsector $=$ Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q}+\mathcal{S}$
\rightarrow Cohomology at the origin \Rightarrow non-empty classes $\Delta=2 R+j_{1}+j_{2}$
- On plane

\rightarrow twisted translations $u_{l}(\bar{z})$

Chiral algebra

Why?

- Subsector $=$ Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q}+\mathcal{S}$
\rightarrow Cohomology at the origin \Rightarrow non-empty classes $\Delta=2 R+j_{1}+j_{2}$
- On plane

\rightarrow twisted translations $u_{l}(\bar{z})$
\hookrightarrow diagonal subalgebra $\overline{\mathfrak{S H}}_{2} \times \mathfrak{s u}(2)_{R}$ is \mathbb{Q} exact

Chiral algebra

Why?

- Subsector $=$ Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q}+\mathcal{S}$
\rightarrow Cohomology at the origin \Rightarrow non-empty classes
$\Delta=2 R+j_{1}+j_{2}$
- On plane

\rightarrow twisted translations $u_{l}(\bar{z})$
\hookrightarrow diagonal subalgebra $\overline{\mathfrak{s l}}_{2} \times \mathfrak{s u}(2)_{R}$ is \mathbb{Q} exact
\hookrightarrow anti-holomorphic dependence drops out

$4 d \mathcal{N} \geqslant 2$ SCFT \longrightarrow VOA

$4 d \mathcal{N} \geqslant 2$ SCFT \longrightarrow VOA

\rightarrow Cohomology classes \Rightarrow Vertex operators

$4 d \mathcal{N} \geqslant 2$ SCFT \longrightarrow VOA

\rightarrow Cohomology classes \Rightarrow Vertex operators
\rightarrow conformal weight $h=R+j_{1}+j_{2} \geqslant 0$

$4 d \mathcal{N} \geqslant 2$ SCFT \longrightarrow VOA

\rightarrow Cohomology classes \Rightarrow Vertex operators
\rightarrow conformal weight $h=R+j_{1}+j_{2} \geqslant 0$
\rightarrow Each $\mathcal{N}=2$ multiplet contributes at most with one $\mathfrak{s l}_{2}$ primary

$4 d \mathcal{N} \geqslant 2$ SCFT \longrightarrow VOA

\rightarrow Cohomology classes \Rightarrow Vertex operators
\rightarrow conformal weight $h=R+j_{1}+j_{2} \geqslant 0$
\rightarrow Each $\mathcal{N}=2$ multiplet contributes at most with one $\mathfrak{s l}_{2}$ primary

- Very specific non-unitary VOA constrained by unitarity of 4d theory

$4 d \mathcal{N} \geqslant 2$ SCFT \longrightarrow VOA

\rightarrow Cohomology classes \Rightarrow Vertex operators
\rightarrow conformal weight $h=R+j_{1}+j_{2} \geqslant 0$
\rightarrow Each $\mathcal{N}=2$ multiplet contributes at most with one $\mathfrak{s l}_{2}$ primary

- Very specific non-unitary VOA constrained by unitarity of 4d theory
\rightarrow some operators acquire negative norms

$4 d \mathcal{N} \geqslant 2$ SCFT \longrightarrow VOA

\rightarrow Cohomology classes \Rightarrow Vertex operators
\rightarrow conformal weight $h=R+j_{1}+j_{2} \geqslant 0$
\rightarrow Each $\mathcal{N}=2$ multiplet contributes at most with one $\mathfrak{s l}_{2}$ primary

- Very specific non-unitary VOA constrained by unitarity of 4d theory
\rightarrow some operators acquire negative norms
- Obtain VOA from $4 d \mathcal{N}=2$ SCFT

$4 d \mathcal{N} \geqslant 2$ SCFT \longrightarrow VOA

\rightarrow Cohomology classes \Rightarrow Vertex operators
\rightarrow conformal weight $h=R+j_{1}+j_{2} \geqslant 0$
\rightarrow Each $\mathcal{N}=2$ multiplet contributes at most with one $\mathfrak{s l}_{2}$ primary

- Very specific non-unitary VOA constrained by unitarity of 4d theory
\rightarrow some operators acquire negative norms
- Obtain VOA from $4 d \mathcal{N}=2$ SCFT
- Given a VOA does there exist a $4 d$ SCFT?

$4 d \mathcal{N} \geqslant 2$ SCFT \longrightarrow VOA

\rightarrow Cohomology classes \Rightarrow Vertex operators
\rightarrow conformal weight $h=R+j_{1}+j_{2} \geqslant 0$
\rightarrow Each $\mathcal{N}=2$ multiplet contributes at most with one $\mathfrak{s l}_{2}$ primary

- Very specific non-unitary VOA constrained by unitarity of 4d theory
\rightarrow some operators acquire negative norms
- Obtain VOA from $4 d \mathcal{N}=2$ SCFT
- Given a VOA does there exist a $4 d$ SCFT?
\hookrightarrow give an example of what can go wrong

$4 d \mathcal{N} \geqslant 2$ SCFT \longrightarrow VOA

\rightarrow Cohomology classes \Rightarrow Vertex operators
\rightarrow conformal weight $h=R+j_{1}+j_{2} \geqslant 0$
\rightarrow Each $\mathcal{N}=2$ multiplet contributes at most with one $\mathfrak{s l}_{2}$ primary

- Very specific non-unitary VOA constrained by unitarity of 4d theory
\rightarrow some operators acquire negative norms
- Obtain VOA from $4 d \mathcal{N}=2$ SCFT
- Given a VOA does there exist a $4 d$ SCFT?
\hookrightarrow give an example of what can go wrong
- How much information can we recover from the VOA?

$4 d \mathcal{N} \geqslant 2$ SCFT \longrightarrow VOA

Which operators are in the cohomology?
\rightarrow Stress tensor $T_{\mu \nu}$

$4 d \mathcal{N} \geqslant 2$ SCFT \longrightarrow VOA

Which operators are in the cohomology?
\rightarrow Stress tensor $T_{\mu \nu} \rightsquigarrow$ superdescendant

$4 d \mathcal{N} \geqslant 2$ SCFT \longrightarrow VOA

Which operators are in the cohomology?
\rightarrow Stress tensor $T_{\mu \nu} \rightsquigarrow$ superdescendant
\rightarrow Stress tensor supermultiplet

$4 d \mathcal{N} \geqslant 2$ SCFT \longrightarrow VOA

Which operators are in the cohomology?
\rightarrow Stress tensor $T_{\mu \nu} \rightsquigarrow$ superdescendant
\rightarrow Stress tensor supermultiplet $\Rightarrow 2 d$ stress tensor

$4 d \mathcal{N} \geqslant 2$ SCFT \longrightarrow VOA

Which operators are in the cohomology?
\rightarrow Stress tensor $T_{\mu \nu} \rightsquigarrow$ superdescendant
\rightarrow Stress tensor supermultiplet $\Rightarrow 2 d$ stress tensor

$$
T(z) T(0) \sim-12 \frac{c_{4 d} / 2}{z^{4}}+2 \frac{T(0)}{z^{2}}+\frac{\partial T(0)}{z}+\ldots,
$$

$4 d \mathcal{N} \geqslant 2$ SCFT \longrightarrow VOA

Which operators are in the cohomology?
\rightarrow Stress tensor $T_{\mu \nu} \rightsquigarrow$ superdescendant
\rightarrow Stress tensor supermultiplet $\Rightarrow 2 d$ stress tensor

$$
T(z) T(0) \sim-12 \frac{c_{4 d} / 2}{z^{4}}+2 \frac{T(0)}{z^{2}}+\frac{\partial T(0)}{z}+\ldots,
$$

\hookrightarrow Global $\mathfrak{s l}_{2}$ enhances to Virasoro

$4 d \mathcal{N} \geqslant 2$ SCFT \longrightarrow VOA

Which operators are in the cohomology?
\rightarrow Stress tensor $T_{\mu \nu} \rightsquigarrow$ superdescendant
\rightarrow Stress tensor supermultiplet $\Rightarrow 2 d$ stress tensor

$$
T(z) T(0) \sim-12 \frac{c_{4 d} / 2}{z^{4}}+2 \frac{T(0)}{z^{2}}+\frac{\partial T(0)}{z}+\ldots
$$

\hookrightarrow Global $\mathfrak{s l}_{2}$ enhances to Virasoro
$\hookrightarrow c_{2 d}=-12 c_{4 d}$

$4 d \mathcal{N} \geqslant 2$ SCFT \longrightarrow VOA

Which operators are in the cohomology?
\rightarrow Stress tensor $T_{\mu \nu} \rightsquigarrow$ superdescendant
\rightarrow Stress tensor supermultiplet $\Rightarrow 2 d$ stress tensor

$$
T(z) T(0) \sim-12 \frac{c_{4 d} / 2}{z^{4}}+2 \frac{T(0)}{z^{2}}+\frac{\partial T(0)}{z}+\ldots,
$$

\hookrightarrow Global $\mathfrak{s l}_{2}$ enhances to Virasoro
$\hookrightarrow c_{2 d}=-12 c_{4 d}$
\hookrightarrow Virasoro representations seem to mix different types of $4 d$ multiplets

$4 d \mathcal{N} \geqslant 2$ SCFT \longrightarrow VOA

Which operators are in the cohomology?
\rightarrow Flavor symmetries current multiplet

$4 d \mathcal{N} \geqslant 2$ SCFT \longrightarrow VOA

Which operators are in the cohomology?
\rightarrow Flavor symmetries current multiplet
\hookrightarrow Affine Kac Moody current algebra

$$
J^{a}(z) J^{b}(0) \sim-\frac{k_{4 d} / 2 \delta^{a b}}{z^{2}}+i f^{a b c} \frac{J^{c}(0)}{z}+\ldots,
$$

$4 d \mathcal{N} \geqslant 2$ SCFT \longrightarrow VOA

Which operators are in the cohomology?
\rightarrow Flavor symmetries current multiplet
\hookrightarrow Affine Kac Moody current algebra

$$
J^{a}(z) J^{b}(0) \sim-\frac{k_{4 d} / 2 \delta^{a b}}{z^{2}}+i f^{a b c} \frac{J^{c}(0)}{z}+\ldots,
$$

$\hookrightarrow k_{2 d}=-\frac{k_{4 d}}{2}$

$4 d \mathcal{N} \geqslant 2$ SCFT \longrightarrow VOA

Which operators are in the cohomology?
\rightarrow Flavor symmetries current multiplet
\hookrightarrow Affine Kac Moody current algebra

$$
J^{a}(z) J^{b}(0) \sim-\frac{k_{4 d} / 2 \delta^{a b}}{z^{2}}+i f^{a b c} \frac{J^{c}(0)}{z}+\ldots,
$$

$\hookrightarrow k_{2 d}=-\frac{k_{4 d}}{2}$

What is the space of consistent SCFTs?

4d $\mathcal{N}=2$ SCFTs with a flavor symmetry
$\langle T T T T\rangle, \quad\left\langle J^{a} J^{b} J^{c} J^{d}\right\rangle,\left\langle T T J^{a} J^{b}\right\rangle$

What is the space of consistent SCFTs?

4d $\mathcal{N}=2$ SCFTs with a flavor symmetry
$\langle T T T T\rangle,\left\langle J^{a} J^{b} J^{c} J^{d}\right\rangle,\left\langle T T J^{a} J^{b}\right\rangle$ functions of $c_{2 d}$ and $k_{2 d}$

What is the space of consistent SCFTs?

4d $\mathcal{N}=2$ SCFTs with a flavor symmetry
$\langle T T T T\rangle,\left\langle J^{a} J^{b} J^{c} J^{d}\right\rangle,\left\langle T T J^{a} J^{b}\right\rangle$ functions of $c_{2 d}$ and $k_{2 d}$

- Block decomposition:

What is the space of consistent SCFTs?

4d $\mathcal{N}=2$ SCFTs with a flavor symmetry
$\langle T T T T\rangle,\left\langle J^{a} J^{b} J^{c} J^{d}\right\rangle,\left\langle T T J^{a} J^{b}\right\rangle$ functions of $c_{2 d}$ and $k_{2 d}$

- Block decomposition:

$$
\rightarrow \lambda_{\mathcal{O}_{2 d}}^{2}
$$

What is the space of consistent SCFTs?

4d $\mathcal{N}=2$ SCFTs with a flavor symmetry
$\langle T T T T\rangle,\left\langle J^{a} J^{b} J^{c} J^{d}\right\rangle,\left\langle T T J^{a} J^{b}\right\rangle$ functions of $c_{2 d}$ and $k_{2 d}$

- Block decomposition:

$\rightarrow \lambda_{\mathcal{O}_{2 d}}^{2} \rightsquigarrow \lambda_{\mathcal{O}_{4 d}}^{2}$
Interpret as four-dimensional quantities
(with some assumptions: interacting theory, unique stress tensor)

What is the space of consistent SCFTs?

4d $\mathcal{N}=2$ SCFTs with a flavor symmetry
$\langle T T T T\rangle,\left\langle J^{a} J^{b} J^{c} J^{d}\right\rangle,\left\langle T T J^{a} J^{b}\right\rangle$ functions of $c_{2 d}$ and $k_{2 d}$

- Block decomposition:

$$
\begin{aligned}
& \sum_{\mathcal{O}_{2 d}} \lambda_{\mathcal{O}_{2 d}}^{2} \\
\rightarrow & \lambda_{\mathcal{O}_{2 d}}^{2} \rightsquigarrow \lambda_{\mathcal{O}_{4 d}}^{2} \underbrace{\geqslant}_{4 d \text { unitarity }} 0
\end{aligned}
$$

Interpret as four-dimensional quantities
(with some assumptions: interacting theory, unique stress tensor)

What is the space of consistent SCFTs?

4d $\mathcal{N}=2$ SCFTs with a flavor symmetry
$\langle T T T T\rangle,\left\langle J^{a} J^{b} J^{c} J^{d}\right\rangle,\left\langle T T J^{a} J^{b}\right\rangle$ functions of $c_{2 d}$ and $k_{2 d}$

- Block decomposition:

$\rightarrow \lambda_{\mathcal{O}_{2 d}}^{2} \rightsquigarrow \lambda_{\mathcal{O}_{4 d}}^{2} \underbrace{\geqslant}_{4 d \text { unitarity }} 0 \Rightarrow$ New unitarity bounds
Interpret as four-dimensional quantities
(with some assumptions: interacting theory, unique stress tensor)

Outline

(1) The (Super)conformal Bootstrap Program Conformal bootstrap
Superconformal bootstrap
(2) A solvable subsector
(3) Constraining the space of $\mathcal{N}=2$ SCFTs
(4) $4 d \mathcal{N}=3$ SCFTs
(5) Summary and Outlook

$4 d \mathcal{N}=2$ SCFTs with E_{6} flavor symmetry

[Beem ML Liendo Peelaers Rastelli van Rees, ML Liendo]

Outline

(1) The (Super)conformal Bootstrap Program Conformal bootstrap
Superconformal bootstrap
(2) A solvable subsector
(3) Constraining the space of $\mathcal{N}=2$ SCFTs
(4) $4 d \mathcal{N}=3$ SCFTs
(5) Summary and Outlook

$\mathcal{N}=3$ Chiral algebra

- $4 d \mathcal{N} \geqslant 3$: some of the extra supercharges commute with \mathbb{Q}

$\mathcal{N}=3$ Chiral algebra

- $4 d \mathcal{N} \geqslant 3$: some of the extra supercharges commute with \mathbb{Q}

$$
\hookrightarrow 4 d \mathcal{N}=4 \Rightarrow 2 d \text { "small" } \mathcal{N}=4 \text { chiral algebra }
$$

$\mathcal{N}=3$ Chiral algebra

- $4 d \mathcal{N} \geqslant 3$: some of the extra supercharges commute with \mathbb{Q}
$\hookrightarrow 4 d \mathcal{N}=4 \Rightarrow 2 d$ "small" $\mathcal{N}=4$ chiral algebra
$\hookrightarrow 4 d \mathcal{N}=3 \Rightarrow 2 d \mathcal{N}=2$ chiral algebra [Nishinaka, Tachikawa]

$\mathcal{N}=3$ Chiral algebra

- $4 d \mathcal{N} \geqslant 3$: some of the extra supercharges commute with \mathbb{Q}
$\hookrightarrow 4 d \mathcal{N}=4 \Rightarrow 2 d$ "small" $\mathcal{N}=4$ chiral algebra $\hookrightarrow 4 d \mathcal{N}=3 \Rightarrow 2 d \mathcal{N}=2$ chiral algebra [Nishinaka, Tachikawa]
- $2 d$ stress tensor promoted to supermultiplet \mathcal{J}

$\mathcal{N}=3$ Chiral algebra

- $4 d \mathcal{N} \geqslant 3$: some of the extra supercharges commute with \mathbb{Q}
$\hookrightarrow 4 d \mathcal{N}=4 \Rightarrow 2 d$ "small" $\mathcal{N}=4$ chiral algebra
$\hookrightarrow 4 d \mathcal{N}=3 \Rightarrow 2 d \mathcal{N}=2$ chiral algebra [Nishinaka, Tachikawa]
- $2 d$ stress tensor promoted to supermultiplet \mathcal{J}

2d $\mathcal{N}=2$ Stress tensor \mathcal{J}

$\mathcal{N}=3$ Chiral algebra

- $4 d \mathcal{N} \geqslant 3$: some of the extra supercharges commute with \mathbb{Q}
$\hookrightarrow 4 d \mathcal{N}=4 \Rightarrow 2 d$ "small" $\mathcal{N}=4$ chiral algebra
$\hookrightarrow 4 d \mathcal{N}=3 \Rightarrow 2 d \mathcal{N}=2$ chiral algebra [Nishinaka, Tachikawa]
- $2 d$ stress tensor promoted to supermultiplet \mathcal{J}

2d $\mathcal{N}=2$ Stress tensor \mathcal{J}
\rightarrow A trivial statement in $2 d$:
$\langle\mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J}\rangle$ is fixed in terms of $c_{2 d}$

$\mathcal{N}=3$ Chiral algebra

- $4 d \mathcal{N} \geqslant 3$: some of the extra supercharges commute with \mathbb{Q}
$\hookrightarrow 4 d \mathcal{N}=4 \Rightarrow 2 d$ "small" $\mathcal{N}=4$ chiral algebra
$\hookrightarrow 4 d \mathcal{N}=3 \Rightarrow 2 d \mathcal{N}=2$ chiral algebra [Nishinaka, Tachikawa]
- $2 d$ stress tensor promoted to supermultiplet \mathcal{J}

2d $\mathcal{N}=2$ Stress tensor \mathcal{J}
\rightarrow A trivial statement in $2 d$:
$\langle\mathcal{J} \mathcal{J} \mathcal{J}\rangle$ is fixed in terms of $c_{2 d}$
\rightarrow Present in any local $\mathcal{N}=3$ SCFT

Space of $\mathcal{N}=3$ SCFTs

$2 d \mathcal{N}=2$ Stress tensor \mathcal{J}
$\langle\mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J}\rangle$ is fixed in terms of $c_{2 d} \Rightarrow \lambda_{\mathcal{O}_{2 d}}^{2} \rightsquigarrow \lambda_{\mathcal{O}_{4 d}}^{2}$

Space of $\mathcal{N}=3$ SCFTs

2d $\mathcal{N}=2$ Stress tensor \mathcal{J}
$\langle\mathcal{J} J \mathcal{J} J\rangle$ is fixed in terms of $c_{2 d} \Rightarrow \lambda_{\mathcal{O}_{2 d}}^{2} \rightsquigarrow \lambda_{\mathcal{O}_{4 d}}^{2}$

$$
c_{4 d} \geqslant \frac{13}{24} \text { [Cornagliotto, ML, Schomerus] }
$$

\hookrightarrow Not saturated by any known SCFT

Space of $\mathcal{N}=3$ SCFTs

2d $\mathcal{N}=2$ Stress tensor \mathcal{J}
$\langle\mathcal{J} J \mathcal{J} J\rangle$ is fixed in terms of $c_{2 d} \Rightarrow \lambda_{\mathcal{O}_{2 d}}^{2} \rightsquigarrow \lambda_{\mathcal{O}_{4 d}}^{2}$

$$
c_{4 d} \geqslant \frac{13}{24} \text { [Cornagliotto, ML, Schomerus] }
$$

\hookrightarrow Not saturated by any known SCFT

Space of $\mathcal{N}=3$ SCFTs

2d $\mathcal{N}=2$ Stress tensor \mathcal{J}
$\langle\mathcal{J J J J}\rangle$ is fixed in terms of $c_{2 d} \Rightarrow \lambda_{\mathcal{O}_{2 d}}^{2} \rightsquigarrow \lambda_{\mathcal{O}_{4 d}}^{2}$

$$
c_{4 d} \geqslant \frac{13}{24} \quad \text { [Cornagliotto, ML, Schomerus] }
$$

\hookrightarrow Not saturated by any known SCFT
\hookrightarrow Similar bounds in $\mathcal{N}=4$ and $\mathcal{N}=2$ saturated by known SCFTs [Beem, Rastelli, van Rees] [Liendo, Ramirez, Seo]

Space of $\mathcal{N}=3$ SCFTs

2d $\mathcal{N}=2$ Stress tensor \mathcal{J}
$\langle\mathcal{J} \mathcal{J} J\rangle$ is fixed in terms of $c_{2 d} \Rightarrow \lambda_{\mathcal{O}_{2 d}}^{2} \rightsquigarrow \lambda_{\mathcal{O}_{4 d}}^{2}$

$$
c_{4 d} \geqslant \frac{13}{24} \quad[\text { Cornagliotto, ML, Schomerus] }
$$

\hookrightarrow Not saturated by any known SCFT
\hookrightarrow Similar bounds in $\mathcal{N}=4$ and $\mathcal{N}=2$ saturated by known SCFTs [Beem, Rastelli, van Rees] [Liendo, Ramirez, Seo]
$\rightarrow C_{4 d}=\frac{13}{24} \Rightarrow$ reconstruct $4 d$ operators appearing in $\mathcal{J} \mathcal{J}$

Space of $\mathcal{N}=3$ SCFTs

2d $\mathcal{N}=2$ Stress tensor \mathcal{J}
$\langle\mathcal{J} J \mathcal{J} J\rangle$ is fixed in terms of $c_{2 d} \Rightarrow \lambda_{\mathcal{O}_{2 d}}^{2} \rightsquigarrow \lambda_{\mathcal{O}_{4 d}}^{2}$

$$
c_{4 d} \geqslant \frac{13}{24} \quad[\text { Cornagliotto, ML, Schomerus] }
$$

\hookrightarrow Not saturated by any known SCFT
\hookrightarrow Similar bounds in $\mathcal{N}=4$ and $\mathcal{N}=2$ saturated by known SCFTs [Beem, Rastelli, van Rees] [Liendo, Ramirez, Seo]
$\rightarrow c_{4 d}=\frac{13}{24} \Rightarrow$ reconstruct $4 d$ operators appearing in $\mathcal{J} \mathcal{J}$
\rightarrow Signs of norms inconsistent with an interacting 4d SCFT existing

Space of $\mathcal{N}=3$ SCFTs

2d $\mathcal{N}=2$ Stress tensor \mathcal{J}
$\langle\mathcal{J} J \mathcal{J} J\rangle$ is fixed in terms of $c_{2 d} \Rightarrow \lambda_{\mathcal{O}_{2 d}}^{2} \rightsquigarrow \lambda_{\mathcal{O}_{4 d}}^{2}$

$$
c_{4 d}>\frac{13}{24} \quad[\text { Cornagliotto, ML, Schomerus] }
$$

\hookrightarrow Not saturated by any known SCFT
\hookrightarrow Similar bounds in $\mathcal{N}=4$ and $\mathcal{N}=2$ saturated by known SCFTs [Beem, Rastelli, van Rees] [Liendo, Ramirez, Seo]
$\rightarrow c_{4 d}=\frac{13}{24} \Rightarrow$ reconstruct $4 d$ operators appearing in $\mathcal{J} \mathcal{J}$
\rightarrow Signs of norms inconsistent with an interacting 4d SCFT existing

Outline

(1) The (Super)conformal Bootstrap Program Conformal bootstrap
Superconformal bootstrap
(2) A solvable subsector
(3) Constraining the space of $\mathcal{N}=2$ SCFTs
(4) $4 d \mathcal{N}=3$ SCFTs
(5) Summary and Outlook

Summary and Outlook

New constraints on the space of allowed $\mathcal{N}=2,3$ SCFTs

Summary and Outlook

New constraints on the space of allowed $\mathcal{N}=2,3$ SCFTs
\rightarrow No "minimal" $\mathcal{N}=3$ SCFT with $c=\frac{13}{24}$

Summary and Outlook

New constraints on the space of allowed $\mathcal{N}=2,3$
SCFTs
\rightarrow No "minimal" $\mathcal{N}=3$ SCFT with $c=\frac{13}{24}$
\hookrightarrow can we improve on this bound analytically? What are the conditions for a VOA to correspond to a 4d SCFT?

Summary and Outlook

New constraints on the space of allowed $\mathcal{N}=2,3$
SCFTs
\rightarrow No "minimal" $\mathcal{N}=3$ SCFT with $c=\frac{13}{24}$
\hookrightarrow can we improve on this bound analytically?
What are the conditions for a VOA to correspond to a 4d SCFT?
\rightarrow Can the numerical bootstrap complement these?

Summary and Outlook

New constraints on the space of allowed $\mathcal{N}=2,3$ SCFTs

$$
\rightarrow \text { No "minimal" } \mathcal{N}=3 \text { SCFT with } c=\frac{13}{24}
$$

\hookrightarrow can we improve on this bound analytically?
What are the conditions for a VOA to correspond to a 4d SCFT?
\rightarrow Can the numerical bootstrap complement these?
\rightarrow Is $c_{4 d} / k_{4 d} \geqslant \ldots$?

Summary and Outlook

New constraint on the space of allowed $\mathcal{N}=2,3$ SCFTs
\rightarrow No "minimal" $\mathcal{N}=3$ SCFT with $c=\frac{13}{24}$
\hookrightarrow can we improve on this bound analytically?
What are the conditions for a VOA to correspond to a 4d SCFT?
\rightarrow Can the numerical bootstrap complement these?
\rightarrow Is $c_{4 d} / k_{4 d} \geqslant \ldots$?

Numerically solving theories?

- This mixed correlator seems like a good starting point

Thank you!

Backup slides

Outline

Numerical conformal Bootstrap review
 Chiral algebra
 $4 d \mathcal{N}=3$ SCFTs Solving $\mathcal{N}=3$ SCFTs?

Conformal Bootstrap

\rightarrow Solve crossing equations for all four-point functions

Conformal Bootstrap

\rightarrow Solve crossing equations for all four-point functions
[Rattazzi Rychkov Tonni Vichi]

- Solving \Rightarrow constraining

Conformal Bootstrap

\rightarrow Solve crossing equations for all four-point functions
[Rattazzi Rychkov Tonni Vichi]

- Solving \Rightarrow constraining
\rightarrow Guess for the spectrum

Conformal Bootstrap

\rightarrow Solve crossing equations for all four-point functions
[Rattazzi Rychkov Tonni Vichi]

- Solving \Rightarrow constraining
\rightarrow Guess for the spectrum
\hookrightarrow there's a large gap in the spectrum

Conformal Bootstrap

\rightarrow Solve crossing equations for all four-point functions
[Rattazzi Rychkov Tonni Vichi]

- Solving \Rightarrow constraining
\rightarrow Guess for the spectrum
\hookrightarrow there's a large gap in the spectrum
\rightarrow Can it ever define a consistent CFT?

Conformal Bootstrap

\rightarrow Solve crossing equations for all four-point functions
[Rattazzi Rychkov Tonni Vichi]

- Solving \Rightarrow constraining
\rightarrow Guess for the spectrum
\hookrightarrow there's a large gap in the spectrum
\rightarrow Can it ever define a consistent CFT?
Sum rule: identical scalars ϕ

Conformal Bootstrap

\rightarrow Solve crossing equations for all four-point functions
[Rattazzi Rychkov Tonni Vichi]

- Solving \Rightarrow constraining
\rightarrow Guess for the spectrum
\hookrightarrow there's a large gap in the spectrum
\rightarrow Can it ever define a consistent CFT?
Sum rule: identical scalars ϕ
\rightarrow Identity operator $\lambda_{\mathcal{O O} \mathbb{1}}=1$

$$
1=\sum_{\substack{\mathcal{O}_{\Delta \ell} \neq \mathbb{1} \\ \mathcal{O} \in \phi \phi}} \lambda_{\phi \phi \mathcal{O}}^{2} \underbrace{\frac{u^{\Delta_{\phi}} g_{\Delta, \ell}(v, u)-v^{\Delta_{\phi}} g_{\Delta, \ell}(u, v)}{v^{\Delta_{\phi}}-u^{\Delta_{\phi}}}}_{F_{\Delta, \ell}}
$$

Conformal Bootstrap

Sum rule

$$
1=\sum_{\substack{\mathcal{O}_{\Delta \ell} \neq \mathbb{1} \\ \mathcal{O} \in \phi \phi}} \lambda_{\phi \phi \mathcal{O}}^{2} F_{\Delta, \ell}
$$

Conformal Bootstrap

Sum rule

$$
1=\sum_{\substack{\mathcal{O}_{\Delta \in} \neq \mathbb{1} \\ \mathcal{O} \in \phi \phi}} \lambda_{\phi \phi \mathcal{O}}^{2} F_{\Delta, \ell}
$$

- Find Functional Ψ such that

$$
\begin{aligned}
& \hookrightarrow \psi \cdot 1<0(\mathbb{1}) \\
& \hookrightarrow \psi \cdot F_{\Delta, \ell}(u, v) \geq 0 \text { for all }\{\Delta, \ell\} \text { in spectrum }
\end{aligned}
$$

Conformal Bootstrap

Sum rule

$$
1=\sum_{\substack{\mathcal{O}_{\Delta_{\ell}} \neq \mathbb{1} \\ \mathcal{O} \in \phi \phi}} \lambda_{\phi \phi \mathcal{O}}^{2} F_{\Delta, \ell}
$$

- Find Functional Ψ such that

$$
\begin{aligned}
& \hookrightarrow \psi \cdot 1<0(\mathbb{1}) \\
& \hookrightarrow \psi \cdot F_{\Delta, \ell}(u, v) \geq 0 \text { for all }\{\Delta, \ell\} \text { in spectrum }
\end{aligned}
$$

\rightarrow Spectrum is inconsistent \Rightarrow rule out CFT

Conformal Bootstrap

Sum rule

$$
1=\sum_{\substack{\mathcal{O}_{\Delta \ell} \neq \mathbb{1} \\ \mathcal{O} \in \phi \phi}} \lambda_{\phi \phi \mathcal{O}}^{2} F_{\Delta, \ell}
$$

- Find Functional Ψ such that

$$
\begin{aligned}
& \hookrightarrow \psi \cdot 1<0(\mathbb{1}) \\
& \hookrightarrow \psi \cdot F_{\Delta, \ell}(u, v) \geq 0 \text { for all }\{\Delta, \ell\} \text { in spectrum }
\end{aligned}
$$

\rightarrow Spectrum is inconsistent \Rightarrow rule out CFT

- Truncate

$$
\psi=\left.\sum_{m, n}^{m, n \leqslant \Lambda} a_{m n} \partial_{z}^{m} \partial_{\bar{z}}^{n}\right|_{z=\bar{z}=\frac{1}{2}}
$$

Conformal Bootstrap

Sum rule

$$
1=\sum_{\substack{\mathcal{O}_{\Delta \in} \neq 1 \\ \mathcal{O} \in \phi \phi}} \lambda_{\phi \phi \mathcal{O}}^{2} F_{\Delta, \ell}
$$

- Find Functional Ψ such that

$$
\begin{aligned}
& \hookrightarrow \psi \cdot 1<0(\mathbb{1}) \\
& \hookrightarrow \psi \cdot F_{\Delta, \ell}(u, v) \geq 0 \text { for all }\{\Delta, \ell\} \text { in spectrum }
\end{aligned}
$$

\rightarrow Spectrum is inconsistent \Rightarrow rule out CFT

- Truncate

$$
\psi=\left.\sum_{m, n}^{m, n \leqslant \Lambda} a_{m n} \partial_{z}^{m} \partial_{\bar{z}}^{n}\right|_{z=\bar{z}=\frac{1}{2}}
$$

\rightarrow Increase $\Lambda \Rightarrow$ bounds get stronger

Conformal Bootstrap

Sum rule

$$
1=\sum_{\substack{\mathcal{O}_{\Delta \in} \neq \mathbb{1} \\ \mathcal{O} \in \phi \phi}} \lambda_{\phi \phi \mathcal{O}}^{2} F_{\Delta, \ell}
$$

- Find Functional Ψ such that

$$
\begin{aligned}
& \hookrightarrow \psi \cdot 1<0(\mathbb{1}) \\
& \hookrightarrow \psi \cdot F_{\Delta, \ell}(u, v) \geq 0 \text { for all }\{\Delta, \ell\} \text { in spectrum }
\end{aligned}
$$

\rightarrow Spectrum is inconsistent \Rightarrow rule out CFT

- Truncate

$$
\psi=\left.\sum_{m, n}^{m, n \leqslant \Lambda} a_{m n} \partial_{z}^{m} \partial_{\bar{z}}^{n}\right|_{z=\bar{z}=\frac{1}{2}}
$$

\rightarrow Increase $\Lambda \Rightarrow$ bounds get stronger
\rightarrow Always true bounds

3d Ising Model

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi, PRD 86 025022]

3d Ising Model

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi, PRD 86 025022]

\rightarrow Saturated by 3d Ising model

3d Ising Model

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi, PRD 86 025022]

\rightarrow Saturated by 3d Ising model
\rightarrow 3d Ising lives at "kink"

Outline

Numerical conformal Bootstrap review

Chiral algebra
4d $\mathcal{N}=3$ SCFTs
Solving $\mathcal{N}=3$ SCFTs?

Chiral algebra

Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

Chiral algebra

Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

$$
Q^{\prime}=\left[\begin{array}{c}
Q \\
\tilde{Q}^{\star}
\end{array}\right], \quad \tilde{Q}^{\prime}=\left[\begin{array}{c}
\tilde{Q} \\
-Q^{\star}
\end{array}\right]
$$

Chiral algebra

Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

$$
Q^{\prime}=\left[\begin{array}{c}
Q \\
\tilde{Q}^{\star}
\end{array}\right], \quad \tilde{Q}^{\prime}=\left[\begin{array}{c}
\tilde{Q} \\
-Q^{\star}
\end{array}\right]
$$

$$
u_{l}=(1, \bar{z})
$$

Chiral algebra

Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

$$
Q^{\prime}=\left[\begin{array}{c}
Q \\
\tilde{Q}^{\star}
\end{array}\right], \quad \tilde{Q}^{\prime}=\left[\begin{array}{c}
\tilde{Q} \\
-Q^{\star}
\end{array}\right]
$$

$$
\begin{aligned}
& u_{l}=(1, \bar{z}) \\
& q(z, \bar{z})=u_{l} Q^{\prime}=Q(z, \bar{z})+\bar{z} \tilde{Q}^{\star}(z, \bar{z}) \\
& \tilde{q}(z, \bar{z})=u_{l} \tilde{Q}^{\prime}=\tilde{Q}(z, \bar{z})-\bar{z} Q^{\star}(z, \bar{z})
\end{aligned}
$$

Chiral algebra

Example: free hypermultiplet
Complex scalars in hypermultiplet are in the cohomology

$$
Q^{\prime}=\left[\begin{array}{c}
Q \\
\tilde{Q}^{\star}
\end{array}\right], \quad \tilde{Q}^{\prime}=\left[\begin{array}{c}
\tilde{Q} \\
-Q^{\star}
\end{array}\right]
$$

$$
\begin{aligned}
& u_{l}=(1, \bar{z}) \\
& q(z, \bar{z})=u_{l} Q^{\prime}=Q(z, \bar{z})+\bar{z} \tilde{Q}^{\star}(z, \bar{z}), \\
& \tilde{q}(z, \bar{z})=u_{l} \tilde{Q}^{\prime}=\tilde{Q}(z, \bar{z})-\bar{z} Q^{\star}(z, \bar{z}) \\
& \rightarrow q(z, z b) \tilde{q}(0) \sim \bar{z} \tilde{Q}^{\star}(z, \bar{z}) \tilde{Q}(0) \sim \frac{\bar{z}}{z \bar{z}}=\frac{1}{z}
\end{aligned}
$$

$4 d \mathcal{N}=2$ SCFTs with E_{6} flavor symmetry

[Beem ML Liendo Rastelli van Rees]

What is the space of consistent SCFTs?

4d $\mathcal{N}=2$ SCFTs with $S U(2)$ flavor symmetry
$\langle T T T T\rangle,\left\langle J^{a} J^{b} J^{c} J^{d}\right\rangle,\left\langle T T J^{a} J^{b}\right\rangle$

Outline

Numerical conformal Bootstrap review

Chiral algebra
$4 d \mathcal{N}=3$ SCFTs
Solving $\mathcal{N}=3$ SCFTs?

$4 d \mathcal{N}=3$ SCFTs

\rightarrow Non-trivial interacting theories
[García-Etxebarria, Regalado] [Aharony, Tachikawa]

$4 d \mathcal{N}=3$ SCFTs

\rightarrow Non-trivial interacting theories
[García-Etxebarria, Regalado] [Aharony, Tachikawa]
\rightarrow Non-Lagrangian

$4 d \mathcal{N}=3$ SCFTs

\rightarrow Non-trivial interacting theories
[García-Etxebarria, Regalado] [Aharony, Tachikawa]
\rightarrow Non-Lagrangian
Properties from representation theory [Aharony, Evtikhiev]

$4 d \mathcal{N}=3$ SCFTs

\rightarrow Non-trivial interacting theories
[García-Etxebarria, Regalado] [Aharony, Tachikawa]
\rightarrow Non-Lagrangian
Properties from representation theory [Aharony, Evtikhiev]
$\rightarrow S U(3)_{R} \times U(1)_{r}$

$4 d \mathcal{N}=3$ SCFTs

\rightarrow Non-trivial interacting theories
[García-Etxebarria, Regalado] [Aharony, Tachikawa]
\rightarrow Non-Lagrangian
Properties from representation theory [Aharony, Evtikhiev]
$\rightarrow S U(3)_{R} \times U(1)_{r}$
\rightarrow No flavor symmetry

$4 d \mathcal{N}=3$ SCFTs

\rightarrow Non-trivial interacting theories
[García-Etxebarria, Regalado] [Aharony, Tachikawa]
\rightarrow Non-Lagrangian
Properties from representation theory [Aharony, Evtikhiev]
$\rightarrow S U(3)_{R} \times U(1)_{r}$
\rightarrow No flavor symmetry
$\rightarrow c=a$

$4 d \mathcal{N}=3$ SCFTs

\rightarrow Non-trivial interacting theories
[García-Etxebarria, Regalado] [Aharony, Tachikawa]
\rightarrow Non-Lagrangian
Properties from representation theory [Aharony, Evtikhiev]
$\rightarrow S U(3)_{R} \times U(1)_{r}$
\rightarrow No flavor symmetry
$\rightarrow c=a$
\rightarrow No exactly marginal deformations

$4 d \mathcal{N}=3$ SCFTs

\rightarrow Non-trivial interacting theories
[García-Etxebarria, Regalado] [Aharony, Tachikawa]
\rightarrow Non-Lagrangian
Properties from representation theory [Aharony, Evtikhiev]
$\rightarrow S U(3)_{R} \times U(1)_{r}$
\rightarrow No flavor symmetry
$\rightarrow c=a$
\rightarrow No exactly marginal deformations
\rightarrow Just another SCFT

$4 d \mathcal{N}=3$ SCFTs

\rightarrow Non-trivial interacting theories
[García-Etxebarria, Regalado] [Aharony, Tachikawa]
\rightarrow Non-Lagrangian
Properties from representation theory [Aharony, Evtikhiev]
$\rightarrow S U(3)_{R} \times U(1)_{r}$
\rightarrow No flavor symmetry
$\rightarrow c=a$
\rightarrow No exactly marginal deformations
\rightarrow Just another SCFT
as $\mathcal{N}=2: S U(2)_{R} \times U(1)_{r} \times U(1)_{F}$

Outline

Numerical conformal Bootstrap review
Chiral algebra
$4 d \mathcal{N}=3$ SCFTs
Solving $\mathcal{N}=3$ SCFTs?

Chiral algebras for $\mathcal{N}=3$ SCFTs

Assume set of generators
\rightarrow Set of $\frac{1}{2}$-BPS operators

Chiral algebras for $\mathcal{N}=3$ SCFTs

Assume set of generators

\rightarrow Set of $\frac{1}{2}$-BPS operators
\rightarrow Stress tensor supermultiplet

- Can one write a consistent operator product algebra?

Chiral algebras for $\mathcal{N}=3$ SCFTs

Assume set of generators

\rightarrow Set of $\frac{1}{2}$-BPS operators
\rightarrow Stress tensor supermultiplet

- Can one write a consistent operator product algebra?
- Simplest known theory:

Chiral algebras for $\mathcal{N}=3$ SCFTs

Assume set of generators

\rightarrow Set of $\frac{1}{2}$-BPS operators
\rightarrow Stress tensor supermultiplet

- Can one write a consistent operator product algebra?
- Simplest known theory:
$\rightarrow \frac{1}{2}$-BPS operators of dimension three
\rightarrow Stress tensor

Chiral algebras for $\mathcal{N}=3$ SCFTs

Assume set of generators

\rightarrow Set of $\frac{1}{2}$-BPS operators
\rightarrow Stress tensor supermultiplet

- Can one write a consistent operator product algebra?
- Simplest known theory:
$\rightarrow \frac{1}{2}$-BPS operators of dimension three
\rightarrow Stress tensor
\rightarrow chiral algebra fully fixed and $c_{4 d}=\frac{15}{12}$ [Nishinaka, Tachikawa]

Chiral algebras for $\mathcal{N}=3$ SCFTs

Assume set of generators

\rightarrow Set of $\frac{1}{2}$-BPS operators
\rightarrow Stress tensor supermultiplet

- Can one write a consistent operator product algebra?
- Simplest known theory:
$\rightarrow \frac{1}{2}$-BPS operators of dimension three
\rightarrow Stress tensor
\rightarrow chiral algebra fully fixed and $c_{4 d}=\frac{15}{12}$ [Nishinaka, Tachikawa]
\rightarrow can compute additional protected OPE coefficients

Chiral algebras for $\mathcal{N}=3$ SCFTs

Assume set of generators
\rightarrow Set of $\frac{1}{2}$-BPS operators

Chiral algebras for $\mathcal{N}=3$ SCFTs

Assume set of generators
\rightarrow Set of $\frac{1}{2}$-BPS operators
\rightarrow Stress tensor supermultiplet

- What about higher rank theories?

Chiral algebras for $\mathcal{N}=3$ SCFTs

Assume set of generators
\rightarrow Set of $\frac{1}{2}$-BPS operators
\rightarrow Stress tensor supermultiplet

- What about higher rank theories?
\rightarrow This would be a closed subalgebra, but $c_{4 d}$ is different

Chiral algebras for $\mathcal{N}=3$ SCFTs

Assume set of generators
\rightarrow Set of $\frac{1}{2}$-BPS operators
\rightarrow Stress tensor supermultiplet

- What about higher rank theories?
\rightarrow This would be a closed subalgebra, but $c_{4 d}$ is different
\rightarrow Assumed set of generators is incomplete for higher rank

Chiral algebras for $\mathcal{N}=3$ SCFTs

Assume set of generators

\rightarrow Set of $\frac{1}{2}$-BPS operators
\rightarrow Stress tensor supermultiplet

- What about higher rank theories?
\rightarrow This would be a closed subalgebra, but $c_{4 d}$ is different
\rightarrow Assumed set of generators is incomplete for higher rank
\rightarrow Minimum modification: add a single extra generator

Chiral algebras for $\mathcal{N}=3$ SCFTs

Assume set of generators

\rightarrow Set of $\frac{1}{2}$-BPS operators
\rightarrow Stress tensor supermultiplet

- What about higher rank theories?
\rightarrow This would be a closed subalgebra, but $c_{4 d}$ is different
\rightarrow Assumed set of generators is incomplete for higher rank
\rightarrow Minimum modification: add a single extra generator
\rightarrow constructed chiral algebra valid for any $c_{4 d}$ [ML, Liendo, Meneghelli, Mitev]

Chiral algebras for $\mathcal{N}=3$ SCFTs

Assume set of generators

\rightarrow Set of $\frac{1}{2}$-BPS operators
\rightarrow Stress tensor supermultiplet

- What about higher rank theories?
\rightarrow This would be a closed subalgebra, but $c_{4 d}$ is different
\rightarrow Assumed set of generators is incomplete for higher rank
\rightarrow Minimum modification: add a single extra generator
\rightarrow constructed chiral algebra valid for any $c_{4 d}$ [ML, Liendo, Meneghelli, Mitev] subalgebra of higher rank theories?

Solving $\mathcal{N}=3$ SCFTs?

Can we "zoom in" to the $c_{4 d}=\frac{15}{12}$ SCFT?

Solving $\mathcal{N}=3$ SCFTs?

Can we "zoom in" to the $c_{4 d}=\frac{15}{12}$ SCFT?

- $\frac{1}{2}$-BPS operator of dimension three

Solving $\mathcal{N}=3$ SCFTs?

Can we "zoom in" to the $c_{4 d}=\frac{15}{12}$ SCFT?

- $\frac{1}{2}$-BPS operator of dimension three
- Step 1: Fix protected contributions

Solving $\mathcal{N}=3$ SCFTs?

Can we "zoom in" to the $c_{4 d}=\frac{15}{12}$ SCFT?

- $\frac{1}{2}$-BPS operator of dimension three
- Step 1: Fix protected contributions

$$
\lambda_{2 d}^{2} \rightsquigarrow \lambda_{\mathcal{O}_{4 d}}^{2}-\lambda_{\mathcal{O}_{4 d}^{\prime}}^{2}
$$

Solving $\mathcal{N}=3$ SCFTs?

Can we "zoom in" to the $c_{4 d}=\frac{15}{12}$ SCFT?

- $\frac{1}{2}$-BPS operator of dimension three
- Step 1: Fix protected contributions $\lambda_{2 d}^{2} \rightsquigarrow \lambda_{\mathcal{O}_{4 d}}^{2}-\lambda_{\mathcal{O}_{4 d}^{\prime}}^{2}$
Valid for any $\mathcal{N}=3$ SCFT with this operator

Solving $\mathcal{N}=3$ SCFTs?

Can we "zoom in" to the $c_{4 d}=\frac{15}{12}$ SCFT?

- $\frac{1}{2}$-BPS operator of dimension three
- Step 1: Fix protected contributions $\lambda_{2 d}^{2} \rightsquigarrow \lambda_{\mathcal{O}_{4 d}}^{2}-\lambda_{\mathcal{O}_{4 d}^{\prime}}^{2}$
Valid for any $\mathcal{N}=3$ SCFT with this operator
- $\mathcal{N}=4$ "sits in the way"

Solving $\mathcal{N}=3$ SCFTs?

Can we "zoom in" to the $c_{4 d}=\frac{15}{12}$ SCFT?

- $\frac{1}{2}$-BPS operator of dimension three
- Step 1: Fix protected contributions $\lambda_{2 d}^{2} \rightsquigarrow \lambda_{\mathcal{O}_{4 d}}^{2}-\lambda_{\mathcal{O}_{4 d}^{\prime}}^{2}$
Valid for any $\mathcal{N}=3$ SCFT with this operator
- $\mathcal{N}=4$ "sits in the way"
- Input chiral algebra data of specific theory

Solving $\mathcal{N}=3$ SCFTs?

Can we "zoom in" to the $c_{4 d}=\frac{15}{12}$ SCFT?

- $\frac{1}{2}$-BPS operator of dimension three
- Step 1: Fix protected contributions $\lambda_{2 d}^{2} \rightsquigarrow \lambda_{\mathcal{O}_{4 d}}^{2}-\lambda_{\mathcal{O}_{4 d}^{\prime}}^{2}$
Valid for any $\mathcal{N}=3$ SCFT with this operator
- $\mathcal{N}=4$ "sits in the way"
- Input chiral algebra data of specific theory chiral algebra conjectured by [Nishinaka, Tachikawa]

$4 d \mathcal{N}=3$ SCFT with $c=\frac{15}{12}$

[ML, Liendo, Meneghelli, Mitev]

$4 d \mathcal{N}=3$ SCFTs

[ML, Liendo, Meneghelli, Mitev]

4d $\mathcal{N}=3$ SCFTs

[ML, Liendo, Meneghelli, Mitev]

$4 d \mathcal{N}=3$ SCFTs

[ML, Liendo, Meneghelli, Mitev]

