Bootstrapping $\mathcal{N} \geqslant 2$ SCFTs

Madalena Lemos

String-Math 2017 July 26 2017

Based on:

1312.5344 w/ C. Beem, P. Liendo, W. Peelaers, L. Rastelli and B. van Rees 1511.07449 w/ P. Liendo 1702.05101 w/ M. Cornagliotto and V. Schomerus

Outline

- 1 The (Super)conformal Bootstrap Program Conformal bootstrap Superconformal bootstrap
- 2 A solvable subsector
- **3** Constraining the space of $\mathcal{N}=2$ SCFTs
- **4** 4*d* N = 3 **SCFTs**
- **5** Summary and Outlook

Outline

- 1 The (Super)conformal Bootstrap Program
 Conformal bootstrap
 Superconformal bootstrap
- 2 A solvable subsector
- **3** Constraining the space of $\mathcal{N}=2$ SCFTs
- **4** 4*d* N = 3 **SCFTs**
- **5** Summary and Outlook

What is the space of consistent (S)CFTs?

What is the space of consistent (S)CFTs?

→ Maximally supersymmetric theories: well known list of theories

What is the space of consistent (S)CFTs?

→ Maximally supersymmetric theories: well known list of theories

 $ightarrow \mathcal{N}=2$ theories: large known list of theories many lacking a Lagrangian description

What is the space of consistent (S)CFTs?

- → Maximally supersymmetric theories: well known list of theories
- $ightarrow \mathcal{N}=3$ theories: not known to exist until García-Etxebarria and Regalado
- $ightarrow \mathcal{N}=2$ theories: large known list of theories many lacking a Lagrangian description

What is the space of consistent (S)CFTs?

- → Maximally supersymmetric theories: well known list of theories
- $ightarrow \mathcal{N}=3$ theories: not known to exist until García-Etxebarria and Regalado
- $ightarrow \mathcal{N}=2$ theories: large known list of theories many lacking a Lagrangian description

Can we bootstrap specific theories?

What is the space of consistent (S)CFTs?

- → Maximally supersymmetric theories: well known list of theories
- $ightarrow \mathcal{N}=3$ theories: not known to exist until García-Etxebarria and Regalado
- $ightarrow \mathcal{N}=2$ theories: large known list of theories many lacking a Lagrangian description

Can we bootstrap specific theories?

→ Particularly helpful if theory is uniquely fixed by a set of discrete data

Outline

- 1 The (Super)conformal Bootstrap Program Conformal bootstrap Superconformal bootstrap
- 2 A solvable subsector
- **3** Constraining the space of $\mathcal{N} = 2$ SCFTs
- **4** 4*d* N = 3 **SCFTs**
- **5** Summary and Outlook

Conformal field theory defined by

Set of *local* operators and their correlation functions

Conformal field theory defined by

Set of *local* operators and their correlation functions

CFT data

 $\{\mathcal{O}_{\Delta,\ell,\dots}(x)\}$ and

Conformal field theory defined by

Set of local operators and their correlation functions

CFT data

 $\{\mathcal{O}_{\Delta,\ell,\ldots}(x)\}$ and

Operator Product Expansion

$$\mathcal{O}_1(x)\mathcal{O}_2(0) = \sum_k \lambda_{\mathcal{O}_1\mathcal{O}_2\mathcal{O}_k} \mathcal{O}_k(0)$$

Conformal field theory defined by

Set of local operators and their correlation functions

CFT data

$$\{\mathcal{O}_{\Delta,\ell,\dots}(x)\}$$
 and

Operator Product Expansion

$$\mathcal{O}_1(x)\mathcal{O}_2(0) = \sum_k \lambda_{\mathcal{O}_1\mathcal{O}_2\mathcal{O}_k} \mathcal{O}_k(0)$$

→ Finite radius of convergence

Conformal field theory defined by

Set of local operators and their correlation functions

CFT data

$$\{\mathcal{O}_{\Delta,\ell,\dots}(x)\}$$
 and

Operator Product Expansion

$$\mathcal{O}_1(x)\mathcal{O}_2(0) = \sum_{k ext{prim.}} \lambda_{\mathcal{O}_1\mathcal{O}_2\mathcal{O}_k} c(x, \partial_x) \mathcal{O}_k(0)$$

→ Finite radius of convergence

Conformal field theory defined by

Set of local operators and their correlation functions

CFT data

$$\{\mathcal{O}_{\Delta,\ell,\dots}(x)\}$$
 and

Operator Product Expansion

$$\mathcal{O}_1(x)\mathcal{O}_2(0) = \sum_{k ext{prim.}} \lambda_{\mathcal{O}_1\mathcal{O}_2\mathcal{O}_k} c(x, \partial_x) \mathcal{O}_k(0)$$

- → Finite radius of convergence
- ightarrow *n*-point function by recursive use of the OPE until $\langle \mathbb{1} \rangle = 1$

Conformal field theory defined by

Set of local operators and their correlation functions

CFT data

$$\{\mathcal{O}_{\Delta,\ell,\dots}(x)\}$$
 and $\{\lambda_{\mathcal{O}_i\mathcal{O}_i\mathcal{O}_k}\}$

Operator Product Expansion

$$\mathcal{O}_1(x)\mathcal{O}_2(0) = \sum_{k ext{prim.}} \lambda_{\mathcal{O}_1\mathcal{O}_2\mathcal{O}_k} c(x, \partial_x) \mathcal{O}_k(0)$$

- → Finite radius of convergence
- ightarrow *n*-point function by recursive use of the OPE until $\langle \mathbb{1} \rangle = 1$

Conformal field theory defined by

Set of *local* operators and their correlation functions

CFT data

$$\{\mathcal{O}_{\Delta,\ell,\dots}(x)\}$$
 and $\{\lambda_{\mathcal{O}_i\mathcal{O}_i\mathcal{O}_k}\}$

Operator Product Expansion

$$\mathcal{O}_1(x)\mathcal{O}_2(0) = \sum_{k ext{prim.}} \lambda_{\mathcal{O}_1\mathcal{O}_2\mathcal{O}_k} c(x, \partial_x) \mathcal{O}_k(0)$$

- → Finite radius of convergence
- $\rightarrow n$ -point function by recursive use of the OPE until $\langle 1 \rangle = 1$

CFT data strongly constrained

- Unitarity
- ► Associativity of the operator product algebra

Crossing Symmetry

$$\langle (\mathcal{O}_1(x_1) \ \mathcal{O}_2(x_2)) \mathcal{O}_3(x_3) \ \mathcal{O}_4(x_4) \rangle =$$

Crossing Symmetry

$$\langle \mathcal{O}_{1}(x_{1})(\mathcal{O}_{2}(x_{2}) \mathcal{O}_{3}(x_{3}))\mathcal{O}_{4}(x_{4}) \rangle = 1$$

$$\sum_{\mathcal{O}_{\Delta,\ell}} 1 \qquad \qquad 4$$

$$\mathcal{O}_{\Delta,\ell} \qquad 3 \qquad = \sum_{\tilde{\mathcal{O}}_{\Delta,\ell}} \tilde{\mathcal{O}}_{\Delta,\ell}$$

Outline

- 1 The (Super)conformal Bootstrap Program
 Conformal bootstrap
 Superconformal bootstrap
- 2 A solvable subsector
- **3** Constraining the space of $\mathcal{N}=2$ SCFTs
- **4** 4*d* N = 3 **SCFTs**
- **5** Summary and Outlook

 Various conformal families related by action of supercharges

- Various conformal families related by action of supercharges
- ► Finite re-organization of an infinite amount of data

- Various conformal families related by action of supercharges
- ▶ Finite re-organization of an infinite amount of data

Q: Is there a solvable truncation of the crossing equations?

- Various conformal families related by action of supercharges
- ► Finite re-organization of an infinite amount of data

Q: Is there a solvable truncation of the crossing equations?

 \rightarrow Yes, for 4d $\mathcal{N}\geqslant 2$ [Beem ML Liendo Peelaers Rastelli van Rees]

- Various conformal families related by action of supercharges
- ► Finite re-organization of an infinite amount of data

Q: Is there a solvable truncation of the crossing equations?

- ightarrow Yes, for 4d $\mathcal{N}\geqslant 2$ [Beem ML Liendo Peelaers Rastelli van Rees] 6d $\mathcal{N}=(2,0)$ and 2d $\mathcal{N}=(0,4)$ [Beem Rastelli van Rees]
 - Step 1: Solve this subsector
 - (Step 2: Full blown numerics for the rest)

Outline

- The (Super)conformal Bootstrap Program Conformal bootstrap
 Superconformal bootstrap
- 2 A solvable subsector
- **3** Constraining the space of $\mathcal{N}=2$ SCFTs
- **4** 4*d* N = 3 **SCFTs**
- **5** Summary and Outlook

Organize operators in representations of superconformal algebra

$$\{\mathcal{O}_{\Delta,(j_1,j_2),}\}$$

Organize operators in representations of superconformal algebra

$$\{\mathcal{O}_{\Delta,(j_1,j_2),\underbrace{R}_{SU(2)_R},\underbrace{r}_{U(1)_r},f}\}$$

Organize operators in representations of superconformal algebra

$$\{\mathcal{O}_{\Delta,(j_1,j_2),\underbrace{R}_{SU(2)_R},\underbrace{r}_{U(1)_r},{}^f\}}$$

Claim

ightarrow Pick a plane $\mathbb{R}^2 \in \mathbb{R}^4$, $(z, \bar{z}) \in \mathbb{R}^2$

Organize operators in representations of superconformal algebra

$$\{\mathcal{O}_{\Delta,(j_1,j_2),\underbrace{R}_{SU(2)_R},\underbrace{r}_{U(1)_r},{}^f}\}$$

Claim

- ightarrow Pick a plane $\mathbb{R}^2 \in \mathbb{R}^4$, $(z, \bar{z}) \in \mathbb{R}^2$
- \rightarrow Restrict to operators with $\Delta=2R+j_1+j_2$

Organize operators in representations of superconformal algebra

$$\{\mathcal{O}_{\Delta,(j_1,j_2),\underbrace{R}_{SU(2)_R},\underbrace{r}_{U(1)_r},{}^f}\}$$

Claim

- ightarrow Pick a plane $\mathbb{R}^2 \in \mathbb{R}^4$, $(z, \bar{z}) \in \mathbb{R}^2$
- \rightarrow Restrict to operators with $\Delta = 2R + j_1 + j_2$

$$\langle \mathcal{O}_1^{I_1}(z_1,\bar{z}_1)\dots\mathcal{O}_n^{I_n}(z_n,\bar{z}_n)\rangle$$

Organize operators in representations of superconformal algebra

$$\{\mathcal{O}_{\Delta,(j_1,j_2),\underbrace{R}_{SU(2)_R},\underbrace{r}_{U(1)_r},f}\}$$

Claim

- ightarrow Pick a plane $\mathbb{R}^2 \in \mathbb{R}^4$, $(z, \bar{z}) \in \mathbb{R}^2$
- \rightarrow Restrict to operators with $\Delta = 2R + j_1 + j_2$

$$u_{l_1}(\bar{z}_1) \dots u_{l_n}(\bar{z}_n) \langle \mathcal{O}_1^{l_1}(z_1, \bar{z}_1) \dots \mathcal{O}_n^{l_n}(z_n, \bar{z}_n) \rangle$$

Organize operators in representations of superconformal algebra

$$\{\mathcal{O}_{\Delta,(j_1,j_2),\underbrace{R}_{SU(2)_R},\underbrace{r}_{U(1)_r},f}\}$$

Claim

- ightarrow Pick a plane $\mathbb{R}^2 \in \mathbb{R}^4$, $(z, \bar{z}) \in \mathbb{R}^2$
- \rightarrow Restrict to operators with $\Delta = 2R + j_1 + j_2$

$$u_{l_1}(\bar{z}_1)\ldots u_{l_n}(\bar{z}_n)\langle \mathcal{O}_1^{l_1}(z_1,\bar{z}_1)\ldots \mathcal{O}_n^{l_n}(z_n,\bar{z}_n)\rangle = f(z_i)$$

→ Meromorphic!

Why?

► Subsector = Cohomology of nilpotent Q

Why?

lacksquare Subsector = Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q} + \mathcal{S}$

Why?

- Subsector = Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q} + \mathcal{S}$
- \rightarrow Cohomology at the origin \Rightarrow non-empty classes

Why?

- Subsector = Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q} + \mathcal{S}$
- \rightarrow Cohomology at the origin \Rightarrow non-empty classes

$$\Delta = 2R + j_1 + j_2$$

Why?

- Subsector = Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q} + \mathcal{S}$
- \rightarrow Cohomology at the origin \Rightarrow non-empty classes

$$\Delta = 2R + j_1 + j_2$$

• On plane $\mathfrak{sl}_2 \times \bar{\mathfrak{sl}}_2$

Why?

- lacksquare Subsector = Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q} + \mathcal{S}$
- ightarrow Cohomology at the origin \Rightarrow non-empty classes

$$\Delta = 2R + j_1 + j_2$$

• On plane
$$\mathfrak{sl}_2 \times \overline{\mathfrak{sl}}_2$$

Why?

- ▶ Subsector = Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q} + \mathcal{S}$
- ightarrow Cohomology at the origin \Rightarrow non-empty classes

$$\Delta = 2R + j_1 + j_2$$

▶ On plane
$$\mathfrak{sl}_2$$
 × $\bar{\mathfrak{sl}}_2$ does not

Why?

- ▶ Subsector = Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q} + \mathcal{S}$
- ightarrow Cohomology at the origin \Rightarrow non-empty classes

$$\Delta = 2R + j_1 + j_2$$

• On plane \mathfrak{sl}_2 \times $\mathfrak{\overline{sl}}_2$ does not

 \rightarrow twisted translations $u_I(\bar{z})$

Why?

- ▶ Subsector = Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q} + \mathcal{S}$
- ightarrow Cohomology at the origin \Rightarrow non-empty classes

$$\Delta = 2R + j_1 + j_2$$

- On plane \mathfrak{sl}_2 \times \mathfrak{sl}_2 does not
- \rightarrow twisted translations $u_I(\bar{z})$
- \hookrightarrow diagonal subalgebra $\bar{\mathfrak{sl}}_2 \times \mathfrak{su}(2)_R$ is \mathbb{Q} exact

Why?

- ▶ Subsector = Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q} + \mathcal{S}$
- ightarrow Cohomology at the origin \Rightarrow non-empty classes

$$\Delta = 2R + j_1 + j_2$$

- On plane \mathfrak{sl}_2 \times $\mathfrak{\overline{sl}}_2$ does not
- \rightarrow twisted translations $u_I(\bar{z})$
- \hookrightarrow diagonal subalgebra $\bar{\mathfrak{sl}}_2 \times \mathfrak{su}(2)_R$ is \mathbb{Q} exact
- → anti-holomorphic dependence drops out

$4d \mathcal{N} \geqslant 2 \text{ SCFT} \longrightarrow \text{VOA}$

 \rightarrow Cohomology classes \Rightarrow Vertex operators

- \rightarrow Cohomology classes \Rightarrow Vertex operators
- \rightarrow conformal weight $h = R + j_1 + j_2 \geqslant 0$

- \rightarrow Cohomology classes \Rightarrow Vertex operators
- \rightarrow conformal weight $h = R + j_1 + j_2 \geqslant 0$
- ightarrow Each $\mathcal{N}=2$ multiplet contributes at most with one \mathfrak{sl}_2 primary

- \rightarrow Cohomology classes \Rightarrow Vertex operators
- \rightarrow conformal weight $h = R + j_1 + j_2 \geqslant 0$
- ightarrow Each $\mathcal{N}=2$ multiplet contributes at most with one \mathfrak{sl}_2 primary
 - Very specific non-unitary VOA constrained by unitarity of 4d theory

- \rightarrow Cohomology classes \Rightarrow Vertex operators
- \rightarrow conformal weight $h = R + j_1 + j_2 \geqslant 0$
- ightarrow Each $\mathcal{N}=2$ multiplet contributes at most with one \mathfrak{sl}_2 primary
 - Very specific non-unitary VOA constrained by unitarity of 4d theory
 - → some operators acquire negative norms

- \rightarrow Cohomology classes \Rightarrow Vertex operators
- \rightarrow conformal weight $h = R + j_1 + j_2 \geqslant 0$
- ightarrow Each $\mathcal{N}=2$ multiplet contributes at most with one \mathfrak{sl}_2 primary
 - Very specific non-unitary VOA constrained by unitarity of 4d theory
 - ightarrow some operators acquire negative norms
 - ▶ Obtain VOA from 4d $\mathcal{N}=2$ SCFT

- \rightarrow Cohomology classes \Rightarrow Vertex operators
- \rightarrow conformal weight $h = R + j_1 + j_2 \geqslant 0$
- ightarrow Each $\mathcal{N}=2$ multiplet contributes at most with one \mathfrak{sl}_2 primary
 - Very specific non-unitary VOA constrained by unitarity of 4d theory
 - → some operators acquire negative norms
 - ▶ Obtain VOA from $4d \mathcal{N} = 2 \text{ SCFT}$
 - ▶ Given a VOA does there exist a 4d SCFT?

- \rightarrow Cohomology classes \Rightarrow Vertex operators
- \rightarrow conformal weight $h = R + j_1 + j_2 \geqslant 0$
- ightarrow Each $\mathcal{N}=2$ multiplet contributes at most with one \mathfrak{sl}_2 primary
 - Very specific non-unitary VOA constrained by unitarity of 4d theory
 - → some operators acquire negative norms
 - ▶ Obtain VOA from $4d \mathcal{N} = 2 \text{ SCFT}$
 - ▶ Given a VOA does there exist a 4d SCFT?
 - \hookrightarrow give an example of what can go wrong

- \rightarrow Cohomology classes \Rightarrow Vertex operators
- \rightarrow conformal weight $h = R + j_1 + j_2 \geqslant 0$
- ightarrow Each $\mathcal{N}=2$ multiplet contributes at most with one \mathfrak{sl}_2 primary
 - Very specific non-unitary VOA constrained by unitarity of 4d theory
 - → some operators acquire negative norms
 - ▶ Obtain VOA from 4d $\mathcal{N}=2$ SCFT
 - Given a VOA does there exist a 4d SCFT?
 - \hookrightarrow give an example of what can go wrong
 - ▶ How much information can we recover from the VOA?

Which operators are in the cohomology?

ightarrow Stress tensor $T_{\mu
u}$

Which operators are in the cohomology?

 \rightarrow Stress tensor $T_{\mu\nu} \rightsquigarrow$ superdescendant

- \rightarrow Stress tensor $T_{\mu\nu} \rightsquigarrow$ superdescendant
- → Stress tensor supermultiplet

- \rightarrow Stress tensor $T_{\mu\nu} \rightsquigarrow$ superdescendant
- \rightarrow Stress tensor supermultiplet $\Rightarrow 2d$ stress tensor

- \rightarrow Stress tensor $T_{\mu\nu} \rightsquigarrow$ superdescendant
- \rightarrow Stress tensor supermultiplet $\Rightarrow 2d$ stress tensor

$$T(z)T(0) \sim -12\frac{c_{4d}/2}{z^4} + 2\frac{T(0)}{z^2} + \frac{\partial T(0)}{z} + \ldots,$$

Which operators are in the cohomology?

- \rightarrow Stress tensor $T_{\mu\nu} \rightsquigarrow$ superdescendant
- \rightarrow Stress tensor supermultiplet $\Rightarrow 2d$ stress tensor

$$T(z)T(0) \sim -12\frac{c_{4d}/2}{z^4} + 2\frac{T(0)}{z^2} + \frac{\partial T(0)}{z} + \ldots,$$

 \hookrightarrow Global \mathfrak{sl}_2 enhances to Virasoro

- \rightarrow Stress tensor $T_{\mu\nu} \rightsquigarrow$ superdescendant
- \rightarrow Stress tensor supermultiplet $\Rightarrow 2d$ stress tensor

$$T(z)T(0) \sim -12\frac{c_{4d}/2}{z^4} + 2\frac{T(0)}{z^2} + \frac{\partial T(0)}{z} + \ldots,$$

- \hookrightarrow Global \mathfrak{sl}_2 enhances to Virasoro
- \hookrightarrow $c_{2d} = -12c_{4d}$

- \rightarrow Stress tensor $T_{\mu\nu} \rightsquigarrow$ superdescendant
- \rightarrow Stress tensor supermultiplet $\Rightarrow 2d$ stress tensor

$$T(z)T(0) \sim -12\frac{c_{4d}/2}{z^4} + 2\frac{T(0)}{z^2} + \frac{\partial T(0)}{z} + \ldots,$$

- \hookrightarrow Global \mathfrak{sl}_2 enhances to Virasoro
- $\hookrightarrow \boxed{c_{2d} = -12c_{4d}}$

Which operators are in the cohomology?

→ Flavor symmetries current multiplet

- → Flavor symmetries current multiplet
- → Affine Kac Moody current algebra

$$J^{a}(z)J^{b}(0) \sim -\frac{k_{4d}/2\delta^{ab}}{z^{2}} + if^{abc}\frac{J^{c}(0)}{z} + \dots,$$

- → Flavor symmetries current multiplet
- \hookrightarrow Affine Kac Moody current algebra

$$J^{a}(z)J^{b}(0) \sim -\frac{k_{4d}/2\delta^{ab}}{z^{2}} + if^{abc}\frac{J^{c}(0)}{z} + \dots,$$

$$\hookrightarrow$$
 $k_{2d} = -\frac{k_{4d}}{2}$

- → Flavor symmetries current multiplet
- → Affine Kac Moody current algebra

$$J^{a}(z)J^{b}(0) \sim -\frac{k_{4d}/2\delta^{ab}}{z^{2}} + if^{abc}\frac{J^{c}(0)}{z} + \dots,$$

$$\hookrightarrow \boxed{k_{2d} = -\frac{k_{4d}}{2}}$$

4d
$$\mathcal{N}=2$$
 SCFTs with a flavor symmetry $\langle TTTT \rangle$, $\langle J^a J^b J^c J^d \rangle$, $\langle TTJ^a J^b \rangle$

4d $\mathcal{N}=2$ SCFTs with a flavor symmetry $\langle TTTT \rangle$, $\langle J^a J^b J^c J^d \rangle$, $\langle TTJ^a J^b \rangle$ functions of c_{2d} and k_{2d}

4d
$$\mathcal{N}=2$$
 SCFTs with a flavor symmetry $\langle TTTT \rangle$, $\langle J^a J^b J^c J^d \rangle$, $\langle TTJ^a J^b \rangle$ functions of c_{2d} and k_{2d}

▶ Block decomposition:

$$\sum_{\mathcal{O}_{2d}} \lambda_{\mathcal{O}_{2d}}^2$$

4d $\mathcal{N}=2$ SCFTs with a flavor symmetry $\langle TTTT \rangle$, $\langle J^a J^b J^c J^d \rangle$, $\langle TTJ^a J^b \rangle$ functions of c_{2d} and k_{2d}

Block decomposition:

$$\sum_{\mathcal{O}_{2d}} \lambda_{\mathcal{O}_{2d}}^2 \longrightarrow \mathcal{O}_{2d}$$

$$\rightarrow \lambda_{\mathcal{O}_{2d}}^2$$

4d
$$\mathcal{N}=2$$
 SCFTs with a flavor symmetry $\langle TTTT \rangle$, $\langle J^a J^b J^c J^d \rangle$, $\langle TTJ^a J^b \rangle$ functions of c_{2d} and k_{2d}

▶ Block decomposition:

$$\rightarrow \lambda_{\mathcal{O}_{2d}}^2 \leadsto \lambda_{\mathcal{O}_{4d}}^2$$

Interpret as four-dimensional quantities (with some assumptions: interacting theory, unique stress tensor)

What is the space of consistent SCFTs?

4d
$$\mathcal{N}=2$$
 SCFTs with a flavor symmetry $\langle TTTT \rangle$, $\langle J^a J^b J^c J^d \rangle$, $\langle TTJ^a J^b \rangle$ functions of c_{2d} and k_{2d}

Block decomposition:

$$\rightarrow \lambda_{\mathcal{O}_{2d}}^2 \rightsquigarrow \lambda_{\mathcal{O}_{4d}}^2 \underset{\text{4d unitarity}}{\underbrace{\geqslant}} 0$$

Interpret as four-dimensional quantities

(with some assumptions: interacting theory, unique stress tensor)

What is the space of consistent SCFTs?

4d
$$\mathcal{N}=2$$
 SCFTs with a flavor symmetry $\langle TTTT \rangle$, $\langle J^a J^b J^c J^d \rangle$, $\langle TTJ^a J^b \rangle$ functions of c_{2d} and k_{2d}

▶ Block decomposition:

$$\sum_{\mathcal{O}_{2d}} \lambda_{\mathcal{O}_{2d}}^2 \longrightarrow \mathcal{O}_{2d}$$

ightarrow $\lambda_{\mathcal{O}_{2d}}^2 \leadsto \lambda_{\mathcal{O}_{4d}}^2$ $\underset{4d \text{ unitarity}}{\gtrless} 0 \Rightarrow \text{New unitarity bounds}$

Interpret as four-dimensional quantities

(with some assumptions: interacting theory, unique stress tensor)

Outline

- 1 The (Super)conformal Bootstrap Program
 Conformal bootstrap
 Superconformal bootstrap
- 2 A solvable subsector
- **3** Constraining the space of $\mathcal{N}=2$ SCFTs
- **4** 4*d* N = 3 **SCFTs**
- **5** Summary and Outlook

$4d \mathcal{N} = 2 \text{ SCFTs with } E_6 \text{ flavor symmetry}$

Outline

- The (Super)conformal Bootstrap Program Conformal bootstrap
 Superconformal bootstrap
- 2 A solvable subsector
- **3** Constraining the space of $\mathcal{N}=2$ SCFTs
- **4** 4*d* N = 3 **SCFTs**
- **5** Summary and Outlook

▶ 4d $\mathcal{N} \geqslant$ 3: some of the extra supercharges commute with \mathbb{Q}

▶ $4d \ \mathcal{N} \geqslant 3$: some of the extra supercharges commute with \mathbb{Q} $\hookrightarrow 4d \ \mathcal{N} = 4 \Rightarrow 2d$ "small" $\mathcal{N} = 4$ chiral algebra

▶ 4d $\mathcal{N} \geqslant$ 3: some of the extra supercharges commute with \mathbb{Q}

$$\hookrightarrow$$
 4d $\mathcal{N}=4\Rightarrow 2d$ "small" $\mathcal{N}=4$ chiral algebra

$$\hookrightarrow$$
 4d $\mathcal{N}=3\Rightarrow 2d$ $\mathcal{N}=2$ chiral algebra [Nishinaka, Tachikawa]

▶ 4d $\mathcal{N} \geqslant$ 3: some of the extra supercharges commute with \mathbb{Q}

$$\hookrightarrow$$
 4d $\mathcal{N}=4\Rightarrow 2d$ "small" $\mathcal{N}=4$ chiral algebra

$$\hookrightarrow$$
 4d $\mathcal{N}=3\Rightarrow 2d$ $\mathcal{N}=2$ chiral algebra [Nishinaka, Tachikawa]

▶ 2d stress tensor promoted to supermultiplet \mathcal{J}

▶ 4d $\mathcal{N} \geqslant$ 3: some of the extra supercharges commute with Q

$$\hookrightarrow$$
 4d $\mathcal{N}=4\Rightarrow 2d$ "small" $\mathcal{N}=4$ chiral algebra

$$\hookrightarrow$$
 4d $\mathcal{N}=3\Rightarrow 2d$ $\mathcal{N}=2$ chiral algebra [Nishinaka, Tachikawa]

▶ 2d stress tensor promoted to supermultiplet $\mathcal J$

 $2d \mathcal{N} = 2 \text{ Stress tensor } \mathcal{J}$

 \rightarrow A trivial statement in 2d:

▶ 4d $\mathcal{N} \geqslant$ 3: some of the extra supercharges commute with \mathbb{Q}

$$\hookrightarrow$$
 4 d $\mathcal{N}=4$ \Rightarrow 2 d "small" $\mathcal{N}=4$ chiral algebra

$$\hookrightarrow$$
 4 d $\mathcal{N}=3\Rightarrow 2d$ $\mathcal{N}=2$ chiral algebra [Nishinaka, Tachikawa]

▶ 2d stress tensor promoted to supermultiplet $\mathcal J$

$2d \mathcal{N} = 2 \text{ Stress tensor } \mathcal{J}$

ightarrow A trivial statement in 2d: $\langle \mathcal{J}\mathcal{J}\mathcal{J}\mathcal{J}
angle$ is fixed in terms of c_{2d}

▶ 4d $\mathcal{N} \geqslant$ 3: some of the extra supercharges commute with \mathbb{Q}

$$\hookrightarrow$$
 4 d $\mathcal{N}=4\Rightarrow 2d$ "small" $\mathcal{N}=4$ chiral algebra

$$\hookrightarrow$$
 4 d $\mathcal{N}=3\Rightarrow 2d$ $\mathcal{N}=2$ chiral algebra [Nishinaka, Tachikawa]

▶ 2d stress tensor promoted to supermultiplet $\mathcal J$

$2d \mathcal{N} = 2$ Stress tensor \mathcal{J}

- ightarrow A trivial statement in 2d: $\langle \mathcal{J}\mathcal{J}\mathcal{J}\mathcal{J}
 angle$ is fixed in terms of c_{2d}
- ightarrow Present in any local $\mathcal{N}=3$ SCFT

2d
$$\mathcal{N}=2$$
 Stress tensor \mathcal{J}
 $\langle \mathcal{J}\mathcal{J}\mathcal{J}\mathcal{J}\rangle$ is fixed in terms of $c_{2d}\Rightarrow \lambda_{\mathcal{O}_{2d}}^2 \rightsquigarrow \lambda_{\mathcal{O}_{4d}}^2$

2d
$$\mathcal{N}=2$$
 Stress tensor \mathcal{J} $\langle \mathcal{J}\mathcal{J}\mathcal{J}\mathcal{J}\rangle$ is fixed in terms of $c_{2d}\Rightarrow \lambda_{\mathcal{O}_{2d}}^2 \rightsquigarrow \lambda_{\mathcal{O}_{4d}}^2$

$$c_{4d} \geqslant \frac{13}{24}$$
 [Cornagliotto, ML, Schomerus]

 \hookrightarrow Not saturated by any known SCFT

2d
$$\mathcal{N}=2$$
 Stress tensor \mathcal{J} $\langle \mathcal{J}\mathcal{J}\mathcal{J}\mathcal{J}\rangle$ is fixed in terms of $c_{2d}\Rightarrow \lambda_{\mathcal{O}_{2d}}^2 \rightsquigarrow \lambda_{\mathcal{O}_{4d}}^2$

$$c_{4d} \geqslant \frac{13}{24}$$
 [Cornagliotto, ML, Schomerus]

 \hookrightarrow Not saturated by any known SCFT

2d
$$\mathcal{N}=2$$
 Stress tensor \mathcal{J} $\langle \mathcal{J}\mathcal{J}\mathcal{J}\mathcal{J}\rangle$ is fixed in terms of $c_{2d}\Rightarrow \lambda_{\mathcal{O}_{2d}}^2 \rightsquigarrow \lambda_{\mathcal{O}_{4d}}^2$

$$c_{4d} \geqslant \frac{13}{24}$$
 [Cornagliotto, ML, Schomerus]

- → Not saturated by any known SCFT
- \hookrightarrow Similar bounds in $\mathcal{N}=4$ and $\mathcal{N}=2$ saturated by known SCFTs [Beem, Rastelli, van Rees] [Liendo, Ramirez, Seo]

2d
$$\mathcal{N}=2$$
 Stress tensor \mathcal{J} $\langle \mathcal{J}\mathcal{J}\mathcal{J}\mathcal{J}\rangle$ is fixed in terms of $c_{2d}\Rightarrow \lambda_{\mathcal{O}_{2d}}^2 \rightsquigarrow \lambda_{\mathcal{O}_{4d}}^2$

$$c_{4d} \geqslant \frac{13}{24}$$
 [Cornagliotto, ML, Schomerus]

- → Not saturated by any known SCFT
- \hookrightarrow Similar bounds in $\mathcal{N}=4$ and $\mathcal{N}=2$ saturated by known SCFTs [Beem, Rastelli, van Rees] [Liendo, Ramirez, Seo]
- ightarrow $c_{4d}=rac{13}{24} \Rightarrow$ reconstruct 4d operators appearing in ${\cal J}$ ${\cal J}$

2d
$$\mathcal{N}=2$$
 Stress tensor \mathcal{J}
 $\langle \mathcal{J}\mathcal{J}\mathcal{J}\mathcal{J}\rangle$ is fixed in terms of $c_{2d}\Rightarrow \lambda_{\mathcal{O}_{2d}}^2 \rightsquigarrow \lambda_{\mathcal{O}_{4d}}^2$

$$c_{4d} \geqslant \frac{13}{24}$$
 [Cornagliotto, ML, Schomerus]

- → Not saturated by any known SCFT
- \hookrightarrow Similar bounds in $\mathcal{N}=4$ and $\mathcal{N}=2$ saturated by known SCFTs [Beem, Rastelli, van Rees] [Liendo, Ramirez, Seo]
- ightarrow $c_{4d}=rac{13}{24} \Rightarrow$ reconstruct 4d operators appearing in ${\cal J}$ ${\cal J}$
- → Signs of norms inconsistent with an *interacting* 4d SCFT existing

2d
$$\mathcal{N}=2$$
 Stress tensor \mathcal{J}
 $\langle \mathcal{J}\mathcal{J}\mathcal{J}\mathcal{J}\rangle$ is fixed in terms of $c_{2d}\Rightarrow \lambda_{\mathcal{O}_{2d}}^2 \rightsquigarrow \lambda_{\mathcal{O}_{4d}}^2$

$$c_{4d} > rac{13}{24}$$
 [Cornagliotto, ML, Schomerus]

- → Not saturated by any known SCFT
- \hookrightarrow Similar bounds in $\mathcal{N}=4$ and $\mathcal{N}=2$ saturated by known SCFTs [Beem, Rastelli, van Rees] [Liendo, Ramirez, Seo]
- ightarrow $c_{4d}=rac{13}{24} \Rightarrow$ reconstruct 4d operators appearing in ${\cal J}$ ${\cal J}$
- → Signs of norms inconsistent with an *interacting* 4d SCFT existing

Outline

- The (Super)conformal Bootstrap Program Conformal bootstrap
 Superconformal bootstrap
- 2 A solvable subsector
- **3** Constraining the space of $\mathcal{N}=2$ SCFTs
- **4** 4*d* N = 3 **SCFTs**
- **5** Summary and Outlook

New constraints on the space of allowed $\mathcal{N}=2,3\,$ SCFTs

New constraints on the space of allowed $\mathcal{N}=2,3$ SCFTs

 \rightarrow No "minimal" $\mathcal{N}=3$ SCFT with $c=\frac{13}{24}$

New constraints on the space of allowed $\mathcal{N}=2,3$ SCFTs

- \rightarrow No "minimal" $\mathcal{N}=3$ SCFT with $c=\frac{13}{24}$
 - → can we improve on this bound analytically?
 What are the conditions for a VOA to correspond to a 4d SCFT?

New constraints on the space of allowed $\mathcal{N}=2,3$ SCFTs

- ightarrow No "minimal" $\mathcal{N}=3$ SCFT with $c=rac{13}{24}$
 - → can we improve on this bound analytically?
 What are the conditions for a VOA to correspond to a 4d SCFT?
- → Can the numerical bootstrap complement these?

New constraints on the space of allowed $\mathcal{N}=2,3$ SCFTs

- \rightarrow No "minimal" $\mathcal{N}=3$ SCFT with $c=\frac{13}{24}$
- → Can the numerical bootstrap complement these?

$$\rightarrow$$
 Is $c_{4d}/k_{4d} \geqslant ...?$

New constraint on the space of allowed $\mathcal{N}=2,3$ SCFTs

- ightarrow No "minimal" $\mathcal{N}=3$ SCFT with $c=rac{13}{24}$
 - → can we improve on this bound analytically?

 What are the conditions for a VOA to correspond to a 4d SCFT?
- → Can the numerical bootstrap complement these?
- \rightarrow Is $c_{4d}/k_{4d} \geqslant ...?$

Numerically solving theories?

▶ This mixed correlator seems like a good starting point

Thank you!

Backup slides

Outline

Numerical conformal Bootstrap review

Chiral algebra $4d \mathcal{N} = 3 \text{ SCFTs}$ Solving $\mathcal{N} = 3 \text{ SCFTs}$?

→ Solve crossing equations for *all* four-point functions

→ Solve crossing equations for *all* four-point functions

[Rattazzi Rychkov Tonni Vichi]

► Solving ⇒ constraining

→ Solve crossing equations for *all* four-point functions

[Rattazzi Rychkov Tonni Vichi]

- ▶ Solving ⇒ constraining
 - \rightarrow Guess for the spectrum

→ Solve crossing equations for *all* four-point functions

[Rattazzi Rychkov Tonni Vichi]

- ▶ Solving ⇒ constraining
 - \rightarrow Guess for the spectrum
 - $\hookrightarrow\,$ there's a large gap in the spectrum

→ Solve crossing equations for *all* four-point functions

[Rattazzi Rychkov Tonni Vichi]

- ▶ Solving ⇒ constraining
 - → Guess for the spectrum
 - → Can it ever define a consistent CFT?

→ Solve crossing equations for *all* four-point functions

[Rattazzi Rychkov Tonni Vichi]

- ▶ Solving ⇒ constraining
 - → Guess for the spectrum
 - \hookrightarrow there's a large gap in the spectrum
 - → Can it ever define a consistent CFT?

Sum rule: identical scalars ϕ

→ Solve crossing equations for *all* four-point functions

[Rattazzi Rychkov Tonni Vichi]

- ▶ Solving ⇒ constraining
 - → Guess for the spectrum
 - → Can it ever define a consistent CFT?

Sum rule: identical scalars ϕ

ightarrow Identity operator $\lambda_{\mathcal{OO}\mathbb{1}}=1$

$$1 = \sum_{\substack{\mathcal{O}_{\Delta_{\ell}} \neq \mathbb{1} \\ \mathcal{O} \in \phi\phi}} \lambda_{\phi\phi\mathcal{O}}^2 \underbrace{\frac{u^{\Delta_{\phi}} g_{\Delta,\ell}(v,u) - v^{\Delta_{\phi}} g_{\Delta,\ell}(u,v)}{v^{\Delta_{\phi}} - u^{\Delta_{\phi}}}}_{F_{\Delta,\ell}}$$

Sum rule

$$1 = \sum_{\substack{\mathcal{O}_{\Delta_{\ell}}
eq 1 \ \mathcal{O} \in \phi \phi}} \lambda_{\phi \phi \mathcal{O}}^2 F_{\Delta, \ell}$$

Sum rule

$$1 = \sum_{\substack{\mathcal{O}_{\Delta_{\ell}}
eq 1 \ \mathcal{O} \in \phi \phi}} \lambda_{\phi \phi \mathcal{O}}^2 \mathcal{F}_{\Delta, \ell}$$

- Find Functional Ψ such that
 - $\hookrightarrow \psi \cdot 1 < 0 (1)$
 - $\hookrightarrow \psi \cdot F_{\Delta,\ell}(u,v) \ge 0$ for all $\{\Delta,\ell\}$ in spectrum

Sum rule

$$1 = \sum_{\substack{\mathcal{O}_{\Delta_{\ell}}
eq 1 \ \mathcal{O} \in \phi \phi}} \lambda_{\phi \phi \mathcal{O}}^2 \mathcal{F}_{\Delta, \ell}$$

Find Functional Ψ such that

$$\hookrightarrow \psi \cdot 1 < 0 (1)$$

$$\hookrightarrow \ \psi \cdot F_{\Delta,\ell}(u,v) \geq 0$$
 for all $\{\Delta,\ell\}$ in spectrum

 \rightarrow Spectrum is inconsistent \Rightarrow rule out CFT

Sum rule

$$1 = \sum_{\substack{\mathcal{O}_{\Delta_{\ell}}
eq 1 \ \mathcal{O} \in \phi \phi}} \lambda_{\phi \phi \mathcal{O}}^2 \mathcal{F}_{\Delta, \ell}$$

Find Functional Ψ such that

$$\hookrightarrow \psi \cdot 1 < 0 (1)$$

$$\hookrightarrow \psi \cdot F_{\Delta,\ell}(u,v) \ge 0$$
 for all $\{\Delta,\ell\}$ in spectrum

- \rightarrow Spectrum is inconsistent \Rightarrow rule out CFT
 - Truncate

$$\psi = \sum_{mn}^{m,n \leqslant \Lambda} a_{mn} \partial_z^m \partial_{\bar{z}}^n |_{z=\bar{z}=\frac{1}{2}}$$

Sum rule

$$1 = \sum_{\substack{\mathcal{O}_{\Delta_{\ell}}
eq 1 \ \mathcal{O} \in \phi \phi}} \lambda_{\phi \phi \mathcal{O}}^2 \mathcal{F}_{\Delta, \ell}$$

Find Functional Ψ such that

$$\hookrightarrow \psi \cdot 1 < 0 (1)$$

$$\hookrightarrow \psi \cdot F_{\Delta,\ell}(u,v) \ge 0$$
 for all $\{\Delta,\ell\}$ in spectrum

- \rightarrow Spectrum is inconsistent \Rightarrow rule out CFT
 - Truncate

$$\psi = \sum_{m,n}^{m,n \leqslant \Lambda} a_{mn} \partial_z^m \partial_{\bar{z}}^n |_{z=\bar{z}=\frac{1}{2}}$$

 \rightarrow Increase $\Lambda \Rightarrow$ bounds get stronger

Sum rule

$$1 = \sum_{\substack{\mathcal{O}_{\Delta_{\ell}}
eq 1 \ \mathcal{O} \in \phi \phi}} \lambda_{\phi \phi \mathcal{O}}^2 \mathcal{F}_{\Delta, \ell}$$

Find Functional Ψ such that

$$\hookrightarrow \psi \cdot 1 < 0 (1)$$

$$\hookrightarrow \psi \cdot F_{\Delta,\ell}(u,v) \ge 0$$
 for all $\{\Delta,\ell\}$ in spectrum

- \rightarrow Spectrum is inconsistent \Rightarrow rule out CFT
 - Truncate

$$\psi = \sum_{mn}^{m,n \leqslant \Lambda} a_{mn} \partial_z^m \partial_{\bar{z}}^n |_{z=\bar{z}=\frac{1}{2}}$$

- \rightarrow Increase $\Lambda \Rightarrow$ bounds get stronger
- → Always true bounds

3d Ising Model

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi, PRD 86 025022]

3d Ising Model

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi, PRD 86 025022]

 \rightarrow Saturated by 3d Ising model

3d Ising Model

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi, PRD 86 025022]

- \rightarrow Saturated by 3d Ising model
- \rightarrow 3d Ising lives at "kink"

Outline

Numerical conformal Bootstrap review Chiral algebra $4d \mathcal{N} = 3 \text{ SCFTs}$ Solving $\mathcal{N} = 3 \text{ SCFTs}$?

Example: free hypermultiplet

Example: free hypermultiplet

$$Q' = egin{bmatrix} Q \ ilde{Q}' = egin{bmatrix} ilde{Q} \ ilde{Q}' \end{bmatrix} \,, \qquad ilde{Q}' = egin{bmatrix} ilde{Q} \ -Q^{\star} \end{bmatrix}$$

Example: free hypermultiplet

$$Q' = egin{bmatrix} Q \ ilde{Q}' = egin{bmatrix} ilde{Q} \ ilde{Q}' \end{bmatrix} \,, \qquad ilde{Q}' = egin{bmatrix} ilde{Q} \ -Q^{\star} \end{bmatrix}$$

$$u_I = (1, \bar{z})$$

Example: free hypermultiplet

$$Q' = egin{bmatrix} Q \ ilde{Q}' = egin{bmatrix} ilde{Q} \ ilde{Q}' \end{bmatrix} \,, \qquad ilde{Q}' = egin{bmatrix} ilde{Q} \ -Q^{\star} \end{bmatrix}$$

$$u_I = (1, \bar{z})$$

 $q(z, \bar{z}) = u_I Q^I = Q(z, \bar{z}) + \bar{z} \tilde{Q}^*(z, \bar{z}),$
 $\tilde{q}(z, \bar{z}) = u_I \tilde{Q}^I = \tilde{Q}(z, \bar{z}) - \bar{z} Q^*(z, \bar{z})$

Example: free hypermultiplet

$$Q' = egin{bmatrix} Q \ ilde{Q}' = egin{bmatrix} ilde{Q} \ ilde{Q}' \end{bmatrix} \,, \qquad ilde{Q}' = egin{bmatrix} ilde{Q} \ -Q^{\star} \end{bmatrix}$$

$$u_I = (1, \bar{z})$$

 $q(z, \bar{z}) = u_I Q^I = Q(z, \bar{z}) + \bar{z} \tilde{Q}^*(z, \bar{z}),$
 $\tilde{q}(z, \bar{z}) = u_I \tilde{Q}^I = \tilde{Q}(z, \bar{z}) - \bar{z} Q^*(z, \bar{z})$
 $\rightarrow q(z, zb)\tilde{q}(0) \sim \bar{z} \tilde{Q}^*(z, \bar{z}) \tilde{Q}(0) \sim \frac{\bar{z}}{z^{\bar{z}}} = \frac{1}{z}$

$4d \mathcal{N} = 2 \text{ SCFTs with } E_6 \text{ flavor symmetry}$

What is the space of consistent SCFTs?

4d $\mathcal{N}=2$ SCFTs with SU(2) flavor symmetry $\langle TTTT \rangle$, $\langle J^a J^b J^c J^d \rangle$, $\langle TTJ^a J^b \rangle$

Outline

Numerical conformal Bootstrap review Chiral algebra $4d \mathcal{N} = 3 \text{ SCFTs}$ Solving $\mathcal{N} = 3 \text{ SCFTs}$?

→ *Non-trivial* interacting theories

[García-Etxebarria, Regalado] [Aharony, Tachikawa]

→ Non-trivial interacting theories
[García-Etxebarria, Regalado] [Aharony, Tachikawa]

→ Non-Lagrangian

→ Non-trivial interacting theories
[García-Etxebarria, Regalado] [Aharony, Tachikawa]

ightarrow Non-Lagrangian Properties from representation theory [Aharony, Evtikhiev]

- ightarrow Non-Lagrangian Properties from representation theory [Aharony, Evtikhiev]
- $\rightarrow SU(3)_R \times U(1)_r$

- → Non-trivial interacting theories
 [García-Etxebarria, Regalado] [Aharony, Tachikawa]
- ightarrow Non-Lagrangian Properties from representation theory [Aharony, Evtikhiev]
- $\rightarrow SU(3)_R \times U(1)_r$
- → No flavor symmetry

- ightarrow Non-Lagrangian Properties from representation theory [Aharony, Evtikhiev]
- $\rightarrow SU(3)_R \times U(1)_r$
- → No flavor symmetry
- \rightarrow c = a

- ightarrow Non-Lagrangian Properties from representation theory [Aharony, Evtikhiev]
- $\rightarrow SU(3)_R \times U(1)_r$
- \rightarrow No flavor symmetry
- $\rightarrow c = a$
- → No exactly marginal deformations

- ightarrow Non-Lagrangian Properties from representation theory [Aharony, Evtikhiev]
- $\rightarrow SU(3)_R \times U(1)_r$
- \rightarrow No flavor symmetry
- $\rightarrow c = a$
- → No exactly marginal deformations
- \rightarrow Just another SCFT

- → Non-trivial interacting theories
 [García-Etxebarria, Regalado] [Aharony, Tachikawa]
- ightarrow Non-Lagrangian Properties from representation theory [Aharony, Evtikhiev]
- $\rightarrow SU(3)_R \times U(1)_r$
- → No flavor symmetry
- $\rightarrow c = a$
- → No exactly marginal deformations
- ightarrow Just another SCFT as $\mathcal{N}=2$: $SU(2)_R imes U(1)_r imes U(1)_F$

Outline

Numerical conformal Bootstrap review Chiral algebra $4d \mathcal{N} = 3 \text{ SCFTs}$ Solving $\mathcal{N} = 3 \text{ SCFTs}$?

Assume set of generators

 \rightarrow Set of $\frac{1}{2}$ -BPS operators

- \rightarrow Set of $\frac{1}{2}$ -BPS operators
- → Stress tensor supermultiplet
- Can one write a consistent operator product algebra?

- \rightarrow Set of $\frac{1}{2}$ -BPS operators
- → Stress tensor supermultiplet
- Can one write a consistent operator product algebra?
- Simplest known theory:

- \rightarrow Set of $\frac{1}{2}$ -BPS operators
- → Stress tensor supermultiplet
- Can one write a consistent operator product algebra?
- Simplest known theory:
 - $\rightarrow \frac{1}{2}$ -BPS operators of dimension three
 - → Stress tensor

- \rightarrow Set of $\frac{1}{2}$ -BPS operators
- → Stress tensor supermultiplet
- Can one write a consistent operator product algebra?
- Simplest known theory:
 - $\rightarrow \frac{1}{2}$ -BPS operators of dimension three
 - → Stress tensor
 - \rightarrow chiral algebra fully fixed and $c_{4d}=\frac{15}{12}$ [Nishinaka, Tachikawa]

- \rightarrow Set of $\frac{1}{2}$ -BPS operators
- → Stress tensor supermultiplet
- Can one write a consistent operator product algebra?
- Simplest known theory:
 - $\rightarrow \frac{1}{2}$ -BPS operators of dimension three
 - → Stress tensor
 - ightarrow chiral algebra fully fixed and $c_{4d}=rac{15}{12}$ [Nishinaka, Tachikawa]
 - → can compute additional protected OPE coefficients

Assume set of generators

 \rightarrow Set of $\frac{1}{2}$ -BPS operators

- \rightarrow Set of $\frac{1}{2}$ -BPS operators
- → Stress tensor supermultiplet
- What about higher rank theories?

- \rightarrow Set of $\frac{1}{2}$ -BPS operators
- → Stress tensor supermultiplet
- What about higher rank theories?
 - \rightarrow This would be a closed subalgebra, but c_{4d} is different

- \rightarrow Set of $\frac{1}{2}$ -BPS operators
- → Stress tensor supermultiplet
- What about higher rank theories?
 - \rightarrow This would be a closed subalgebra, but c_{4d} is different
 - → Assumed set of generators is incomplete for higher rank

- \rightarrow Set of $\frac{1}{2}$ -BPS operators
- → Stress tensor supermultiplet
- What about higher rank theories?
 - \rightarrow This would be a closed subalgebra, but c_{4d} is different
 - \rightarrow Assumed set of generators is incomplete for higher rank
 - → Minimum modification: add a single extra generator

- \rightarrow Set of $\frac{1}{2}$ -BPS operators
- → Stress tensor supermultiplet
- What about higher rank theories?
 - \rightarrow This would be a closed subalgebra, but c_{4d} is different
 - \rightarrow Assumed set of generators is incomplete for higher rank
 - → Minimum modification: add a single extra generator
 - → constructed chiral algebra valid for any c_{4d} [ML, Liendo, Meneghelli, Mitev]

- \rightarrow Set of $\frac{1}{2}$ -BPS operators
- → Stress tensor supermultiplet
- What about higher rank theories?
 - \rightarrow This would be a closed subalgebra, but c_{4d} is different
 - \rightarrow Assumed set of generators is incomplete for higher rank
 - $\,\rightarrow\,$ Minimum modification: add a single extra generator
 - → constructed chiral algebra valid for any c_{4d} [ML, Liendo, Meneghelli, Mitev] subalgebra of higher rank theories?

Can we "zoom in" to the $c_{4d} = \frac{15}{12}$ SCFT?

▶ $\frac{1}{2}$ -BPS operator of dimension three

- ▶ $\frac{1}{2}$ -BPS operator of dimension three
- ▶ Step 1: Fix protected contributions

- $ightharpoonup \frac{1}{2}$ -BPS operator of dimension three
- ▶ Step 1: Fix protected contributions

$$\lambda_{2d}^2 \leadsto \lambda_{\mathcal{O}_{4d}}^2 - \lambda_{\mathcal{O}_{4d}'}^2$$

Can we "zoom in" to the $c_{4d} = \frac{15}{12}$ SCFT?

- ▶ $\frac{1}{2}$ -BPS operator of dimension three
- ▶ Step 1: Fix protected contributions

$$\lambda_{2d}^2 \leadsto \lambda_{\mathcal{O}_{4d}}^2 - \lambda_{\mathcal{O}_{4d}'}^2$$

Valid for any $\mathcal{N}=3$ SCFT with this operator

Can we "zoom in" to the $c_{4d} = \frac{15}{12}$ SCFT?

- ▶ $\frac{1}{2}$ -BPS operator of dimension three
- ► Step 1: Fix protected contributions

$$\lambda_{2d}^2 \leadsto \lambda_{\mathcal{O}_{4d}}^2 - \lambda_{\mathcal{O}_{4d}'}^2$$

Valid for any $\mathcal{N}=3$ SCFT with this operator

 $ightharpoonup \mathcal{N} = 4$ "sits in the way"

Can we "zoom in" to the $c_{4d} = \frac{15}{12}$ SCFT?

- ▶ $\frac{1}{2}$ -BPS operator of dimension three
- Step 1: Fix protected contributions

$$\lambda_{2d}^2 \leadsto \lambda_{\mathcal{O}_{4d}}^2 - \lambda_{\mathcal{O}_{4d}'}^2$$

Valid for any $\mathcal{N}=3$ SCFT with this operator

- $ightharpoonup \mathcal{N} = 4$ "sits in the way"
- Input chiral algebra data of specific theory

- ▶ $\frac{1}{2}$ -BPS operator of dimension three
- ▶ Step 1: Fix protected contributions $\lambda_{2d}^2 \leadsto \lambda_{\mathcal{O}_{4d}}^2 \lambda_{\mathcal{O}_{4d}'}^2$ Valid for any $\mathcal{N}=3$ SCFT with this operator
- $ightharpoonup \mathcal{N} = 4$ "sits in the way"
- Input chiral algebra data of specific theory chiral algebra conjectured by [Nishinaka, Tachikawa]

4d $\mathcal{N}=3$ SCFT with $c=\frac{15}{12}$

$4d \mathcal{N} = 3 \mathbf{SCFTs}$

$4d \mathcal{N} = 3 \mathbf{SCFTs}$

$4d \mathcal{N} = 3 \mathbf{SCFTs}$

[ML, Liendo, Meneghelli, Mitev]