Bootstrapping \(\mathcal{N} \geq 2 \) SCFTs

Madalena Lemos

String-Math 2017
July 26 2017

Based on:
1312.5344 w/ C. Beem, P. Liendo, W. Peelaers, L. Rastelli and B. van Rees
1511.07449 w/ P. Liendo
1702.05101 w/ M. Cornaglioitto and V. Schomerus
1. The (Super)conformal Bootstrap Program
 - Conformal bootstrap
 - Superconformal bootstrap

2. A solvable subsector

3. Constraining the space of $\mathcal{N} = 2$ SCFTs

4. 4d $\mathcal{N} = 3$ SCFTs

5. Summary and Outlook
Outline

1 The (Super)conformal Bootstrap Program
 Conformal bootstrap
 Superconformal bootstrap

2 A solvable subsector

3 Constraining the space of $\mathcal{N} = 2$ SCFTs

4 4d $\mathcal{N} = 3$ SCFTs

5 Summary and Outlook
The (Super)conformal Bootstrap Program

What is the space of consistent (S)CFTs?

- Maximally supersymmetric theories: well known list of theories
 - \(N = 3 \) theories: not known to exist until Garcia-Etxebarria and Regalado
 - \(N = 2 \) theories: large known list of theories many lacking a Lagrangian description

Can we bootstrap specific theories?
 - Particularly helpful if theory is uniquely fixed by a set of discrete data
The (Super)conformal Bootstrap Program

What is the space of consistent (S)CFTs?
What is the space of consistent (S)CFTs?

→ Maximally supersymmetric theories: well known list of theories
The (Super)conformal Bootstrap Program

What is the space of consistent (S)CFTs?

→ Maximally supersymmetric theories: well known list of theories

→ $\mathcal{N} = 2$ theories: large known list of theories
 many lacking a Lagrangian description
What is the space of consistent (S)CFTs?

→ Maximally supersymmetric theories: well known list of theories

→ $\mathcal{N} = 3$ theories: not known to exist until García-Etxebarria and Regalado

→ $\mathcal{N} = 2$ theories: large known list of theories
 many lacking a Lagrangian description
What is the space of consistent (S)CFTs?

→ Maximally supersymmetric theories: well known list of theories
→ \(\mathcal{N} = 3 \) theories: not known to exist until García-Etxebarria and Regalado
→ \(\mathcal{N} = 2 \) theories: large known list of theories
 many lacking a Lagrangian description

Can we bootstrap specific theories?
The (Super)conformal Bootstrap Program

What is the space of consistent (S)CFTs?

→ Maximally supersymmetric theories: well known list of theories

→ $\mathcal{N} = 3$ theories: not known to exist until García-Etxebarria and Regalado

→ $\mathcal{N} = 2$ theories: large known list of theories
 many lacking a Lagrangian description

Can we bootstrap specific theories?

→ Particularly helpful if theory is uniquely fixed by a set of discrete data
1 The (Super)conformal Bootstrap Program
 Conformal bootstrap
 Superconformal bootstrap

2 A solvable subsector

3 Constraining the space of $\mathcal{N} = 2$ SCFTs

4 4d $\mathcal{N} = 3$ SCFTs

5 Summary and Outlook
Conformal field theory defined by

Set of *local* operators and their correlation functions
Conformal field theory defined by
Set of local operators and their correlation functions

CFT data
\{\mathcal{O}_{\Delta, \ell, \ldots}(x)\}
and
Conformal field theory defined by
Set of *local* operators and their correlation functions

CFT data
\[\{ \mathcal{O}_{\Delta, \ell, \ldots}(x) \} \] and

Operator Product Expansion
\[\mathcal{O}_1(x)\mathcal{O}_2(0) = \sum_k \lambda_{\mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_k} \mathcal{O}_k(0) \]
Conformal field theory defined by
Set of local operators and their correlation functions

CFT data
\{\mathcal{O}_{\Delta,\ell,...}(x)\} and

Operator Product Expansion
\mathcal{O}_1(x)\mathcal{O}_2(0) = \sum_k \lambda_{\mathcal{O}_1\mathcal{O}_2\mathcal{O}_k} \mathcal{O}_k(0)
→ Finite radius of convergence
Conformal field theory defined by
Set of *local* operators and their correlation functions

CFT data
\[\{ \mathcal{O}_{\Delta, \ell, ...}(x) \} \]
and

Operator Product Expansion
\[\mathcal{O}_1(x) \mathcal{O}_2(0) = \sum_{k \text{prim.}} \lambda_{\mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_k} c(x, \partial_x) \mathcal{O}_k(0) \]

→ Finite radius of convergence
Conformal field theory defined by
Set of local operators and their correlation functions

CFT data
\{O_{\Delta,\ell,...}(x)\} and

Operator Product Expansion
\[O_1(x)O_2(0) = \sum_{k \text{prim.}} \lambda_{O_1O_2O_k} c(x, \partial_x)O_k(0) \]
→ Finite radius of convergence
→ \(n \)-point function by recursive use of the OPE until \(\langle 1 \rangle = 1 \)
Conformal field theory defined by
Set of local operators and their correlation functions

CFT data
\(\{ \mathcal{O}_{\Delta, \ell, \ldots}(x) \} \) and \(\{ \lambda_{\mathcal{O}_i \mathcal{O}_j \mathcal{O}_k} \} \)

Operator Product Expansion
\(\mathcal{O}_1(x) \mathcal{O}_2(0) = \sum_{k \text{ prim}} \lambda_{\mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_k} c(x, \partial_x) \mathcal{O}_k(0) \)
→ Finite radius of convergence
→ \(n \)-point function by recursive use of the OPE until
\(\langle 1 \rangle = 1 \)
Conformal field theory defined by
Set of *local* operators and their correlation functions

CFT data
\{\mathcal{O}_{\Delta,\ell,\ldots}(x)\} \text{ and } \{\lambda_{\mathcal{O}_i\mathcal{O}_j\mathcal{O}_k}\}

Operator Product Expansion
\mathcal{O}_1(x)\mathcal{O}_2(0) = \sum_{k\text{prim.}} \lambda_{\mathcal{O}_1\mathcal{O}_2\mathcal{O}_k} c(x, \partial_x)\mathcal{O}_k(0)

→ Finite radius of convergence

→ n–point function by recursive use of the OPE until\n\langle \mathbb{1} \rangle = 1

CFT data strongly constrained

- Unitarity
- Associativity of the operator product algebra
Conformal Bootstrap

Crossing Symmetry

\[\langle (\mathcal{O}_1(x_1) \mathcal{O}_2(x_2)) \mathcal{O}_3(x_3) \mathcal{O}_4(x_4) \rangle = \]

\[\sum_{\mathcal{O}_{\Delta,\ell}} \frac{1}{\Delta} \frac{1}{\ell} \]

\[= \sum_{\tilde{\mathcal{O}}_{\Delta,\ell}} \]

\[\frac{7}{26} \]
Conformal Bootstrap

Crossing Symmetry

\[
\langle \mathcal{O}_1(x_1) (\mathcal{O}_2(x_2) \mathcal{O}_3(x_3)) \mathcal{O}_4(x_4) \rangle = \sum_{\mathcal{O}_{\Delta,\ell}} 1 \mathcal{O}_{\Delta,\ell}, \ell^4 = \sum_{\tilde{\mathcal{O}}_{\Delta,\ell}} \tilde{\mathcal{O}}_{\Delta,\ell}
\]
Outline

1. The (Super)conformal Bootstrap Program
 - Conformal bootstrap
 - Superconformal bootstrap

2. A solvable subsector

3. Constraining the space of $\mathcal{N} = 2$ SCFTs

4. 4d $\mathcal{N} = 3$ SCFTs

5. Summary and Outlook
The Superconformal Bootstrap

- Various conformal families related by action of supercharges

Q: Is there a solvable truncation of the crossing equations?
→ Yes, for $4d N \geq 2$ [Beem ML Liendo Peelaers Rastelli van Rees]

$6d N = (2, 0)$ and $2d N = (0, 4)$ [Beem Rastelli van Rees]

Step 1: Solve this subsector
Step 2: Full blown numerics for the rest
Various conformal families related by action of supercharges

Finite re-organization of an infinite amount of data
The Superconformal Bootstrap

- Various conformal families related by action of supercharges
- Finite re-organization of an infinite amount of data

Q: Is there a solvable truncation of the crossing equations?
The Superconformal Bootstrap

- Various conformal families related by action of supercharges
- Finite re-organization of an infinite amount of data

Q: Is there a solvable truncation of the crossing equations?

→ Yes, for $4d\, \mathcal{N} \geq 2$ [Beem ML Liendo Peelaers Rastelli van Rees]
The Superconformal Bootstrap

- Various conformal families related by action of supercharges
- Finite re-organization of an infinite amount of data

Q: Is there a solvable truncation of the crossing equations?

→ Yes, for $4d \mathcal{N} \geq 2$ [Beem ML Liendo Peelaers Rastelli van Rees]
 $6d \mathcal{N} = (2, 0)$ and $2d \mathcal{N} = (0, 4)$ [Beem Rastelli van Rees]

- Step 1: Solve this subsector
- (Step 2: Full blown numerics for the rest)
1 The (Super)conformal Bootstrap Program
 Conformal bootstrap
 Superconformal bootstrap

2 A solvable subsector

3 Constraining the space of $\mathcal{N} = 2$ SCFTs

4 4d $\mathcal{N} = 3$ SCFTs

5 Summary and Outlook
Organize operators in representations of superconformal algebra

\[\{ \mathcal{O}_{\Delta,(j_1,j_2)}, \} \]
Chiral algebra

Organize operators in representations of superconformal algebra

$$\{ \mathcal{O}_{\Delta,(j_1,j_2)}, R, r, f \}$$
Chiral algebra

Organize operators in representations of superconformal algebra

\(\{ \mathcal{O}_{\Delta,(j_1,j_2)}, R^{\pm}, r^{\pm}, f \} \)

Claim

→ Pick a plane \(\mathbb{R}^2 \in \mathbb{R}^4, (z, \bar{z}) \in \mathbb{R}^2 \)
Chiral algebra

Organize operators in representations of superconformal algebra
\[\{ \mathcal{O}_{\Delta,(j_1,j_2)}, R, r, f \} \]

Claim

→ Pick a plane \(\mathbb{R}^2 \in \mathbb{R}^4, (z, \bar{z}) \in \mathbb{R}^2 \)
→ Restrict to operators with \(\Delta = 2R + j_1 + j_2 \)
Chiral algebra

Organize operators in representations of superconformal algebra

\[\{ \mathcal{O}_{\Delta, \{j_1, j_2\}, r, f} \} \]

Claim

→ Pick a plane \(\mathbb{R}^2 \in \mathbb{R}^4 \), \((z, \bar{z}) \in \mathbb{R}^2\)

→ Restrict to operators with \(\Delta = 2R + j_1 + j_2 \)

\[\langle \mathcal{O}_1^{l_1}(z_1, \bar{z}_1) \ldots \mathcal{O}_n^{l_n}(z_n, \bar{z}_n) \rangle \]
Organize operators in representations of superconformal algebra
\[\{ \mathcal{O}_{\Delta,(j_1,j_2)}, R, r, f \} \]

Claim

→ Pick a plane \(\mathbb{R}^2 \in \mathbb{R}^4, (z, \bar{z}) \in \mathbb{R}^2 \)

→ Restrict to operators with \(\Delta = 2R + j_1 + j_2 \)

\[u_{l_1}(\bar{z}_1) \ldots u_{l_n}(\bar{z}_n) \langle \mathcal{O}_{1}^{l_1}(z_1, \bar{z}_1) \ldots \mathcal{O}_{n}^{l_n}(z_n, \bar{z}_n) \rangle \]
Chiral algebra

Organize operators in representations of superconformal algebra
\[\{ O_{\Delta,(j_1,j_2)}, R, r, f \} \]

Claim

→ Pick a plane \(\mathbb{R}^2 \in \mathbb{R}^4, (z, \bar{z}) \in \mathbb{R}^2 \)
→ Restrict to operators with \(\Delta = 2R + j_1 + j_2 \)

\[
u_{l_1}(\bar{z}_1) \ldots u_{l_n}(\bar{z}_n)\langle O_{1}^{l_1}(z_1, \bar{z}_1) \ldots O_{n}^{l_n}(z_n, \bar{z}_n) \rangle = f(z_i)\]

→ Meromorphic!
Why?

- Subsector = Cohomology of nilpotent \mathbb{Q}
Why?

- Subsector = Cohomology of nilpotent $Q \sim Q + S$
Chiral algebra

Why?

- Subsector = Cohomology of nilpotent $Q \sim Q + S$
- Cohomology at the origin \Rightarrow non-empty classes
Why?

- Subsector $= \text{Cohomology of nilpotent } \mathbb{Q} \sim Q + S$
- Cohomology at the origin \Rightarrow non-empty classes
 $\Delta = 2R + j_1 + j_2$
Why?

- Subsector = Cohomology of nilpotent $Q \sim Q + S$
- Cohomology at the origin \Rightarrow non-empty classes
 $\Delta = 2R + j_1 + j_2$
- On plane $\begin{array}{c} \mathfrak{sl}_2 \times \mathfrak{sl}_2 \end{array}$
Why?

- Subsector = Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q} + \mathcal{S}$
- Cohomology at the origin \Rightarrow non-empty classes
 $\Delta = 2R + j_1 + j_2$
- On plane $\mathfrak{sl}_2 \times \mathfrak{sl}_2$
 commutes with \mathbb{Q}
Why?

- Subsector = Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q} + S$
- Cohomology at the origin \Rightarrow non-empty classes
 $\Delta = 2R + j_1 + j_2$
- On plane $\mathfrak{sl}_2 \times \mathfrak{sl}_2$
 - Commutes with \mathbb{Q}
 - Does not

\[\mathfrak{sl}_2 \times \mathfrak{sl}_2 \]
Chiral algebra

Why?

- Subsector = Cohomology of nilpotent $\mathbb{Q} \sim \mathbb{Q} + S$
- Cohomology at the origin \Rightarrow non-empty classes
 \[\Delta = 2R + j_1 + j_2 \]
- On plane $\mathfrak{sl}_2 \times \mathfrak{sl}_2$
 - commutes with \mathbb{Q}
 - does not
- \Rightarrow twisted translations $u_I(\bar{z})$
Why?

- Subsector = Cohomology of nilpotent $\mathbb{Q} \sim \mathbb{Q} + \mathcal{S}$
- Cohomology at the origin \Rightarrow non-empty classes
 $\Delta = 2R + j_1 + j_2$
- On plane $\mathfrak{sl}_2 \times \mathfrak{sl}_2$ commutes with \mathbb{Q} does not
- Twisted translations $u_I(\bar{z})$
- Diagonal subalgebra $\mathfrak{sl}_2 \times \mathfrak{su}(2)_R$ is \mathbb{Q} exact
Chiral algebra

Why?

- Subsector = Cohomology of nilpotent $Q \sim Q + S$
- Cohomology at the origin \Rightarrow non-empty classes
- $\Delta = 2R + j_1 + j_2$
- On plane $\mathfrak{sl}_2 \times \bar{\mathfrak{sl}}_2$ commutes with Q does not
- twisted translations $u_I(\bar{z})$
- diagonal subalgebra $\bar{\mathfrak{sl}}_2 \times \mathfrak{su}(2)_R$ is Q exact
- anti-holomorphic dependence drops out
$4d \mathcal{N} \geq 2$ SCFT \rightarrow VOA
\[4d \mathcal{N} \geq 2 \text{ SCFT} \rightarrow \text{ VOA} \]

→ Cohomology classes ⇒ Vertex operators
\[4d \mathcal{N} \geq 2 \text{ SCFT} \rightarrow \text{VOA} \]

\[\rightarrow \text{Cohomology classes} \Rightarrow \text{Vertex operators} \]
\[\rightarrow \text{conformal weight } h = R + j_1 + j_2 \geq 0 \]
$4d \mathcal{N} \geq 2$ SCFT \rightarrow VOA

→ Cohomology classes \Rightarrow Vertex operators
→ conformal weight $h = R + j_1 + j_2 \geq 0$
→ Each $\mathcal{N} = 2$ multiplet contributes at most with one \mathfrak{sl}_2 primary
$4d \mathcal{N} \geq 2$ SCFT \rightarrow VOA

→ Cohomology classes \Rightarrow Vertex operators
→ conformal weight $h = R + j_1 + j_2 \geq 0$
→ Each $\mathcal{N} = 2$ multiplet contributes at most with one \mathfrak{sl}_2 primary

▶ Very specific non-unitary VOA constrained by unitarity of $4d$ theory
4d $\mathcal{N} \geq 2$ SCFT \rightarrow VOA

→ Cohomology classes \Rightarrow Vertex operators
→ conformal weight $h = R + j_1 + j_2 \geq 0$
→ Each $\mathcal{N} = 2$ multiplet contributes at most with one \mathfrak{sl}_2 primary

► Very specific non-unitary VOA constrained by unitarity of 4d theory
 → some operators acquire negative norms
4d $\mathcal{N} \geq 2$ SCFT \rightarrow VOA

\rightarrow Cohomology classes \Rightarrow Vertex operators

\rightarrow conformal weight $h = R + j_1 + j_2 \geq 0$

\rightarrow Each $\mathcal{N} = 2$ multiplet contributes at most with one \mathfrak{sl}_2 primary

\quad ▶ Very specific non-unitary VOA constrained by unitarity of 4d theory

\quad \rightarrow some operators acquire negative norms

\quad ▶ Obtain VOA from 4d $\mathcal{N} = 2$ SCFT
4d $\mathcal{N} \geq 2$ SCFT \rightarrow VOA

→ Cohomology classes \Rightarrow Vertex operators
→ conformal weight $h = R + j_1 + j_2 \geq 0$
→ Each $\mathcal{N} = 2$ multiplet contributes at most with one \mathfrak{sl}_2 primary
 ▶ Very specific non-unitary VOA constrained by unitarity of 4d theory
 → some operators acquire negative norms

▶ Obtain VOA from 4d $\mathcal{N} = 2$ SCFT
▶ Given a VOA does there exist a 4d SCFT?
4d $\mathcal{N} \geq 2$ SCFT \rightarrow VOA

→ Cohomology classes \Rightarrow Vertex operators
→ conformal weight $h = R + j_1 + j_2 \geq 0$
→ Each $\mathcal{N} = 2$ multiplet contributes at most with one \mathfrak{sl}_2 primary
 ▶ Very specific non-unitary VOA constrained by unitarity of 4d theory
 → some operators acquire negative norms
 ▶ Obtain VOA from 4d $\mathcal{N} = 2$ SCFT
 ▶ Given a VOA does there exist a 4d SCFT?
 → give an example of what can go wrong
$4d \ \mathcal{N} \geq 2 \ \text{SCFT} \longrightarrow \ \text{VOA}$

- Cohomology classes \Rightarrow Vertex operators
- Conformal weight $h = R + j_1 + j_2 \geq 0$
- Each $\mathcal{N} = 2$ multiplet contributes at most with one \mathfrak{sl}_2 primary
 - Very specific non-unitary VOA constrained by unitarity of $4d$ theory
 - Some operators acquire negative norms
- Obtain VOA from $4d \ \mathcal{N} = 2 \ \text{SCFT}$
- Given a VOA does there exist a $4d$ SCFT?
 - Give an example of what can go wrong
- How much information can we recover from the VOA?
Which operators are in the cohomology?

→ Stress tensor $T_{\mu\nu}$
Which operators are in the cohomology?

→ Stress tensor $T_{\mu\nu} \rightsquigarrow$ superdescendant
4d $\mathcal{N} \geq 2$ SCFT \longrightarrow VOA

Which operators are in the cohomology?

\rightarrow Stress tensor $T_{\mu\nu} \rightsquigarrow$ superdescendant
\rightarrow Stress tensor supermultiplet
Which operators are in the cohomology?

→ Stress tensor $T_{\mu\nu} \leadsto$ superdescendant

→ Stress tensor supermultiplet \Rightarrow 2d stress tensor
Which operators are in the cohomology?

→ Stress tensor $T_{\mu\nu} \rightsquigarrow$ superdescendant
→ Stress tensor supermultiplet \Rightarrow 2d stress tensor

$$T(z)T(0) \sim -12 \frac{c_{4d}/2}{z^4} + 2 \frac{T(0)}{z^2} + \frac{\partial T(0)}{z} + \ldots ,$$
Which operators are in the cohomology?

→ Stress tensor $T_{\mu\nu} \leadsto$ superdescendant

→ Stress tensor supermultiplet \Rightarrow 2d stress tensor

$$T(z)T(0) \sim -12\frac{c_{4d}/2}{z^4} + 2\frac{T(0)}{z^2} + \frac{\partial T(0)}{z} + \ldots,$$

→ Global \mathfrak{sl}_2 enhances to Virasoro
Which operators are in the cohomology?

→ Stress tensor $T_{\mu\nu} \rightsquigarrow$ superdescendant
→ Stress tensor supermultiplet $\Rightarrow 2d$ stress tensor

$$T(z) T(0) \sim -12 \frac{c_{4d}/2}{z^4} + 2 \frac{T(0)}{z^2} + \frac{\partial T(0)}{z} + \ldots ,$$

← Global $\mathfrak{s}l_2$ enhances to Virasoro
← $c_{2d} = -12c_{4d}$
Which operators are in the cohomology?

→ Stress tensor $T_{\mu\nu} \rightsquigarrow$ superdescendant
→ Stress tensor supermultiplet \Rightarrow 2d stress tensor

\[
T(z)T(0) \sim -12 \frac{c_{4d}/2}{z^4} + 2 \frac{T(0)}{z^2} + \frac{\partial T(0)}{z} + \ldots ,
\]

↔ Global \mathfrak{sl}_2 enhances to Virasoro
↔ $c_{2d} = -12c_{4d}$
↔ Virasoro representations seem to mix different types of 4d multiplets
Which operators are in the cohomology?

→ Flavor symmetries current multiplet
Which operators are in the cohomology?

→ Flavor symmetries current multiplet

↔ Affine Kac Moody current algebra

\[
J^a(z)J^b(0) \sim -\frac{k_{4d}/2\delta^{ab}}{z^2} + if^{abc}J^c(0) + \ldots,
\]
Which operators are in the cohomology?

→ Flavor symmetries current multiplet

← Affine Kac Moody current algebra

\[J^a(z)J^b(0) \sim -\frac{k_{4d}/2\delta^{ab}}{z^2} + if^{abc} \frac{J^c(0)}{z} + \ldots , \]

← \(k_{2d} = -\frac{k_{4d}}{2} \)
Which operators are in the cohomology?

→ Flavor symmetries current multiplet

← Affine Kac Moody current algebra

\[J^a(z) J^b(0) \sim -\frac{k_{4d}/2\delta^{ab}}{z^2} + if^{abc} \frac{J^c(0)}{z} + \ldots \, , \]

← \[k_{2d} = -\frac{k_{4d}}{2} \]

→ \ldots
What is the space of consistent SCFTs?

$4d \mathcal{N} = 2$ SCFTs with a flavor symmetry

$\langle TTTT \rangle, \langle J^a J^b J^c J^d \rangle, \langle TTJ^a J^b \rangle$
What is the space of consistent SCFTs?

$4d \mathcal{N} = 2$ SCFTs with a flavor symmetry

$\langle TTTT \rangle, \langle J^a J^b J^c J^d \rangle, \langle TTJ^a J^b \rangle$ functions of c_{2d} and k_{2d}
What is the space of consistent SCFTs?

4d $\mathcal{N} = 2$ SCFTs with a flavor symmetry $\langle TTTT \rangle$, $\langle J^a J^b J^c J^d \rangle$, $\langle T T J^a J^b \rangle$ functions of c_{2d} and k_{2d}

- Block decomposition:

$$\sum \mathcal{O}_{2d} \lambda_{\mathcal{O}_{2d}}^2 \longrightarrow \mathcal{O}_{2d}$$
What is the space of consistent SCFTs?

$4d \mathcal{N} = 2$ SCFTs with a flavor symmetry
\[\langle TTTT \rangle, \langle J^a J^b J^c J^d \rangle, \langle TT J^a J^b \rangle \text{ functions of } c_{2d} \text{ and } k_{2d} \]

- Block decomposition:

\[
\sum_{\mathcal{O}_{2d}} \lambda_{\mathcal{O}_{2d}}^2 \rightarrow \lambda_{\mathcal{O}_{2d}}^2
\]
What is the space of consistent SCFTs?

$4d \mathcal{N} = 2$ SCFTs with a flavor symmetry

$\langle TTTT \rangle, \langle J^a J^b J^c J^d \rangle, \langle TT J^a J^b \rangle$ functions of c_{2d} and k_{2d}

- Block decomposition:

$$\sum_{\mathcal{O}_{2d}} \lambda_{\mathcal{O}_{2d}}^2 \mathcal{O}_{2d} \quad \rightarrow \quad \lambda_{\mathcal{O}_{2d}}^2 \sim \lambda_{\mathcal{O}_{4d}}^2$$

Interpret as four-dimensional quantities

(with some assumptions: interacting theory, unique stress tensor)
What is the space of consistent SCFTs?

4d $\mathcal{N} = 2$ SCFTs with a flavor symmetry

$\langle TTTT \rangle$, $\langle J^a J^b J^c J^d \rangle$, $\langle TTJ^a J^b \rangle$ functions of c_{2d} and k_{2d}

- Block decomposition:

$$\sum_{\mathcal{O}_{2d}} \lambda_{\mathcal{O}_{2d}}^2 \quad \Rightarrow \quad \mathcal{O}_{2d}$$

$$\Rightarrow \lambda_{\mathcal{O}_{2d}}^2 \sim \lambda_{\mathcal{O}_{4d}}^2 \geq 0$$

4d unitarity

Interpret as four-dimensional quantities

(with some assumptions: interacting theory, unique stress tensor)
What is the space of consistent SCFTs?

4d $\mathcal{N} = 2$ SCFTs with a flavor symmetry

$\langle TTTT \rangle, \langle J^a J^b J^c J^d \rangle, \langle TTJ^a J^b \rangle$ functions of c_{2d} and k_{2d}

- Block decomposition:

$$
\sum_{\mathcal{O}_{2d}} \lambda_{\mathcal{O}_{2d}}^2 \rightarrow \lambda_{\mathcal{O}_{2d}}^2 \implies \lambda_{\mathcal{O}_{4d}}^2 \geq 0 \implies \text{New unitarity bounds}
$$

4d unitarity

Interpret as four-dimensional quantities

(with some assumptions: interacting theory, unique stress tensor)
Outline

1. The (Super)conformal Bootstrap Program
 - Conformal bootstrap
 - Superconformal bootstrap

2. A solvable subsector

3. Constraining the space of $\mathcal{N} = 2$ SCFTs

4. 4d $\mathcal{N} = 3$ SCFTs

5. Summary and Outlook
4d $\mathcal{N} = 2$ SCFTs with E_6 flavor symmetry

\[\langle TTTT \rangle, \quad \langle J^a J^b J^c J^d \rangle, \quad \langle TT J^a J^b \rangle \]
Outline

1. The (Super)conformal Bootstrap Program
 - Conformal bootstrap
 - Superconformal bootstrap

2. A solvable subsector

3. Constraining the space of $\mathcal{N} = 2$ SCFTs

4. $4d\, \mathcal{N} = 3$ SCFTs

5. Summary and Outlook
$\mathcal{N} = 3$ Chiral algebra

- $4d \mathcal{N} \geq 3$: some of the extra supercharges commute with \mathcal{Q}
\[\mathcal{N} = 3 \] Chiral algebra

- $4d \mathcal{N} \geq 3$: some of the extra supercharges commute with \mathbb{Q}
 \[\rightarrow 4d \mathcal{N} = 4 \Rightarrow 2d \text{ "small" } \mathcal{N} = 4 \text{ chiral algebra} \]
\[\mathcal{N} = 3 \] Chiral algebra

- \(4d \mathcal{N} \geq 3 \): some of the extra supercharges commute with \(Q \)
 - \(4d \mathcal{N} = 4 \) \(\Rightarrow \) 2d “small” \(\mathcal{N} = 4 \) chiral algebra
 - \(4d \mathcal{N} = 3 \) \(\Rightarrow \) 2d \(\mathcal{N} = 2 \) chiral algebra [Nishinaka, Tachikawa]
$\mathcal{N} = 3$ Chiral algebra

- $4d \mathcal{N} \geq 3$: some of the extra supercharges commute with Q
 - $4d \mathcal{N} = 4 \Rightarrow 2d$ "small" $\mathcal{N} = 4$ chiral algebra
 - $4d \mathcal{N} = 3 \Rightarrow 2d \mathcal{N} = 2$ chiral algebra [Nishinaka, Tachikawa]

- $2d$ stress tensor promoted to supermultiplet \mathcal{J}

![Diagram](attachment:image.png)
\[\mathcal{N} = 3 \text{ Chiral algebra} \]

- \(4d \mathcal{N} \geq 3\): some of the extra supercharges commute with \(Q\)
 - \(4d \mathcal{N} = 4 \Rightarrow 2d \) "small" \(\mathcal{N} = 4\) chiral algebra
 - \(4d \mathcal{N} = 3 \Rightarrow 2d \mathcal{N} = 2\) chiral algebra [Nishinaka, Tachikawa]

- \(2d\) stress tensor promoted to supermultiplet \(\mathcal{J}\)

\[2d \mathcal{N} = 2 \text{ Stress tensor } \mathcal{J} \]

\[\rightarrow \text{ A trivial statement in } 2d:\]
$\mathcal{N} = 3$ Chiral algebra

- $4d \mathcal{N} \geq 3$: some of the extra supercharges commute with Q
 - $4d \mathcal{N} = 4 \Rightarrow 2d$ “small” $\mathcal{N} = 4$ chiral algebra
 - $4d \mathcal{N} = 3 \Rightarrow 2d \mathcal{N} = 2$ chiral algebra [Nishinaka, Tachikawa]

- $2d$ stress tensor promoted to supermultiplet \mathcal{J}

$2d \mathcal{N} = 2$ Stress tensor \mathcal{J}

- A trivial statement in $2d$: $\langle \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \rangle$ is fixed in terms of c_{2d}
\[\mathcal{N} = 3 \text{ Chiral algebra} \]

- \(4d \mathcal{N} \geq 3 \): some of the extra supercharges commute with \(Q \)
 - \(4d \mathcal{N} = 4 \) \(\Rightarrow \) 2d “small” \(\mathcal{N} = 4 \) chiral algebra
 - \(4d \mathcal{N} = 3 \) \(\Rightarrow \) 2d \(\mathcal{N} = 2 \) chiral algebra [Nishinaka, Tachikawa]

- 2d stress tensor promoted to supermultiplet \(\mathcal{J} \)

\[2d \mathcal{N} = 2 \text{ Stress tensor } \mathcal{J} \]

- A trivial statement in 2d:
 \[\langle \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \rangle \text{ is fixed in terms of } c_{2d} \]
- Present in any local \(\mathcal{N} = 3 \) SCFT
Space of $\mathcal{N} = 3$ SCFTs

$2d$ $\mathcal{N} = 2$ Stress tensor \mathcal{J}

$\langle \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \rangle$ is fixed in terms of $c_{2d} \Rightarrow \lambda_{\mathcal{O}_{2d}}^2 \rightsquigarrow \lambda_{\mathcal{O}_{4d}}^2$
Space of $\mathcal{N} = 3$ SCFTs

$2d \mathcal{N} = 2$ Stress tensor \mathcal{J}

$\langle \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \rangle$ is fixed in terms of $c_{2d} \Rightarrow \lambda_{\mathcal{O}_{2d}}^2 \sim \lambda_{\mathcal{O}_{4d}}^2$

$c_{4d} \geq \frac{13}{24}$ [Cornagliotto, ML, Schomerus]

\hookrightarrow Not saturated by any known SCFT

[91x250]Space of $\mathcal{N} = 3$ SCFTs

$2d \mathcal{N} = 2$ Stress tensor \mathcal{J}

$\langle \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \rangle$ is fixed in terms of $c_{2d} \Rightarrow \lambda_{\mathcal{O}_{2d}}^2 \sim \lambda_{\mathcal{O}_{4d}}^2$

$c_{4d} \geq \frac{13}{24}$ [Cornagliotto, ML, Schomerus]

\hookrightarrow Not saturated by any known SCFT
Space of $\mathcal{N} = 3$ SCFTs

$2d \mathcal{N} = 2$ Stress tensor \mathcal{J}

$\langle \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \rangle$ is fixed in terms of $c_{2d} \Rightarrow \lambda_{\mathcal{O}_{2d}}^2 \sim \lambda_{\mathcal{O}_{4d}}^2$

$\boxed{c_{4d} \geq \frac{13}{24}}$ [Cornagliotto, ML, Schomerus]

\rightarrow Not saturated by any known SCFT
Space of $\mathcal{N} = 3$ SCFTs

$2d$ $\mathcal{N} = 2$ Stress tensor \mathcal{J}

$\langle \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \rangle$ is fixed in terms of $c_{2d} \Rightarrow \lambda_{\mathcal{O}_{2d}}^2 \sim \lambda_{\mathcal{O}_{4d}}^2$

$$c_{4d} \geq \frac{13}{24}$$ [Cornagliotto, ML, Schomerus]

\hookrightarrow Not saturated by any known SCFT

\hookrightarrow Similar bounds in $\mathcal{N} = 4$ and $\mathcal{N} = 2$ saturated by known SCFTs [Beem, Rastelli, van Rees] [Liendo, Ramirez, Seo]
Space of $\mathcal{N} = 3$ SCFTs

2d $\mathcal{N} = 2$ Stress tensor \mathcal{J}

$\langle \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \rangle$ is fixed in terms of $c_{2d} \Rightarrow \lambda_{O_{2d}}^2 \sim \lambda_{O_{4d}}^2$

\[
c_{4d} \geq \frac{13}{24} \quad \text{[Cornagliotto, ML, Schomerus]}
\]

\rightarrow Not saturated by any known SCFT

\rightarrow Similar bounds in $\mathcal{N} = 4$ and $\mathcal{N} = 2$ saturated by known SCFTs [Beem, Rastelli, van Rees] [Liendo, Ramirez, Seo]

\rightarrow $c_{4d} = \frac{13}{24} \Rightarrow$ reconstruct 4d operators appearing in $\mathcal{J} \mathcal{J}$
Space of $\mathcal{N} = 3$ SCFTs

$2d$ $\mathcal{N} = 2$ Stress tensor \mathcal{J}

$\langle \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \rangle$ is fixed in terms of $c_{2d} \Rightarrow \lambda_{\mathcal{O}_{2d}}^2 \sim \lambda_{\mathcal{O}_{4d}}^2$

$$c_{4d} \geq \frac{13}{24} \quad \text{[Cornaglioitto, ML, Schomerus]}$$

\rightarrow Not saturated by any known SCFT

\rightarrow Similar bounds in $\mathcal{N} = 4$ and $\mathcal{N} = 2$ saturated by known SCFTs [Beem, Rastelli, van Rees] [Liendo, Ramirez, Seo]

\rightarrow $c_{4d} = \frac{13}{24} \Rightarrow$ reconstruct $4d$ operators appearing in $\mathcal{J} \mathcal{J}$

\rightarrow Signs of norms inconsistent with an *interacting* $4d$ SCFT existing
Space of $\mathcal{N} = 3$ SCFTs

$2d \mathcal{N} = 2$ Stress tensor \mathcal{J}

$\langle \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \rangle$ is fixed in terms of $c_{2d} \Rightarrow \lambda_{\mathcal{O}_{2d}}^2 \leadsto \lambda_{\mathcal{O}_{4d}}^2$

$c_{4d} > \frac{13}{24}$ [Cornaglio, ML, Schomerus]

\mapsto Not saturated by any known SCFT

\mapsto Similar bounds in $\mathcal{N} = 4$ and $\mathcal{N} = 2$ saturated by known SCFTs [Beem, Rastelli, van Rees] [Liendo, Ramirez, Seo]

\rightarrow $c_{4d} = \frac{13}{24} \Rightarrow$ reconstruct $4d$ operators appearing in $\mathcal{J} \mathcal{J}$

\rightarrow Signs of norms inconsistent with an interacting $4d$ SCFT existing
1 The (Super)conformal Bootstrap Program
 Conformal bootstrap
 Superconformal bootstrap

2 A solvable subsector

3 Constraining the space of $\mathcal{N} = 2$ SCFTs

4 $4d$ $\mathcal{N} = 3$ SCFTs

5 Summary and Outlook
New constraints on the space of allowed $\mathcal{N} = 2, 3$ SCFTs
Summary and Outlook

New constraints on the space of allowed $\mathcal{N} = 2, 3$ SCFTs

→ No “minimal” $\mathcal{N} = 3$ SCFT with $c = \frac{13}{24}$
Summary and Outlook

New constraints on the space of allowed $\mathcal{N} = 2, 3$ SCFTs

→ No “minimal” $\mathcal{N} = 3$ SCFT with $c = \frac{13}{24}$

← can we improve on this bound analytically?

What are the conditions for a VOA to correspond to a $4d$ SCFT?
Summary and Outlook

New constraints on the space of allowed $\mathcal{N} = 2, 3$ SCFTs

→ No “minimal” $\mathcal{N} = 3$ SCFT with $c = \frac{13}{24}$
 ← can we improve on this bound analytically?
 What are the conditions for a VOA to correspond to a 4d SCFT?

→ Can the numerical bootstrap complement these?
New constraints on the space of allowed $\mathcal{N} = 2, 3$ SCFTs

→ No “minimal” $\mathcal{N} = 3$ SCFT with $c = \frac{13}{24}$

 ↔ can we improve on this bound analytically?

What are the conditions for a VOA to correspond to a 4d SCFT?

→ Can the numerical bootstrap complement these?

→ Is $c_{4d}/k_{4d} \geq \ldots$?
Summary and Outlook

New constraint on the space of allowed $\mathcal{N} = 2, 3$ SCFTs

→ No "minimal" $\mathcal{N} = 3$ SCFT with $c = \frac{13}{24}$
 → can we improve on this bound analytically?
 What are the conditions for a VOA to correspond to a 4d SCFT?

→ Can the numerical bootstrap complement these?
→ Is $c_{4d}/k_{4d} \geq ...$?

Numerically solving theories?

▶ This mixed correlator seems like a good starting point
Thank you!
Outline

Numerical conformal Bootstrap review
Chiral algebra
4d $\mathcal{N} = 3$ SCFTs
Solving $\mathcal{N} = 3$ SCFTs?
→ Solve crossing equations for \textit{all} four-point functions
Conformal Bootstrap

→ Solve crossing equations for all four-point functions

[Rattazzi Rychkov Tonni Vichi]

▶ Solving ⇒ constraining
Conformal Bootstrap

→ Solve crossing equations for \textit{all} four-point functions

[Rattazzi Rychkov Tonni Vichi]

> Solving \Rightarrow \textit{constraining}

→ Guess for the spectrum

\[\sum_{O \in \phi \phi} O^{\Delta} \lambda_{O O}^{1} = 1\]
Conformal Bootstrap

→ Solve crossing equations for all four-point functions

[Rattazzi Rychkov Tonni Vichi]

▶ Solving \(\Rightarrow \) constraining
 → Guess for the spectrum
 ← there's a large gap in the spectrum
Conformal Bootstrap

→ Solve crossing equations for all four-point functions

[Rattazzi Rychkov Tonni Vichi]

▶ Solving ⇒ constraining

→ Guess for the spectrum

↔ there’s a large gap in the spectrum

→ Can it ever define a consistent CFT?
Conformal Bootstrap

→ Solve crossing equations for \textit{all} four-point functions

[Rattazzi Rychkov Tonni Vichi]

▷ Solving \Rightarrow constraining
 → Guess for the spectrum
 ← there’s a large gap in the spectrum
 → Can it ever define a consistent CFT?

\textbf{Sum rule: identical scalars}ϕ

\[\sum_{O}^{\Delta_{\ell} \neq 1} O \phi \phi_{\Delta_{\lambda}^{2}} \left(v, u \right) - v \Delta_{\phi} - u \Delta_{\phi} \]

\[\frac{F_{\Delta_{\lambda}^{3/18}}}{O} \]
Conformal Bootstrap

→ Solve crossing equations for all four-point functions

[Rattazzi Rychkov Tonni Vichi]

▸ Solving ⇒ constraining
 → Guess for the spectrum
 ← there’s a large gap in the spectrum
 → Can it ever define a consistent CFT?

Sum rule: identical scalars \(\phi \)

→ Identity operator \(\lambda_{\mathcal{O}\mathcal{O}_1} = 1 \)

\[
1 = \sum_{\substack{\mathcal{O}_{\Delta,\ell} \neq 1 \\ \mathcal{O} \in \phi \phi}} \lambda_{\phi\phi}^2 \frac{u^{\Delta_{\phi}} g_{\Delta,\ell}(v, u) - v^{\Delta_{\phi}} g_{\Delta,\ell}(u, v)}{v^{\Delta_{\phi}} - u^{\Delta_{\phi}}} \frac{F_{\Delta,\ell}}{v^{\Delta_{\phi}} - u^{\Delta_{\phi}}}
\]
Conformal Bootstrap

Sum rule

\[1 = \sum_{\mathcal{O}_{\Delta, \ell} \neq \mathbb{1}} \lambda_{\phi \phi}^2 F_{\Delta, \ell} \]

\(\mathcal{O} \in \phi \phi \)

Find Functional \(\Psi \) such that

\(\hat{\psi} \cdot 1 < 0 \) \(\hat{\psi} \cdot F_{\Delta, \ell}(u, v) \geq 0 \) for all \(\{\Delta, \ell\} \) in spectrum

\(\rightarrow \) Spectrum is inconsistent \(\Rightarrow \) rule out CFT

\(\rightarrow \) Truncate \(\hat{\psi} = m, n \leq \Lambda \)

\(\sum_{m, n} a_{mn} \partial^m z \partial^n \bar{z} | z = \bar{z} = \frac{1}{2} \)

\(\rightarrow \) Increase \(\Lambda \) \(\Rightarrow \) bounds get stronger

\(\rightarrow \) Always true bounds
Conformal Bootstrap

Sum rule

$$1 = \sum_{\mathcal{O}} \lambda_{\phi \phi}^2 \mathcal{O} F_{\Delta, \ell}$$

\[O_{\Delta \ell} \neq \mathbb{1} \]

\[O \in \phi \phi \]

- Find Functional Ψ such that
 - $\psi \cdot 1 < 0 \ (\mathbb{1})$
 - $\psi \cdot F_{\Delta, \ell}(u, v) \geq 0$ for all $\{\Delta, \ell\}$ in spectrum
Conformal Bootstrap

Sum rule

\[1 = \sum_{\mathcal{O} \neq \mathbb{I}, \mathcal{O} \in \mathcal{O}_{\phi \phi}} \lambda_{\phi \phi}^2 \mathcal{O} F_{\Delta, \ell} \]

- Find Functional \(\Psi \) such that
 \[\psi \cdot \mathbb{1} < 0 \, (\mathbb{I}) \]
 \[\psi \cdot F_{\Delta, \ell}(u, v) \geq 0 \text{ for all } \{\Delta, \ell\} \text{ in spectrum} \]

- Spectrum is inconsistent \(\Rightarrow \) rule out CFT
Conformal Bootstrap

Sum rule

\[1 = \sum_{\Delta, \ell \neq 1, O \in \phi \phi} \lambda_{\phi \phi}^2 O F_{\Delta, \ell} \]

- Find Functional Ψ such that
 \[\psi \cdot 1 < 0 \quad (1) \]
 \[\psi \cdot F_{\Delta, \ell}(u, v) \geq 0 \text{ for all } \{\Delta, \ell\} \text{ in spectrum} \]

- Spectrum is inconsistent \Rightarrow rule out CFT

- Truncate

\[\psi = \sum_{m, n \leq \Lambda} a_{mn} \partial_z^m \partial_{\bar{z}}^n \bigg|_{z = \bar{z} = \frac{1}{2}} \]

- Increase $\Lambda \Rightarrow$ bounds get stronger

- Always true bounds
Conformal Bootstrap

Sum rule

\[
1 = \sum_{O \not= \mathbb{1}, O \in \phi \phi} \lambda_{\phi \phi}^2 F_{\Delta, \ell}
\]

- Find Functional Ψ such that
 - $\psi \cdot 1 < 0 (\mathbb{1})$
 - $\psi \cdot F_{\Delta, \ell}(u, v) \geq 0$ for all $\{\Delta, \ell\}$ in spectrum

 → Spectrum is inconsistent \Rightarrow rule out CFT

- Truncate

 \[
 \psi = \sum_{m,n \leq \Lambda} a_{mn} \partial_z^m \partial_{\bar{z}}^n \big|_{z = \bar{z} = \frac{1}{2}}
 \]

 → Increase $\Lambda \Rightarrow$ bounds get stronger
Conformal Bootstrap

Sum rule

\[1 = \sum_{\mathcal{O} \Delta, \ell \neq 1} \lambda_{\phi\phi}^2 F_{\mathcal{O}, \Delta, \ell} \]

\(\mathcal{O} \in \phi\phi \)

- Find Functional \(\Psi \) such that
 - \(\psi \cdot 1 < 0 \) \((\mathbb{I}) \)
 - \(\psi \cdot F_{\Delta, \ell}(u, v) \geq 0 \) for all \(\{\Delta, \ell\} \) in spectrum

→ Spectrum is inconsistent \(\Rightarrow \) rule out CFT

- Truncate

\[\psi = \sum_{m, n \leq \Lambda} a_{mn} \partial_z^m \partial_{\bar{z}}^n \bigg|_{z=\bar{z}=\frac{1}{2}} \]

→ Increase \(\Lambda \) \(\Rightarrow \) bounds get stronger

→ Always true bounds
3d Ising Model

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi, PRD 86 025022]
3d Ising Model

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi, PRD 86 025022]

→ Saturated by 3d Ising model
3d Ising Model

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi, PRD 86 025022]

→ Saturated by 3d Ising model
→ 3d Ising lives at “kink”
Outline

Numerical conformal Bootstrap review
Chiral algebra
$4d \mathcal{N} = 3$ SCFTs
Solving $\mathcal{N} = 3$ SCFTs?
Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology
Chiral algebra

Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

\[Q' = \begin{bmatrix} Q \\ \tilde{Q}^* \end{bmatrix}, \quad \tilde{Q}' = \begin{bmatrix} \tilde{Q} \\ -Q^* \end{bmatrix} \]
Chiral algebra

Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

\[Q' = \begin{bmatrix} Q \\ \tilde{Q}^* \end{bmatrix}, \quad \tilde{Q}' = \begin{bmatrix} \tilde{Q} \\ -Q^* \end{bmatrix} \]

\[u_I = (1, \bar{z}) \]
Chiral algebra

Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

\[Q' = \begin{bmatrix} Q \\ \tilde{Q}^* \end{bmatrix}, \quad \tilde{Q}' = \begin{bmatrix} \tilde{Q} \\ -Q^* \end{bmatrix} \]

\[u_I = (1, \bar{z}) \]

\[q(z, \bar{z}) = u_I Q' = Q(z, \bar{z}) + \bar{z} \tilde{Q}^*(z, \bar{z}), \]

\[\tilde{q}(z, \bar{z}) = u_I \tilde{Q}' = \tilde{Q}(z, \bar{z}) - \bar{z} Q^*(z, \bar{z}) \]
Chiral algebra

Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

\[Q' = \begin{bmatrix} Q \\ \tilde{Q}^* \end{bmatrix}, \quad \tilde{Q}' = \begin{bmatrix} \tilde{Q} \\ -Q^* \end{bmatrix} \]

\[u_I = (1, \bar{z}) \]
\[q(z, \bar{z}) = u_I Q' = Q(z, \bar{z}) + \bar{z} \tilde{Q}^*(z, \bar{z}), \]
\[\tilde{q}(z, \bar{z}) = u_I \tilde{Q}' = \tilde{Q}(z, \bar{z}) - \bar{z} Q^*(z, \bar{z}) \]
\[\rightarrow q(z, zb)\tilde{q}(0) \sim \bar{z} \tilde{Q}^*(z, \bar{z}) \tilde{Q}(0) \sim \frac{\bar{z}}{z\bar{z}} = \frac{1}{z} \]
$4d\, \mathcal{N} = 2$ SCFTs with E_6 flavor symmetry

\[\langle TTTT \rangle, \langle J^a J^b J^c J^d \rangle, \langle TTJ^a J^b \rangle \]

Numerically ruled out

[Beem ML Liendo Rastelli van Rees]
What is the space of consistent SCFTs?

$4d$ $\mathcal{N} = 2$ SCFTs with $SU(2)$ flavor symmetry

$\langle TTTT \rangle$, $\langle J^a J^b J^c J^d \rangle$, $\langle TTJ^a J^b \rangle$

![Graph showing ruled out regions for $1/k_{4d}$ vs. c_{4d}](image)
Outline

Numerical conformal Bootstrap review

Chiral algebra

$4d$ $\mathcal{N} = 3$ SCFTs

Solving $\mathcal{N} = 3$ SCFTs?
4d $\mathcal{N} = 3$ SCFTs

→ *Non-trivial* interacting theories

[García-Etxebarria, Regalado] [Aharony, Tachikawa]
$4d \, \mathcal{N} = 3$ SCFTs

→ *Non-trivial* interacting theories

[García-Etxebarria, Regalado] [Aharony, Tachikawa]

→ Non-Lagrangian
$4d \mathcal{N} = 3$ SCFTs

→ Non-trivial interacting theories
 [García-Etxebarria, Regalado] [Aharony, Tachikawa]

→ Non-Lagrangian
 Properties from representation theory [Aharony, Evtikhiev]
$4d \ \mathcal{N} = 3$ SCFTs

→ Non-trivial interacting theories

[García-Etxebarria, Regalado] [Aharony, Tachikawa]

→ Non-Lagrangian

Properties from representation theory [Aharony, Evtikhiev]

→ $SU(3)_R \times U(1)_r$
4d $\mathcal{N} = 3$ SCFTs

\rightarrow Non-trivial interacting theories

[García-Etxebarria, Regalado] [Aharony, Tachikawa]

\rightarrow Non-Lagrangian

Properties from representation theory [Aharony, Evtikhiev]

\rightarrow $SU(3)_R \times U(1)_r$

\rightarrow No flavor symmetry
$4d \, \mathcal{N} = 3$ SCFTs

→ Non-trivial interacting theories
 [García-Etxebarria, Regalado] [Aharony, Tachikawa]

→ Non-Lagrangian
 Properties from representation theory [Aharony, Evtikhiev]

→ $SU(3)_R \times U(1)_r$

→ No flavor symmetry

→ $c = a$
4d $\mathcal{N} = 3$ SCFTs

→ *Non-trivial* interacting theories

 [García-Etxebarria, Regalado] [Aharony, Tachikawa]

→ Non-Lagrangian

 Properties from representation theory [Aharony, Evtikhiev]

→ $SU(3)_R \times U(1)_r$

→ No flavor symmetry

→ $c = a$

→ No exactly marginal deformations
4d $\mathcal{N} = 3$ SCFTs

→ Non-trivial interacting theories
 [García-Etxebarria, Regalado] [Aharony, Tachikawa]
→ Non-Lagrangian
 Properties from representation theory [Aharony, Evtikhiev]
→ $SU(3)_R \times U(1)_r$
→ No flavor symmetry
→ $c = a$
→ No exactly marginal deformations
→ Just another SCFT
Non-trivial interacting theories

[García-Etxebarria, Regalado] [Aharony, Tachikawa]

Non-Lagrangian
Properties from representation theory [Aharony, Evtikhiev]

$SU(3)_R \times U(1)_r$

No flavor symmetry

$c = a$

No exactly marginal deformations

Just another SCFT

as $\mathcal{N} = 2$: $SU(2)_R \times U(1)_r \times U(1)_F$
Outline

Numerical conformal Bootstrap review
Chiral algebra
$4d \mathcal{N} = 3$ SCFTs
Solving $\mathcal{N} = 3$ SCFTs?
Assume set of generators

→ Set of $\frac{1}{2}$-BPS operators
Chiral algebras for $\mathcal{N} = 3$ SCFTs

Assume set of generators

\rightarrow Set of $\frac{1}{2}$-BPS operators
\rightarrow Stress tensor supermultiplet

\triangleright Can one write a consistent operator product algebra?
Chiral algebras for $\mathcal{N} = 3$ SCFTs

Assume set of generators

→ Set of $\frac{1}{2}$-BPS operators
→ Stress tensor supermultiplet

▶ Can one write a consistent operator product algebra?

▶ Simplest known theory:
Assume set of generators

- Set of $\frac{1}{2}$-BPS operators
- Stress tensor supermultiplet

Can one write a consistent operator product algebra?

Simplest known theory:

- $\frac{1}{2}$-BPS operators of dimension three
- Stress tensor
Assume set of generators

→ Set of $\frac{1}{2}$-BPS operators
→ Stress tensor supermultiplet

▷ Can one write a consistent operator product algebra?

▷ Simplest known theory:
→ $\frac{1}{2}$-BPS operators of dimension three
→ Stress tensor
→ chiral algebra fully fixed and $c_{4d} = \frac{15}{12}$ [Nishinaka, Tachikawa]
Chiral algebras for $\mathcal{N} = 3$ SCFTs

Assume set of generators

→ Set of $\frac{1}{2}$-BPS operators
→ Stress tensor supermultiplet

▷ Can one write a consistent operator product algebra?

▷ Simplest known theory:
 → $\frac{1}{2}$-BPS operators of dimension three
 → Stress tensor
 → chiral algebra fully fixed and $c_{4d} = \frac{15}{12}$ [Nishinaka, Tachikawa]

→ can compute additional protected OPE coefficients
Chiral algebras for $\mathcal{N} = 3$ SCFTs

Assume set of generators

→ Set of $\frac{1}{2}$-BPS operators
Assume set of generators

→ Set of $\frac{1}{2}$-BPS operators
→ Stress tensor supermultiplet

▷ What about higher rank theories?
Chiral algebras for $\mathcal{N} = 3$ SCFTs

Assume set of generators

\rightarrow Set of $\frac{1}{2}$-BPS operators
\rightarrow Stress tensor supermultiplet

\blacktriangleright What about higher rank theories?
\rightarrow This would be a closed subalgebra, but c_{4d} is different
Chiral algebras for $\mathcal{N} = 3$ SCFTs

Assume set of generators

- Set of $\frac{1}{2}$-BPS operators
- Stress tensor supermultiplet

- What about higher rank theories?
 - This would be a closed subalgebra, but c_{4d} is different
 - Assumed set of generators is incomplete for higher rank

[ML, Liendo, Meneghelli, Mitev]
Chiral algebras for $\mathcal{N} = 3$ SCFTs

Assume set of generators

→ Set of $\frac{1}{2}$-BPS operators
→ Stress tensor supermultiplet

▶ What about higher rank theories?
→ This would be a closed subalgebra, but c_{4d} is different
→ Assumed set of generators is incomplete for higher rank
→ Minimum modification: add a single extra generator
Chiral algebras for $\mathcal{N} = 3$ SCFTs

Assume set of generators

\rightarrow Set of $\frac{1}{2}$-BPS operators
\rightarrow Stress tensor supermultiplet

\blacktriangleright What about higher rank theories?

\rightarrow This would be a closed subalgebra, but c_{4d} is different
\rightarrow Assumed set of generators is incomplete for higher rank
\rightarrow Minimum modification: add a single extra generator
\rightarrow constructed chiral algebra valid for any c_{4d}

[ML, Liendo, Meneghelli, Mitev]
Assume set of generators

→ Set of $\frac{1}{2}$-BPS operators
→ Stress tensor supermultiplet

What about higher rank theories?

→ This would be a closed subalgebra, but c_{4d} is different
→ Assumed set of generators is incomplete for higher rank
→ Minimum modification: add a single extra generator
→ constructed chiral algebra valid for any c_{4d}

[ML, Liendo, Meneghelli, Mitev]

subalgebra of higher rank theories?
Can we “zoom in” to the $c_{4d} = \frac{15}{12}$ SCFT?
Can we “zoom in” to the $c_{4d} = \frac{15}{12}$ SCFT?

- $\frac{1}{2}$-BPS operator of dimension three
Can we “zoom in” to the $c_{4d} = \frac{15}{12}$ SCFT?

- $\frac{1}{2}$-BPS operator of dimension three
- Step 1: Fix protected contributions
Solving $\mathcal{N} = 3$ SCFTs?

Can we “zoom in” to the $c_{4d} = \frac{15}{12}$ SCFT?

- $\frac{1}{2}$-BPS operator of dimension three
- Step 1: Fix protected contributions
 \[
 \lambda_{2d}^2 \sim \lambda_{\mathcal{O}4d}^2 - \lambda_{\mathcal{O}'4d}^2
 \]
Can we “zoom in” to the \(c_{4d} = \frac{15}{12} \) SCFT?

- \(\frac{1}{2} \)-BPS operator of dimension three
- Step 1: Fix protected contributions

 \[
 \lambda^2_{2d} \leadsto \lambda^2_{O_{4d}} - \lambda^2_{O'_{4d}}
 \]

 Valid for any \(\mathcal{N} = 3 \) SCFT with this operator
Solving $\mathcal{N} = 3$ SCFTs?

Can we “zoom in” to the $c_{4d} = \frac{15}{12}$ SCFT?

- $\frac{1}{2}$-BPS operator of dimension three
- Step 1: Fix protected contributions
 \[\lambda_{2d}^2 \leadsto \lambda_{O_{4d}}^2 - \lambda_{O'_{4d}}^2 \]
 Valid for any $\mathcal{N} = 3$ SCFT with this operator
- $\mathcal{N} = 4$ “sits in the way”
Can we “zoom in” to the $c_{4d} = \frac{15}{12}$ SCFT?

- $\frac{1}{2}$-BPS operator of dimension three
- Step 1: Fix protected contributions
 \[\lambda_{2d}^2 \sim \lambda_{O_{4d}}^2 - \lambda_{O_{4d}'}^2 \]
 Valid for any $\mathcal{N} = 3$ SCFT with this operator
- $\mathcal{N} = 4$ “sits in the way”
- Input chiral algebra data of specific theory
Can we “zoom in” to the $c_{4d} = \frac{15}{12}$ SCFT?

- $\frac{1}{2}$-BPS operator of dimension three
- Step 1: Fix protected contributions
 \[\lambda_{2d}^2 \sim \lambda_{\mathcal{O}_{4d}}^2 - \lambda_{\mathcal{O}_{4d}'}^2 \]
 Valid for any $\mathcal{N} = 3$ SCFT with this operator
- $\mathcal{N} = 4$ “sits in the way”
- Input chiral algebra data of specific theory
 chiral algebra conjectured by [Nishinaka, Tachikawa]
$4d \mathcal{N} = 3$ SCFT with $c = \frac{15}{12}$

\[\ell = 0, \quad \Delta_{[1,1]} \geq 4 \]

Ruled out

$\mathcal{N} = 3$?

$\mathcal{N} = 4$ SYM

[ML, Liendo, Meneghelli, Mitev]
$4d \mathcal{N} = 3 \text{ SCFTs}$

$\ell = 0, \Delta_{[1,1]} \geq 4$

Ruled out

$\mathcal{N} = 3$?

[ML, Liendo, Meneghelli, Mitev]
$4d \quad \mathcal{N} = 3 \quad \text{SCFTs}$

\[\ell = 0, \quad \Delta_{[1,1]} \geq 4 \]

Ruled out

$\mathcal{N} = 3$? No

[ML, Liendo, Meneghelli, Mitev]
$4d \mathcal{N} = 3$ SCFTs

$|\lambda_{B[3,3]}^\wedge|^2$

[ML, Liendo, Meneghelli, Mitev]