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to appear on Friday this week

[1707.XXXX]  w/ Ahlén, Gustafsson, Kleinschmidt, Liu

and in progress
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String amplitudes
Understand the structure of string interactions

Strongly constrained by symmetries!

- supersymmetry

- U-duality

Symmetry constrains interactions, leads to insights about:

- ultraviolet properties of gravity

- non-perturbative effects (black holes, instantons)
- novel mathematical predictions from physics

amplitudes have intricate 
arithmetic structure G(Z)



Toroidal compactifications yield the famous chain of U-duality groups
[Cremmer, Julia][Hull, Townsend]

Physical couplings are given by automorphic forms on

G(Z)\G(R)/K

Green, Gutperle, Sethi, Vanhove, Kiritsis, Pioline, Obers, Kazhdan, Waldron, Basu, Russo, Cederwall, Bao, 
Nilsson, D.P., Lambert, West, Gubay, Miller, Bossard, Fleig, Kleinschmidt, Gustafsson, Cosnier-Horeau…



Higher-derivative action in type II string theory on 
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contraction of four Riemann tensors
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are functions of f0(g), f4(g) g 2 En+1(R)/K

must be invariant under U-duality En+1(Z)

supersymmetry requires that they are 
Laplacian eigenfunctions 

well-defined weak-coupling 
expansions as gs ! 0
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Higher-derivative action in type II string theory on 
tori 

defining properties 
of an 

automorphic 
form!

are functions of f0(g), f4(g) g 2 En+1(R)/K

must be invariant under U-duality En+1(Z)

supersymmetry requires that they are 
Laplacian eigenfunctions 

well-defined weak-coupling 
expansions as gs ! 0



2. Automorphic forms
and representation theory



real semi-simple Lie group SL(n,R)(e.g.                  )

Data:

G(Z) ⇢ G SL(n,Z)(e.g.                  )

G(R)

arithmetic subgroup



An automorphic form is a smooth function                       satisfying 

Definition:
' : G �! C

1. Automorphy: 8� 2 G(Z), '(�g) = '(g)

2. ' is an eigenfunction of the ring of inv. di↵. operators on G

3. ' has well-behaved growth conditions
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real semi-simple Lie group SL(n,R)(e.g.                  )

Data:

arithmetic subgroupG(Z) ⇢ G SL(n,Z)(e.g.                  )

G(R)

E(s, ⌧) =
X

(m,n)2Z2
(m,n) 6=(0,0)

ys

|m⌧ + n|2s s 2 C

Example: Non-holomorphic Eisenstein series on  G(R) = SL(2,R)

⌧ = x+ iy 2 H ⇠= SL(2,R)/U(1)



Automorphic representations

A (G(Z)\G(R)) = {space of automorphic forms on G(R)}
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Automorphic representations

A (G(Z)\G(R)) = {space of automorphic forms on G(R)}

(⇢(h)') (g) = '(gh)

for ' 2 A and h, g 2 G

Definition: An automorphic representation      of ⇡ G
is an irreducible constituent in the decomposition of A
under the right-regular action. 

[Gelfand, Graev, Piatetski-Shapiro][Langlands]…

The group      acts on this space via the right-regular representation: G



Automorphic representations

A(G(Z)\G(R)) = A
discrete

�A
continuous

Adiscrete : generated by cusp forms

A
continuous

: generated by Eisenstein series

(and residues of Eisenstein series)

Z

U(Z)\U(R)
'(ug)du = 0

U ⇢ G

all unipotents



f0(⌧) =

Example: G = SL(2,R)
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unique
 solution!

[Green, Gutperle]
[Green, Sethi]

[Pioline]
f0(⌧) =

X

(m,n) 6=(0,0)

y3/2
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f0(⌧) =

Example: G = SL(2,R)

instanton action
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f0(⌧) =

Example: G = SL(2,R)

instanton action

��2(m) =
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d|m

d�2

instanton measure

Z
d

10
x

p
Gf0(⌧)R4

y = g�1
s



An efficient, but abstract, way to approach the subject of 
automorphic forms is by the introduction of adeles,  
rather ungainly objects that nevertheless, once familiar,  
spare much unnecessary thought and many useless calculations.

— Robert P. Langlands

Adelic framework



An efficient, but abstract, way to approach the subject of 
automorphic forms is by the introduction of adeles,  
rather ungainly objects that nevertheless, once familiar,  
spare much unnecessary thought and many useless calculations.

— Robert P. Langlands

Eisenstein series

Adelic Eisenstein series Adelic Fourier coefficient

Fourier coefficient

Compute

Lift Restrict

Adelic framework



Adelic framework

Q R
Euclidean norm

Qp
p-adic norm

For each prime number p

p-adic numbers
Q1 = Rreal numbers

completions of Q







⇠(s) = ⇠(1� s)



Adelic framework

G(Z) ⇢ G(R)arithmetic groups G(Q) ⇢ G(A)

space of 
automorphic forms

A
�
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Adelic framework

G(Z) ⇢ G(R)arithmetic groups G(Q) ⇢ G(A)

space of 
automorphic forms

A
�
G(Z)\G(R)

�
A
�
G(Q)\G(A)

�

[ [
Eisenstein 

series

X

�2B(Q)\G(Q)

eh�+⇢|H(�g)i
X

�2B(Z)\G(Z)
eh�+⇢|H(�g)i

� 2 h? ⌦ C H : G ! h



3. Small representations and BPS-couplings



Minimal automorphic representations

Definition:  An automorphic representation 

⇡ =
O
p1

⇡p

is minimal if each factor       has smallest non-trivial ⇡p

Gelfand-Kirillov dimension.

[Ginzburg, Rallis, Soudry]

' 2 ⇡minAutomorphic forms                 are characterised by having
very few non-vanishing Fourier coefficients.

[Joseph][Brylinski, Kostant][Ginzburg, Rallis, Soudry][Kazhdan, Savin].…



Functional dimension of minimal representations:

Exceptional groups



Automorphic realization

Consider the Borel-Eisenstein series on G(A)

E(�, g) =
X

�2B(Q)\G(Q)

eh�+⇢|H(�g)i

� = 2s⇤1 � ⇢

Now fix the weight to

where       is the fundamental weight associated to node    .⇤1 1



Theorem [Ginzburg,Rallis,Soudry][Green,Miller,Vanhove]

For                            the Eisenstein series                   E(2s⇤� ⇢, g)G = E6, E7, E8

evaluated at                 is attached to the representation  s = 3/2 ⇡min

This theorem yields an explicit automorphic realisation of the 
minimal representation. 

Our aim is to use this to calculate Fourier coefficients 

associated with maximal parabolic subgroups.



s = 3/2

s = 5/2

BPS-couplings
Z
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These partition functions are Eisenstein series attached to small 
automorphic representations of     .G

minimal automorphic
representation

next-to-minimal automorphic
representation

[Green, Miller, Vanhove][Pioline]

⇡ntm⇡min

1/2 - BPS 1/4 - BPS

f0(g) = E(3/2, g)

f4(g) = E(5/2, g)
Z

d11�n
p
Gf4(g)@

4R4

g 2 En(R)



Decompactification limit

- non-perturbative effects: KK-instantons, BPS-instantons

String perturbation limit

- perturbative parameter: string coupling

- non-perturbative effects: D-instantons, NS5-instantons

M-theory limit
- perturbative parameter: volume of M-theory torus

- non-perturbative effects: M2- & M5-instantons

Perturbative limit - choices of unipotent 
subgroups

- perturbative parameter: radius of decompactified circle



general Fourier coefficients

P = LU standard parabolic of G

We then have the      -Fourier coefficient: U

very little is known in general in this case…

F U (f�, g) =

Z

U(Q)\U(A)
E(f�, ug) U (u)du

unitary character  U : U(Q)\U(A) ! U(1)



Theorem [Miller-Sahi]: Let      be a split group of type       orG E6 E7

Then any Fourier coefficient of                  of       is completely  ' 2 ⇡min G

determined by the maximally degenerate Whittaker coefficient

W ↵(', g) =

Z

N(Q)\N(A)
'(ng) ↵(n)dn



Can one use this to calculate 

F U (', g) =

Z

U(Q)\U(A)
E(', ug) U (u)du

in terms of            ?W ↵

Theorem [Miller-Sahi]: Let      be a split group of type       orG E6 E7

Then any Fourier coefficient of                  of       is completely  ' 2 ⇡min G

determined by the maximally degenerate Whittaker coefficient

W ↵(', g) =

Z

N(Q)\N(A)
'(ng) ↵(n)dn



Example: 

Consider the 3-grading of the Lie algebra 

The space             is the Lie algebra of a maximal g0 � g1

parabolic               with 27-dim unipotent  P = LU U

and Levi L = E6 ⇥GL(1)

G = E7



The degenerate Whittaker vector associated with        is given by: 
[Fleig, Kleinschmidt, D.P.]

W k(3/2, a) = |k|3/2��3(k)K3/2(2⇡|k|a)

where                       and 

�s(k) =
X

d|k

ds

a 2 A ⇢ E7

↵7



W k(3/2, a) = |k|3/2��3(k)K3/2(2⇡|k|a)

The degenerate Whittaker vector associated with        is given by: 
[Fleig, Kleinschmidt, D.P.]

where                       and 

�s(k) =
X

d|k

ds

a 2 A ⇢ E7

We now want to relate this to the      - Fourier coefficient 

F U (3/2, g) =

Z

U(Q)\U(A)
E(3/2, ug) U (u)du

U

This captures instantons in the decompactification limit of            ! II/T 6

↵7



Claim:

F U (3/2;h, r) = |k|3/2��3(k)K3/2(2⇡r|k|⇥ ||h�1
~x||)

where                                 and h 2 E6, r 2 GL(1)
~x 2 Z27

[Pioline][Gustafsson, Kleinschmidt, D.P.][Bossard, Verschinin]



Claim:

F U (3/2;h, r) = |k|3/2��3(k)K3/2(2⇡r|k|⇥ ||h�1
~x||)

where                                 and h 2 E6, r 2 GL(1)
~x 2 Z27

Proof: To appear by [Gourevitch, Gustafsson, Kleinschmidt, D.P., Sahi]

[Pioline][Gustafsson, Kleinschmidt, D.P.][Bossard, Verschinin]

This gives the complete abelian Fourier expansion of the 
minimal representation

Physically the vector     corresponds to the instanton 
charges of 

~x

the 27 vector fields in D=5. 



Theorem [Green, Miller, Vanhove]:  Let G = E6, E7, E8
The Eisenstein series 

evaluated at                is a spherical vector in            .⇡ntms = 5/2

E(s, g) =
X

�2B(Q)\G(Q)

eh2s⇤1|H(�g)i

Next-to-minimal representations

Relevant for        -couplings.@4R4



Conjecture [Gustafsson, Kleinschmidt, D.P.]:
Let     be a semisimple, simply laced Lie group.G

Then all Fourier coefficients of                   are completely ' 2 ⇡ntm

determined by degenerate Whittaker vectors of the form

W ↵(', g) =

Z

N(Q)\N(A)
'(ng) ↵(n)dn

W ↵,� (', g) =

Z

N(Q)\N(A)
'(ng) ↵,�(n)dn

where             are commuting simple roots.(↵,�)

Proof. For            to appear by [Ahlén, Gustafsson, Kleinschmidt, Liu, D.P.]
For exceptionals, in progress by [Gustafsson, Gourevitch, Kleinschmidt, D.P., Sahi]

SL(n)



Conjecture [Gustafsson, Kleinschmidt, D.P.]:
Let     be a semisimple, simply laced Lie group.G

Then all Fourier coefficients of                   are completely ' 2 ⇡ntm

determined by degenerate Whittaker vectors of the form

W ↵(', g) =

Z

N(Q)\N(A)
'(ng) ↵(n)dn

W ↵,� (', g) =

Z

N(Q)\N(A)
'(ng) ↵,�(n)dn

where             are commuting simple roots.(↵,�)

This will allow us to extract instanton effects from           couplings! @4R4

See also [Bossard, Pioline][Bossard, Cosnier-Horeau, Pioline]



4. Outlook



So what happens at the next order?

1/8-BPS and non-BPS couplings seem to require more 
general automorphic objects.  

[Green, Miller, Vanhove][Pioline][Bossard, Verschinin][Bossard, Kleinschmidt]

This is uncharted 
mathematical territory.



1/8-BPS and non-BPS couplings seem to require more 
general automorphic objects.  

[Green, Miller, Vanhove][Pioline][Bossard, Verschinin][Bossard, Kleinschmidt]

This is uncharted 
mathematical territory.

Below D=3 we also enter 
the realm of Kac-Moody groups!

So what happens at the next order?

Nicolai, Damour, Henneaux, West, Kleinschmidt, Fleig, D.P., Garland, Lee, Patnaik, Braverman, Kazhdan, Miller, Carbone…

Connections with double affine 
Hecke algebras (DAHAs)?


