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Our work is about BPS states of 4d N = 2 quantum field theories, a subject of
very fruitful interaction between physics and mathematics, with ties to: Hitchin
systems, cluster algebras, quiver representation theory, Teichmueller theory, . . .

In recent years there has been tremendous progress in understanding BPS
spectra. Powerful frameworks such as BPS quivers and spectral networks
allow to compute BPS spectra systematically.

But the BPS spectrum is not unique, a theory can have infinitely many
different ones. BPS counting is only a part of the puzzle.

A major step forward: the discovery of wall-crossing formulae, describing how
BPS spectra change across different regions of moduli space.

An important concept emerged from these developments: the existence of
wall-crossing invariants.

The importance of a w.c.i. stems from the fact that it encodes all possible BPS
spectra of a theory. Nevertheless, in order to construct these invariants one has
to know the BPS spectrum in advance, somewhere on the moduli space.
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Goal of this talk

Introduce a new kind of “wall-crossing invariant”: BPS graphs.
Explain how they establish a link between spectral networks and BPS quivers,
and how they provide a new construction of the invariant of Kontsevich and
Soibelman, without using information about the BPS spectrum.



A Geometric (re-)View of Wall-Crossing
in Class S Theories



Class S

Four-dimensional N = 2 supersymmetric quantum field theories, classified by

g ADE Lie algebra, (g = An in this talk)

C Riemann surface with punctures

D “puncture data”

Arise from twisted compactifications of 6d (2, 0) theory of type g.

(g,C ,D) define a Hitchin integrable system

F + R2[ϕ,ϕ] = 0 , DAϕ = 0 .

M moduli space of solutions (modulo gauge) encodes several key features of
the low energy dynamics:

I Hitchin fibration M→ B: Coulomb branch of the moduli space of vacua

I geometry of B encodes the low energy effective action

I geometry of M encodes spectrum of excitations over B, BPS states

[Seiberg-Witten, Donagi-Witten, Martinec-Warner, Gorski et al., Klemm et al. Witten, Gaiotto,

Gaiotto-Moore-Neitzke]



Σu : det(λ− ϕ(z)) = λK +
K∑
i=2

φiλ
K−i = 0

I λ tautological 1-form Σu ⊂ T ∗C

I geometry encoded by meromorphic multi-differentials {φi} ≡ u ∈ B
I λj , j = 1, . . . ,K sheets of a K : 1 ramified covering π : Σu → C

Σ coincides with the Seiberg-Witten curve

I H1(Σ,Z) lattice of charges

I periods Zγ = 1
π

∮
γ
λ BPS central charge

I minimal area surface Mγ = 1
π

∫
π(γ)
|λj − λi | [Klemm et al, Mikhailov]

Mγ = |Zγ | ⇔ λij = e iϑ|λij |
trajectories on C where
λi − λj has fixed phase ϑ = Arg Zγ
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BPS spectrum determined by geometry of spectral covering map Σu → C

Systematic “scan” of BPS states: fix u ∈ B, construct trajectories on C

I start from branch point where λi (z) = λj(z)

I grow at fixed phase ϑ along λij(z(t)) ∼ e iϑ

I finite M: end on branch point where λi (z) = λj(z)

I scan over ϑ ∈ [0, π]

Primitive version of spectral networks
Finite edges appear at topological jumps of the spectral network W
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Wall-Crossing

BPS states can interact, and can form BPS boundstates

Ebound = |Z1 + Z2| − |Z1| − |Z2| ≤ 0

Marginal stability: at real-codimension one walls in B

MS(γ, γ′) := {u ∈ B | ArgZγ(u) = ArgZγ′(u)}

Change in geometry of Σu ⇒ transition of BPS spectrum

Is there any invariant geometric information encoded in Σ?
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Marginal stability: at real-codimension one walls in B

MS(γ, γ′) := {u ∈ B | ArgZγ(u) = ArgZγ′(u)}
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BPS Graphs



BPS Graphs

Let Bc ⊂ B be a locus where Zγ of all BPS states have the same phase

Bc := {u ∈ B , ArgZγ(u) = ArgZγ′(u) ≡ ϑc(u)}

The spectral network at ϑc is very special. Several finite edges appear
simultaneously. Within the network a BPS graph G emerges.

But:

I Bc is a maximal intersection of walls of marginal stability.

I The BPS spectrum is ill-defined.

It appears that Bc cannot contain any information about the BPS spectrum.

Surprisingly, G encodes invariant information about it!
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Example: Argyres-Douglas

λ2 − z3 + z − u = 0

H1(Σ,Z) ' Z2

[plots: http://het-math2.physics.rutgers.edu/loom]
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General feature: G is much simpler than the whole network.

What this graph tells:

I [π−1(p1)] = γ1, [π−1(p2)] = γ2 are homology cycles.

I Both γ1, γ2 are BPS states (hypermultiplets) in any nearby chamber.

I They are a positive-integral basis for Γ+ := Z−1
uc (e iϑc R+) ⊂ H1(Σ,Z).

I Intersection 〈γ1, γ2〉 = −1.

G encodes the BPS quiver: γ1 γ2
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Quiver-Graph Correspondence



BPS quiver Q: an oriented graph composed of nodes Q0 and arrows Q1, with
a superpotential W ∈ R〈Q〉 (formal sum of cycles in the path algebra).

BPS states: zero-modes of supersymmetric quantum mechanics encoded by Q,
subject to additional stability conditions. [Fiol, Denef, Cecotti-Vafa, Alim et al, Cecotti-del

Zotto]

General quiver-graph correspondence:

I G admits a natural decomposition into elementary webs → Q0.

I common branch points of elementary webs → Q1.

I
∑

(face-loops) -
∑

(vertex-loops) → W .

I edge flip → quiver mutation.
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A1 Theories

B = {quadratic diff. with presc. poles} ⊃ {Strebel diff.}0 = Bc

G is the critical graph of a Strebel diff., or a “maximally contracted
Fenchel-Nielsen network” [Hollands-Neitzke]. Existence guaranteed [Strebel, Liu].

I BPS graphs are dual to ideal triangulations of C

I Quivers from triangulated surfaces [Bridgeland-Smith, Fomin-Shapiro-Thurston, Labardini

Fragoso, Alim et al., Fock-Goncharov]:
I Q0 ↔ edges, Q1 ↔ faces
I canonical superpotential ↔ face-loops and puncture-loops
I mutations ↔ flips
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AN−1 Theories

B = {meromorphic k-diff. w/ prescribed poles at punctures, k = 2, . . . ,N}

Bc is hard to find in general, no higher-rank version of Strebel’s theorem.

Conjecture: restrict to k-differentials with poles of order k (full punctures),
then Bc exists and BPS graphs are dual to ideal N-triangulations

I
(
N
2

)
branch points in each ∆, connected by elementary webs.

I Candidate BPS graphs for AN−1 theories with full punctures.

I Motivated by “N-lift construction” [Gaiotto-Moore-Neitzke].

I Found explicit examples, pass nontrivial checks with known BPS quivers.
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Beyond full punctures

Nice feature of theories with full punctures: obtain many class S theories with
partial punctures, by tuning “puncture data D” [Gaiotto, Chacaltana-Distler-Tachikawa]

Example: g = A2

ϕ ∼ 1

z

 m1

m2

−m1 −m2

 → 1

z

 m
m
−2m


I Pole in ∆ =

∏
i<j(λi − λj)

2 ∼ 1/z6 becomes milder ∼ 1/z4.

I Zeroes ∆ coincide with branch points, get absorbed by the puncture.

I Spectral curve undergoes a topological transition, reflected by G.



Kontsevich-Soibelman Invariants



Kontsevich-Soibelman Wall-Crossing Formula

Jumps of BPS spectrum are controlled by an ArgZγ-ordered product of
quantum dilogarithms

ArgZ(u)↗∏
γ,m

Φ((−y)mXγ)am(γ,u) =

ArgZ(u′)↗∏
γ′,m′

Φ((−y)m
′
Xγ′)

am′ (γ
′,u′) ≡ U

I am(γ, u) counts |γ,m〉
(Laurent coeff. of “protected spin character” / motivic DT invariants)

I Quantum torus algebra: XγXγ′ = y 〈γ,γ
′〉Xγ+γ′
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In addition to geometric data, the full definition of spectral networks includes
combinatorial data, it is entirely determined by the topology of the network.

The network data defines a coordinate system {Xγ} for M, viewed as
Mflat(C ,GL(K)). Conjecturally part of a cluster atlas.

Key property: At the phase of a BPS state (ϑ = ArgZ) the topology of W
jumps, inducing a (quantum) “change of coordinates”

X ′η =
[∏

m

Φ((−y)mXγ)am(γ)]Xη [∏
m

Φ((−y)mXγ)am(γ)]−1

[Gaiotto-Moore-Neitzke, Galakhov-L-Moore]

BPS spectrum (at fixed u) controls ϑ-transition functions of coordinate charts

Coordinates at (ϑ, u) with (ϑ+ π, u) are related by X ′γ = UXγU−1
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At the Critical Locus

I Xγ exhibits a single jump at ϑc captured by U

X ′γ = U · Xγ · U−1

I Take this as a new definition of U.

I Key fact: the change of coordinates is entirely determined by the topology
of the degenerate sub-network, that is G.

The topology of the BPS graph determines U. [L]
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Argyres-Douglas

The graph has 2 edges, each
contributes an equation

F ′p = UFp U−1

with

Fp1 = 1 + y−1Xγ1 + y−1Xγ1+γ2

Fp2 = 1 + y−1Xγ2

F ′p1
= 1 + y−1Xγ1

F ′p2
= 1 + y−1Xγ2 + y−1Xγ1+γ2

Together, they determine the monodromy

U = 1− y

(y)1

(
Xγ1 + Xγ2

)
+

y 2

(y)2
1

Xγ1+γ2 +
y 2

(y)2

(
X2γ1 + X2γ2

)
+ . . .

= Φ(Xγ1 )Φ(Xγ2 )



SU(2) N = 2∗

The graph has three edges p1, p2, p3;
each contributes one equation

F ′p = UFp U−1

with

Fp1 =
1+Xγ1

+(y+y−1)Xγ1+γ3
+Xγ1+2γ3

+(y+y−1)Xγ1+γ2+2γ3
+Xγ1+2γ2+2γ3

+X2γ1+2γ2+2γ3

(1−X2γ1+2γ2+2γ3 )2

F ′p1
=

1+Xγ1
+(y+y−1)Xγ1+γ2

+Xγ1+2γ2
+(y+y−1)Xγ1+2γ2+γ3

+Xγ1+2γ2+2γ3
+X2γ1+2γ2+2γ3

(1−X2γ1+2γ2+2γ3 )2

Fp2,3 & F ′p2,3
are obtained by cyclic shifts of γ1, γ2, γ3.

The solution:

U =
(∏↗

n≥0 Φ
(
Xγ1+n(γ1+γ2)

))
×Φ (Xγ3 ) Φ ((−y)Xγ1+γ2 )−1 Φ

(
(−y)−1Xγ1+γ2

)−1
Φ (X2γ1+2γ2+γ3 )

×
(∏↘

n≥0 Φ(Xγ2+n(γ1+γ2))
)



Remark 1

The BPS graph can have some symmetries. They are inherited by U.
Hidden by the factorization U =

∏
Φ(X ), but manifest on the BPS graph

(Ex. Z3 symmetry in N = 2∗).

Reflect basic properties of the Schur index [Cecotti-Neitzke-vafa, Iqbal-vafa,

Cordova-Gaiotto-Shao], computed as the correlator of a TQFT on C
[Gadde-Pomoni-Rastelli-Razamat]: it is a symmetric function of the flavor fugacities.

Remark 2

How to make sense of U physically at Bc? BPS spectrum is ill-defined!
Rich physics in the background. Key idea is to use surface defects.

I Induce a new sector of “2d-4d” BPS states.

I (framed) 2d-4d wall-crossing: creation/decay of 2d-4d states is
controlled by 4d BPS spectrum. Unification of Cecotti-Vafa and
Kontsevich-Soibelman wall-crossing. [Gaiotto-Moore-Neitzke]

I Key to computing U via 2d-4d wall-crossing: unlike 4d BPS states,
stability of 2d-4d spectrum is well-defined at Bc .



Conclusions



1. We introduce a new object: the BPS graph G of a theory of class S. G lives
on the on the UV curve, and emerges from degenerate spectral networks at Bc .

2. Link between spectral networks and BPS quivers. Correctly encodes known
quivers. Approach to obtain many new ones, by moduli-deformation of K-lifts.

3. A new construction of Kontsevich-Soibelman invariants based on G.
Manifestly wall-crossing invariant. Exhibits symmetries of U.

Thank You.
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