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1. Motivation from string theory
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String amplitudes

Understand the structure of string interactions

Strongly constrained by symmetries!

- supersymmetry

> amplitudes have intricate G(Z)

- U-duality arithmetic structure

Symmetry constrains interactions, leads to insights about:

- ultraviolet properties of gravity

- non-perturbative effects (black holes, instantons) |

- novel mathematical predictions from physics




Toroidal compactifications yield the famous chain of U-duality groups

[Cremmer, Julia][Hull, Townsend]

°

f D G K G(Z)

10 SL(2,R) S0(2) SL(2,7)

9 | SL(2,R) x R* SO(2) SL(2,7Z)

o 8 | SL(3,R) x SL(2, R) S0(3) x SO(2) SL(3,7) x SL(2,7)
7 SL(5,R) SO(5) SL(5, Z)

O 6 Spin(5, 5,R) (Spin(5) x Spin(5))/Zs Spin(5, 5, Z)

S 5 Eg(R) USp(8)/Zs Eo(Z)
1 E7(R) SU(8)/Z E7(Z)

® 3 Eg(R) Spin(16) /Zs Eg(Z)

Physical couplings are given by automorphic forms on
G(Z)\G(R)/K

Green, Gutperle, Sethi,Vanhove, Kiritsis, Pioline, Obers, Kazhdan,Waldron, Basu, Russo, Cederwall, Bao,
Nilsson, D.P, Lambert, West, Gubay, Miller, Bossard, Fleig, Kleinschmidt, Gustafsson, Cosnier-Horeau...
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Higher-derivative action in type Il string theory on
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[ O aVE (@) o @R + (@) filg) IR 4

—> /o (9), f4(g) are functions of g € F,.1(R)/K

— must be invariant under U-duality £n+1(Z)

—p supersymmetry requires that they are

Laplacian eigenfunctions defining properties

—p well-defined weak=-coupling of an

expansions as gs — 0

automorphic
form!




2. Automorphic forms
and representation theory
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Data:

» G(R) real semi-simple Lie group (e.g. SL(n,R) )

D G(Z) C G arithmetic subgroup (e.g. SL(n,Z) )

Example: Non-holomorphic Eisenstein series on G(R) = SL(2,R)

S

Y
E(S’T) — Z ‘m/]— + n|28 seC

(m,n)€Z2
(m,n)#(0,0)

r=x+iyc H= SL(2,R)/U(1)
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Automorphic representations

A (G(Z)\G(R)) = {space of automorphic forms on G(R)}

The group (7 acts on this space via the right-regular representation:

(p(h)p) (g) = p(gh)

for p € A and h,g € G

[Gelfand, Graey, Piatetski-Shapiro][Langlands]...



Automorphic representations

A(G(Z)\G(R)) — Adiscrete D Acontinuous

w»  Ajiserete - generated by cusp forms

(and residues of Eisenstein series)

all unipotents

p(ug)du =0
/U<Z>\U<R> ved

w A ontinuwous - generated by Eisenstein series



Example: G = SL(2,R) /dl%\/éfo(fr)R“

—1
Y= 9s
perturbative terms non-perturbative terms
i N
fo(T) = 20(3)y*? + 4CQR)y 2 +2r) /Imlo a(m)e S 114 Oy )]
0
| — | — m7 T
tree-level one-loop

’ L)
M amplitudes in the presence of instantons
\ ’

[Green, Gutperle]
[Green, Sethi]
[Pioline]

unique
solution!

'm + nrl|3

(m,n)#(0,0)




Example: G = SL(2,R) /dlox\/EfO(T)R4

y=g,"

perturbative terms non-perturbative terms

pr——— N—

fo(m) = 2¢(3)y*? + 4¢Q2)y 2 +2x ) V/|mlo_a(m 140y )]

m#0
N’ | S

tree-level one-loop
g 3 \ ’

instanton action

plitudes in the presence of instantons

Sinst(2) := 2w |m| y — 2mimx



Example: G = SL(2,R) /dl%\/éfo(fr)R“

—1
Yy=9s
perturbative terms non-perturbative terms
i N
folT) = 20(3)y*2 + 4C(2)y V2 _PQTZ hlm@ Sus(2) [1 4 Oy )]
0
S — S m7
tree-level one-loop
& \
N ‘ amplitudes in the presence of instantons
\ ’
instanton action instanton measure
Sinst(2) := 2w |m| y — 2mimx o_o(m) = g d~?

dlm



Adelic framework

An efficient, but abstract, way to approach the subject of
automorphic forms is by the introduction of adeles,

rather ungainly objects that nevertheless, once familiar,

spare much unnecessary thought and many useless calculations.

— Robert P. Langlands



Adelic framework

An efficient, but abstract, way to approach the subject of
automorphic forms is by the introduction of adeles,

rather ungainly objects that nevertheless, once familiar,

spare much unnecessary thought and many useless calculations.

— Robert P. Langlands

Compute
Adelic Eisenstein series >

Adelic Fourier coefficient

I Lift l Restrict

Eisenstein series Fourier coefficient



Adelic framework

For each prime number p

Euclidean norm

o— " 1~
—

p-adic norm

real numbers

-adic numbers

completions of 0

Qoo
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/
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P prime <o
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Adelic framework

For each prime number p

Euclidean norm

Q __— R real numbers Qe =R
= Q, p-adic numbers
p-adic norm
The adeles are then defined as global local

/o

/
A =R x H Q, T = (Too; T2, T3,L5,...) €A

p prime <oo

much easier to work with
Q — A Q C A since () is a field.

q— (¢;9,q9,q,... ) analogous to:  Z C R



Adelic framework

(completed) Riemann zeta function:  £(s) = &(1 — s)

6) =m0 =) [ 1

P prime <oo

:/ e’ x|%dx H / Yp(z)|z| dT

p prime <o
— [ m@lolide
A

In his famous thesis, Tate gave elegant new proofs of the functional
equation and analytic continution of ér usmg these techniques




arithmetic groups

space of
automorphic forms

Adelic framework

G(Z) C G(R)

A(G(Z)\G(R))

G(Q) C G(A)

- A(G(Q\G(A))



Adelic framework

arithmetic groups G(Z) C G(R) > G(@) C G(A)

space of _A(G(Z)\G(R)) > A(G(Q)\G(A))

automorphic forms

U U

Eisenstein Z e PIH(v9)) > Z o AP H(7g))
series YEB(Z)\G(Z) ~EB(Q)\G(OQ)

Aeh ®C H :G—b



3. Small representations and BPS-couplings



Minimal automorphic representations

[Joseph][Brylinski, Kostant][Ginzburg, Rallis, Soudry][Kazhdan, Savin]....

Automorphic forms ¥ € Tmin are characterised by having
very few non-vanishing Fourier coefficients.

[Ginzburg, Rallis, Soudry]




Exceptional groups

Functional dimension of minimal representations:

11, L
GKdim 7,5, = 17, b
29, Eg



Automorphic realization

Consider the Borel-Eisenstein series on G (A)

E(\ g) = Z o AP H(vg))
v€B(Q\G(Q)

Now fix the weight to

)\ZQSAl—IO

where A is the fundamental weight associated to node 1.



This theorem yields an explicit automorphic realisation of the
minimal representation.

Our aim is to use this to calculate Fourier coefficients

associated with maximal parabolic subgroups.



BPS-couplings g € En(R)
/d”_”aﬁ\/afo(g)R4 folg) = E(3/2,9) s=3/2
[ VER@IRY falg) = E(5/2.9) s =5/

These partition functions are Eisenstein series attached to small

automorphic representations of G.
[Green, Miller;Vanhove][Pioline]

minimal automorphic next-to-minimal automorphic
representation representation
Tmin Tntm

|/2 - BPS |/4 - BPS



Perturbative limit - choices of unipotent
subgroups

- Decompactification limit
P @—@—i—@—@—@—o

- perturbative parameter: radius of decompactified circle

- non-perturbative effects: KK-instantons, BPS-instantons

- String perturbation limit
O—@—i—@—@—@—@

- perturbative parameter: string coupling

- non-perturbative effects: D-instantons, NS5-instantons

= M-theory limit

- perturbative parameter: volume of M-theory torus @—@—Z—@—@—O—@)

- non-perturbative effects: M2- & Mb5-instantons



general Fourier coefficients

p P = LU standard parabolic of GG

P unitary character Vv : U(Q)\U(A) — U(1)

P We then have the U -Fourier coefficient:

FwU(fXMQ) — / E(fX7ug)wU(u)du
U(Q)\U(A)

very little is known in general in this case...



Theorem [Miller-Sahi]: Let G be a split group of type Eig or Er
Then any Fourier coefficient of ¥ € Tmin of GG is completely

determined by the maximally degenerate Whittaker coefficient

Wy (@, 9) = / p(ng)a(n)dn
N(Q)\N(A)



Theorem [Miller-Sahi]: Let G be a split group of type Eig or Er
Then any Fourier coefficient of ¥ € Tmin of GG is completely

determined by the maximally degenerate Whittaker coefficient

Wy, (©,9) = / p(ng)e(n)dn
N(Q)\N(A)

Can one use this to calculate

Fyu(p,9) = / E(p,ug)yy(u)du
U(Q)\U(A)

intermsof |/, ?



Example: G = F-

2
® o I o o o

Consider the 3-grading of the Lie algebra
e7 = g 1PgPg = 27TP(egP 1) B 27

The space 90 @ 91 is the Lie algebra of a maximal
parabolic P = LU with 27-dim unipotent U
and Levi L = Eg x GL(1)



The degenerate Whittaker vector associated with &7 is given by:
[Fleig, Kleinschmidt, D.P]

Wy (3/2,a) = |k[*2a_3(k) K39 (27| k|a)

where a € A C E~» and

os(k) =) d°
d|k



The degenerate Whittaker vector associated with &7 is given by:
[Fleig, Kleinschmidt, D.P]

Wy, (3/2,a) = |k[*?0_3(k) K3 /2(27|k|a)
where a € A C E~» and

os(k) =) d°
d|k

We now want to relate this to the [/ - Fourier coefficient

Fy (3/2,9) = / E(3/2, ug) by (u)du
U@Q)\U(A)

This captures instantons in the decompactification limit of 11/ T°



Claim:[Pioline][Gustafsson, Kleinschmidt, D.P][Bossard, Verschinin]

qu (3/2; h,?“) — |k|3/20—3(k)K3/2(27TT‘k‘ X Hh_lfH)

where h € Eg, r € GL(1) and 2 € Z°'



Claim:[Pioline][Gustafsson, Kleinschmidt, D.P][Bossard, Verschinin]
qu (3/2; h,?“) — |k|3/20—3(k)K3/2(27TT‘k‘ X Hh_lfH)
where h € Eg, r € GL(1) and 2 € Z°'

Proof: To appear by [Gourevitch, Gustafsson, Kleinschmidt, D.P, Sahi]

This gives the complete abelian Fourier expansion of the
minimal representation

Physically the vector 7 corresponds to the instanton
charges of the 27 vector fields in D=5.



Next-to-minimal representations

Relevant for 9*R*-couplings.

Theorem [Green, Miller,Vanhove]: Let (G = Eg, E7, By
The Eisenstein series

E(s,g) = Z o(25A1H (vg))
7EB(Q\G(Q)

evaluated at s = 5/2 is a spherical vector in Tntm.



Conjecture [Gustafsson, Kleinschmidt, D.P.]:
Let G be a semisimple, simply laced Lie group.

Then all Fourier coefficients of ¥ € Tntm are completely

determined by degenerate Whittaker vectors of the form

Wy, (©,9) = / p(ng)a(n)dn
N(Q)\N(A)

W . (prg) = / o(ng) s (M)dn
N(@Q)\N(A)

where (., 3) are commuting simple roots.

Proof. For SL(n) to appear by [Ahlén, Gustafsson, Kleinschmidt, Liu, D.P.]
For exceptionals, in progress by [Gustafsson, Gourevitch, Kleinschmidt, D.P., Sahi]



Conjecture [Gustafsson, Kleinschmidt, D.P.]:
Let G be a semisimple, simply laced Lie group.

Then all Fourier coefficients of ¥ € Tntm are completely

determined by degenerate Whittaker vectors of the form

Wy, (©,9) = / p(ng)a(n)dn
N(Q)\N(A)

W . (prg) = / o(ng) s (M)dn
N(@Q)\N(A)

where (., 3) are commuting simple roots.

This will allow us to extract instanton effects from 34R4couplings!

See also [Bossard, Pioline][Bossard, Cosnier-Horeau, Pioline]



4. Outlook



So what happens at the next order?

|/8-BPS and non-BPS couplings seem to require more
general automorphic objects.

[Green, Miller,Vanhove][Pioline][Bossard,Verschinin][Bossard, Kleinschmidt]

This is uncharted r"' Ehay - 1

mathematical territory.




So what happens at the next order?

|/8-BPS and non-BPS couplings seem to require more
general automorphic objects.

[Green, Miller,Vanhove][Pioline][Bossard,Verschinin][Bossard, Kleinschmidt]
r‘f' -

This is uncharted
mathematical territory.

Below D=3 we also enter
the realm of Kac-Moody groups!

Connections with double affine
Hecke algebras (DAHAs)?

Nicolai, Damour, Henneaux, West, Kleinschmidet, Fleig, D.P, Garland, Lee, Patnaik, Braverman, Kazhdan, Miller, Carbone...




