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Exact results for class Sk



Motivation: N=2 exact results 

Gaiotto: 4D N=2 class S:   6D (2,0) on Riemann surface 

AGT: 4D partition functions = 2D CFT correlators

4D SC Index = 2D correlation function of a TFT

Seiberg-Witten theory: effective theory in the IR

Nekrasov: instanton partition function 

Pestun: observables in the UV (path integral on the sphere localizes)

String/M-/F-theory realizations

2D/4D 
relations



What can we do for N=1 theories? 

Superconformal Index

Intriligator and Seiberg: generalized SW technology 

  N=1 SuperConformal

  Obtained by orbifolding N=2 (inheritance)

  Labeled by punctured Riemann Surface

  Index = 2D correlation function of a TFT
[Gaiotto,Razamat 2015]

Class Sk (SΓ):

No Localization on S4.

An S4  partition function plagued with scheme ambiguities.

Derivatives of the free energy scheme independent.
[Gerchkovitz, Gomis, Komargodski 2014]

[Bobev, Elvang, Kol, Olson, Pufu 2014]



Plan

Spectral curves for N=1 theories in class Sk

From the curves: 2D symmetry algebra and representations

Conformal Blocks         Instanton partition function 

Free trinion partition functions on S4             3pt functions 

Is there  AGTk ? 
 4D partition functions = 2D CFT correlators



Class Sk [Gaiotto,Razamat 2015]

Data collection theories (examples) with a Lagrangian description:

kNxkN

NxN

[Douglas,Moore 1996]Begin with N=2 class S with SU(kN) factors and Orbifold:

The quiver construction

• N = 2 vector) N = 1 vector and N = 1 chiral (blue)

• N = 2 hyper) N = 1 chiral (red) and N = 1 chiral (green)

The quiver construction

U(1)t U(1)↵c U(1)�i+1�c U(1)�i

V(i,c) 0 0 0 0
�(i,c) �1 0 �1 +1

Q(i,c�1) +1/2 �1 +1 0
e

Q(i,c�1) +1/2 +1 0 �1

Table 5. The symmetries of the fields of the orbifolded linear quivers in class Sk. Apart from the
color structure that can be read from the quiver diagram in figure 2, there is a number of U(1) global
symmetries which can also be read from the extra arrows that intersect the bi-fundamentals.

2.3 Coulomb moduli parameters and mass parameters

From the study of N = 2 theories we are used to the fact that the SW curves are param-
eterized by the vacuum expectation values of gauge invariant operators htr�`i ⇠ u

`

that
parametrize the Coulomb branch of the theory. There, solving the theory amounts to cal-
culating the vev h�i = a of the Coulomb moduli as a function of the u, a(u), as well as their
magnetic duals a

D

(u). This is done by computing the A- and B-cycle integrals, see section
3.5 for a review, and at weak coupling we find a ⇠ p

u2. The a(u) in the IIA/M-theory
picture correspond to the positions of the D4/M5 branes.

After orbifolding, the gauge invariant operators whose vevs parameterize the Coulomb
branch of the theory are 3

u

`k

= htr ��(1) · · ·�(k)

�

`i , (2.13)

htr ��(1) · · ·�(k)

�i ⇠ u

k

, (2.14)

htr ��(1) · · ·�(k)

�2i ⇠ u2k , (2.15)

m

2
BPS

= |na+ma

D

|2 (2.16)

where the index c = 0, . . . ,M labels the different color groups in the IIA setup with M NS5
branes. Notice that the bi-fundamental field �(i,c) of the N = 1 orbifold daughter theory
is embedded into the adjoint N = 2 field �(c) of the original (mother) theory [40] as

�(c) =

0

B

B

B

B

B

B

@

�(1,c)

�(2,c)
. . .

�(k�1,c)

�(k,c)

1

C

C

C

C

C

C

A

. (2.17)

� =

0

B

B

B

B

B

B

@

�(1)

�(2)
. . .

�(k�1)

�(k)

1

C

C

C

C

C

C

A

. (2.18)

3
More rigorously, the Coulomb moduli parameters u which appear in the spectral curve in the later

sections are accompanied by a certain linear combination of the product of these operators with the same

total mass dimension together with the correction from the mass parameters. In (2.13) we omit these

corrections and write the relation symbolically.
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Class S and Sk 

6D (2,0) SCFT on Riemann surface: 4D N=2 theories of class S

6D (1,0) SCFT on Riemann surface: 4D N=1 theories of class Sk

[Gaiotto 2009]
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Table 1. Type IIA brane configuration for the 4D N = 1 theories of class Sk.
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Table 2. Type IIA brane configuration for the 4D N = 1 theories of class Sk.

plane corresponds to the U(1)

r

symmetry of the N = 2 theories, which is preserved in the
presence the orbifold singularity.

Following [20], we wish to derive the SW curves using the uplift to M-theory of table
1, and we define the holomorphic coordinates

v ⌘ x

4
+ ix

5
, s ⌘ x

6
+ ix

10 and w ⌘ x

7
+ ix

8 (2.1)

in terms of which we will write the spectral curves. It is also useful to define the exponen-
tiated

t ⌘ e

� s
R10

, (2.2)

where R10 is the M-theory circle. See [37] for the conventions we follow. In order to account
for the orbifold action, we impose the identification

(v , w) ⇠
⇣

e

2⇡i
k
v , e

� 2⇡i
k
w

⌘

. (2.3)

The coordinate x

9 is not part of a complex coordinate, which is consistent with [35, 36].

Figure 1. The IIA brane set-up from which we calculate the IR curve ⌃ for the SU(2) case. The
thick dashed line depicts the Zk orbifold point, for k = 2. For each D4 brane the mirror images are
also depicted using grey dotted lines.

For k = 1 using the set-up above we can obtain the spectral curve ⌃, which is the
spectral curve in the IR, by thinking of a single M5 brane with non-trivial topology and

– 4 –

N M5 branes on X4 x Cg,n

SU(N) theory on X4 2D theory on Cg,n
4D/2D 

relation

[Gaiotto,Razamat 2015]

[GMN 2009]

* * * *
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Curves from M-theory

 

single M5 brane with non trivial topology: SW curve

[Witten 1997]

2D surface F(t,v)=0 in the 4D 
space {x4, x5, x6, x10}={v,t}.
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where R10 is the M-theory circle. See [37] for the conventions we follow. In order to account
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⇣

e

2⇡i
k
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The coordinate x

9 is not part of a complex coordinate, which is consistent with [35, 36].

Figure 1. The IIA brane set-up from which we calculate the IR curve ⌃ for the SU(2) case. The
thick dashed line depicts the Zk orbifold point, for k = 2. For each D4 brane the mirror images are
also depicted using grey dotted lines.

For k = 1 using the set-up above we can obtain the spectral curve ⌃, which is the
spectral curve in the IR, by thinking of a single M5 brane with non-trivial topology and
the appropriate boundary conditions (given by the asymptotic positions of the D4 and the
NS5 branes) wrapping ⌃. Following Gaiotto [7] for SCFTs, after a change of variables, we
can rewrite the IR curve ⌃ as a curve that describes N M5 branes wrapping a different
Riemann surface C

g,n

with genus g and n punctures, referred to as the Gaiotto curve or the
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Figure 1. The IIA brane set-up from which we calculate the IR curve ⌃ for the SU(2) case. The
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For k = 1 using the set-up above we can obtain the spectral curve ⌃, which is the
spectral curve in the IR, by thinking of a single M5 brane with non-trivial topology and
the appropriate boundary conditions (given by the asymptotic positions of the D4 and the
NS5 branes) wrapping ⌃. Following Gaiotto [7] for SCFTs, after a change of variables, we
can rewrite the IR curve ⌃ as a curve that describes N M5 branes wrapping a different
Riemann surface C

g,n

with genus g and n punctures, referred to as the Gaiotto curve or the
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For k = 1 using the set-up above we can obtain the spectral curve ⌃, which is the
spectral curve in the IR, by thinking of a single M5 brane with non-trivial topology and
the appropriate boundary conditions (given by the asymptotic positions of the D4 and the
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where const(v) means a constant with respect to v, which can depend on t. The shifted
�

SW

in terms of ṽ has poles on both sheets. Parametrizing v = xt, we finally find that the
poles of the SU(2) four-punctured sphere are

x

t=0 ⇠ m3 �m4

2t

{+1,�1} , x

t=1 ⇠ t(m1 �m2)

2

{+1,�1} (3.26)

x

t=1 ⇠ m1 +m2

2(t� 1)

{+1,�1} , x

t=q

⇠ �(m3 +m4)

2(t� q)

{+1,�1} . (3.27)

The shift in v leaves the physics unchanged9 but reveals the full SU(2) flavor symmetry
of the punctures at t = 1, q. The poles have residues which sum to zero. They have the
properties of an element of the Cartan subgroup of SU(2) and thus get associated to its
fugacities, making the connection between the punctures and the SU(2) flavor symmetries.

Back to class S
k

: After performing the orbifold, the spectral curve becomes

(v

k �m

k

1)(v
k �m

k

2)t
2
+ P (v)t+ q(v

k �m

k

3)(v
k �m

k

4) = 0 . (3.28)

When k > 1, the curve (3.28) has 2k solutions for v(t), which are given by

v

(n)
± = e

2⇡in
k

v± with v

k

± =

P1(t)±
p
�

2(t� 1)(t� q)

(3.29)

where n = 1 . . . k, � is the discriminant of the quadratic equation (3.28) for X = v

k

� = (P1(t))
2 � 4(t� 1)(t� q)P2(t) (3.30)

and P1,2 generalize the polynomials (3.18a)-(3.18b)

P1(t) = t

2c(1,k)
L

� u

k

t+ qc(1,k)
R

, P2(t) = t

2c(2,k)
L

+ u2kt+ qc(2,k)
R

. (3.31)

Let us begin by looking at (3.29) close to t = 0, where

v

k

± t=0
=

n

m

k

3 , m

k

4

o

) v

(n)
± t=0

=

n

m

(n)
3 ,m

(n)
4

o

(3.32)

for m

(n)
i

introduced in (3.5). Similarly, at t ! 1, v takes values

v

(n)
± t!1 =

n

m

(n)
1 ,m

(n)
2

o

. (3.33)

These are the maximal punctures of the curve parameterized by t in class S
k

. At these
punctures, the differential �

SW

has a simple pole on all 2k sheets of the spectral curve. The
maximal punctures are parameterized by k mirror images of U(2). The generalization to
the SU(N) case is immediate

lim

t!1
v

(n)
1,...,N =

n

m

(n)
1 ,m

(n)
2 , . . . ,m

(n)
N

o

, (3.34)

lim

t!0
v

(n)
1,...,N =

n

m

(n)
N+1,m

(n)
N+2, . . . ,m

(n)
2N

o

. (3.35)

9
The two-form dv ^ dt is invariant under the shift (3.23).
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in terms of which we write M = c(1)
L

+ c(1)
R

.
To implement the orbifold we follow [35, 36]. Orbifolding imposes the identification

v ⇠ e

2⇡i
k
v . (3.3)

For each mass m

i

there are k mirror images on the v-plane and thus we must replace

(v �m

i

) �!
k

Y

n=1

(v �m

(n)
i

) = (v

k �m

k

i

) . (3.4)

The equality follows because also the (mirror images of the) mass parameters obey the
orbifold condition and get identified as

m

(n)
i

= e

2⇡in
k

m

i

, n = 1, . . . , k (3.5)

Combining the replacement (3.4) with equation (3.1) gives

N

Y

i=1

(v

k �m

k

i

)t

2
+ P (v)t+ q

2N
Y

i=N+1

(v

k �m

k

i

) = 0 . (3.6)

The polynomial P (v) has degree Nk because of the orbifold

P (v) = �(1 + q)v

Nk

+ u1v
Nk�1

+ · · ·+ u

Nk�1v + u

Nk

, (3.7)

P (v) = �(1 + q)v

2k
+ u

k

v

k

+ u2k (3.8)

but its monomials must respect the orbifold Z
k

symmetry, as they must eventually be
matched to the vevs of the gauge invariant operators (2.11) that parameterize the Coulomb
branch.5 Any polynomial in X = v

k will do that, so P (v) = P

N

(X) with

P

N

(X) = �(1 + q)X

N

+

N

X

`=1

u

`k

X

N�`

. (3.9)

Thus the spectral curve that describes the Coulomb branch of SU(N) SCQCD
k

reads

N

Y

i=1

(v

k �m

i

k

)t

2
+

 

�(1 + q)v

Nk

+

N

X

`=1

u

`k

v

(N�`)k

!

t+ q

2N
Y

i=N+1

(v

k �m

i

k

) = 0 . (3.10)

We now want, following Gaiotto [7], to rewrite this curve as the four-punctured sphere
C(k)
0,4 in class S

k

. The first step in order to achieve this is to rewrite the spectral curve (3.10),
which is a polynomial in t, as a polynomial in v

v

Nk

+

N

X

`=1

(�1)

`

P

`

(t)

(t� 1)(t� q)

v

(N�`)k
= 0 , (3.11)

5
Note that in this paper we only study the Coulomb branch of the Sk theories. We do not turn on vevs

for the mesons or the baryons.
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Imposing the Z
k

orbifold breaks supersymmetry to N = 1 and the superpotential
becomes

WSk =

k

X

i=1

M�1
X

c=1

⇣

Q(i,c�1)�(i,c)
˜

Q(i,c�1) � ˜

Q(i,c)�(i,c)Q(i+1,c)

⌘

. (2.10)

A chiral field Q(i,c) corresponds to an arrow pointing left into the node (i, c) and ˜

Q(i,c)

corresponds to an arrow pointing right from the node (i, c). The chiral field �(i,c) points
from (i + 1, c) to (i, c). The transformation properties of all the fields in the Lagrangian
for the various gauge and global symmetries are summarized in table 2. In particular, in
class S

k

we have a large number of global U(1) symmetries [17], the action of which on the
various bi-fundamental fields (arrows) is depicted by grey, blue and red arrows in figure 2.

SU(N)(i,c�1) SU(N)(i,c) SU(N)(i+1,c) U(1)t U(1)↵c U(1)�i+1�c U(1)�i

V(i,c) 1 adj. 1 0 0 0 0
�(i,c) 1 ⇤ ⇤ �1 0 �1 +1

Q(i,c�1) ⇤ ⇤ 1 +1/2 �1 +1 0
e

Q(i,c�1) ⇤ 1 ⇤ +1/2 +1 0 �1

Table 2. The symmetries of the fields of the orbifolded linear quivers in class Sk. Apart from the
color structure that can be read from the quiver diagram in figure 2, there is a number of U(1) global
symmetries which can also be read from the extra arrows that intersect the bi-fundamentals.

2.3 Coulomb moduli parameters and mass parameters

From the study of N = 2 theories we are used to the fact that the SW curves are param-
eterized by the vacuum expectation values of gauge invariant operators htr�`i ⇠ u

`

that
parametrize the Coulomb branch of the theory. There, solving the theory amounts to cal-
culating the vev h�i = a of the Coulomb moduli as a function of the u, a(u), as well as their
magnetic duals a

D

(u). This is done by computing the A- and B-cycle integrals, see section
3.5 for a review, and at weak coupling we find a ⇠ p

u2. The a(u) in the IIA/M-theory
picture correspond to the positions of the D4/M5 branes.

After orbifolding, the gauge invariant operators whose vevs parameterize the Coulomb
branch of the theory are 3
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branes. Notice that the bi-fundamental field �(i,c) of the N = 1 orbifold daughter theory

3
More rigorously, the Coulomb moduli parameters u which appear in the spectral curve in the later

sections are accompanied by a certain linear combination of the product of these operators with the same

total mass dimension together with the correction from the mass parameters. In (2.11) we omit these

corrections and write the relation symbolically.
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Figure 1: This figure illustrates the position of the branes (horizontal D4s and vertical NS5s) for the case of
the N = 2 SU(3) gauge theory. In the N = 1 case, one needs to introduce an orbifold and image branes as
reviewed in [28]. From the equation for the curve (3), we see that for t ! 0/1 the solutions of the curve are
v = mL, i/mR, i, while for v ! 1 the solutions are t = 1, q.

equation for the curve as
NX

`=0

�
(4)

k` (t)x
k(N�`) = 0 , (4)

where the coe�cients are given by �
(4)

0

(t) = 1 and
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(4)

k` (t) =
(�1)` c(`,k)L t2 + uk`t+ (�1)` c(`,k)R q

tk`(t� 1)(t� q)
for ` = 1, . . . , N . (5)

In the above, we have used the formula
QN

i=1

(vk �mk
i ) =

PN
s=0

(�1)s c(s,k) vk(N�s) with the Casimirs (let use

set for simplicity c(s) ⌘ c(s,1)) defined as :

c(s,k) =
NX

i1<···<is=1

mk
i1 · · ·mk

is , c(0,k) = 1 . (6)

For generic values of the masses, the Casimirs {c(s,k)}N`=1

are algebraically independent of each other.

We remark that one can perform an SL(2,Z) transformation t ! az+b
cz+d , x ! (cz+ d)2x on the curve (3) and

set z
1

= �d
c , z2 = � b�d

a�c , z3 = � b�dq
a�cq and z

4

= � b
a . This sends the singularities at 1, 1, q and 0 to the generic

points z
1

, z
2

, z
3

and z
4

respectively.

The free trinion curves. As explained in [28], the free C(k)
0,3 trinion curve can be obtained from the SCQCDk

one by going to the weak coupling regime q ! 0 and identifying the Coulomb parameters u` appropriately with

the masses. The resulting equation for the curve reads

t
NY

i=1

�
vk �mk

L, i

��
NY

i=1
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vk �mk

R, i

�
= 0 . (7)
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As before, we can rescale v = xt and write the curve as
PN

`=1

�
(3)

k` (t)x
k(N�`) = 0, with the curve coe�cients

(see (90) for the definition of the Casimirs) �(3)

0

= 1 and

�
(3)

k` (t) = (�1)`
c(`,k)L t� c(`,k)R

tk`(t� 1)
for ` = 1, . . . , N . (9)

The above coe�cients can be directly obtained by taking the limit q ! 0 in (6) and setting

uk`(q = 0) �! (�1)`+1 c(`,k)R . (10)

The UV curves corresponding to the free trinion and to the SCQCD theories are depicted in figure 2. They are

three and respectively four punctured5 spheres with the punctures at t = 0 and t = 1 being full punctures �,

while those at t = 1 and t = q are simple punctures •, see [28].

Figure 2: The UV curves of the trinion and of the SCQCDk theories. They are 3, respectively 4-punctured
spheres. The full punctures are depicted by � and placed at t = 0 and t = 1, while the simple punctures • are
at t = 1 and at t = q.

Gaiotto Shifts in x for k = 1. Due to the orbifold relation (2), we are allowed to shift the variable x for

k = 1, but not for k > 1. This shift is the consequence of the additional U(1) degrees of freedom that are

present for k = 1 but, as we shall see more in detail later, disappear for k > 1. For k = 1, if we go from an

equation
PN

i=0

xi�i to
PN

i=0

xi�0
i by making the tranformation x ! x� �

1

, then we find

�0
` =

NX

j=N�`

✓
j

N � `

◆
�N�j(��

1

)j+i�N =
X̀

j=0

✓
N � j

N � `

◆
�j(��

1

)`�j . (11)

We remind that �
0

= 1 before and after the transformation. It is clear that the shift leaves the 2-form

⌦
2

= d�SW = dx ^ dt unchanged, however the structure of the poles of �SW on the various sheets of the curve

does change, see [28]. If we put the shift parameter  equal to 1

N , then the coe�cient �0
1

vanishes - the resulting

curve is known as the Gaiotto curve. Let us denote the curve coe�cients for the Gaiotto curve by �̃
(n)
` . As

we shall review later, their expansion around the poles in t gives the charges of the WN algebra. One easily

5The UV curves are characterized by the meromorphic di↵erentials �
(n)
s that have only poles and no branch cuts. The additional

punctures F discussed in [28] will not be relevant for our purposes here.
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Abstract:

We study the Coulomb branch of class S
k

N = 1 SCFTs by constructing and analyzing
their spectral curves.

ZS4 [Tg,n] =
Z

daZ
pert

|Z
inst

|2 =
Z

d↵C . . . C |B↵i
↵

|2 = h
n

Y

i=1

V

↵iiCg,n (0.1)

algebraic curves that compute the low energy coupling constants in the abelian Coulomb phase for N = 1

theories.

In the last decade, the most modern developments in the field are based on the deep connection of S-duality

in 4D gauge theory with 2D modular invariance. In the prototypical example of the maximally supersymmetric

N = 4 super Yang-Mills (SYM), the Montonen-Olive SL(2,Z) duality can be geometrically realized as the

modular group of a torus by compactifying the 6D (2, 0) SCFT on a torus [5]. Similarly, a large class of 4D

N = 2 superconformal field theories (SCFTs)s, referred to as class S [6,7], can be obtained via compactification

of (a twisted version of) the 6D (2, 0) SCFT on Riemann surfaces of genus g and with n punctures. The

parameter space of the exactly marginal gauge couplings is identified with the complex structure moduli space

of the Riemann surface. What is more, the partition function of the 4D N = 2 theories on a four sphere1 [9]

are equal to correlation functions of the 2D Liouville/Toda CFT on that Riemann surface [10,11], which is the

core of the celebrated AGT(W) correspondence. The 4D/2D interplay was originally discovered for the N = 2

class S theories in [6] by studying the SW curves and realizing that they arise from the compactification of

M5-branes on Riemann surfaces decorated with punctures. See [12, 13] for recent reviews.

Motivated by the above developments for N = 2 theories, we wish to explore how much mileage we can get

for theories with only N = 1 supersymmetry. We begin by recalling that it is not uncommon to find exactly

marginal couplings also in N = 1 supersymmetric theories [14,15], with the AdS/CFT correspondence o↵ering

a natural route to several examples of N = 1 orbifold daughters of N = 4 SYM [16, 17]. A very large class of

4D N = 1 SCFTs, naturally called S� [18, 19], arise from M5-branes probing the C2/� ADE singularity. Their

study was originated in [20], with the Sk class arising after compactification of Zk orbifolds of the (2,0) theory,

see also [21,22] and [18,23–27]. The SW curves for the class Sk theories were derived and studied in [28], using

Witten’s M-theory approach [29].

For N = 2 theories, the SW curves completely solve the IR theory. The N = 2 supersymmetry and more

specifically the SU(2)R relates the holomorphic superpotential to the non-holomorphic (in N = 1 superspace)

Kähler part and thus we can obtain the full prepotential. For theories with only N = 1 supersymmetry, we can

only hope to fix the holomorphic superpotential part. However, there are N = 1 examples for which also the

Kähler part can be fixed, see for example [30,31]. From a field theory point of view this should be a consequence

of an extra global symmetry. For the theories in class S�, we expect more, than for generic N = 1theories, due

to their rich global symmetries inherited from the orbifold construction.2

The purpose of this article is to begin the search for the 2D conformal field theories (CFT), whose correlation

functions reproduce the partition functions of the 4D N = 1 SCFTs of class Sk and in general of class S�. In

principle, there is no reason to expect that such a 4D/2D relation exists for N = 1 theories. We adopt here a

1Technically [8], on an ellipsoid with deformation parameter b2 = ✏1
✏2

, where the ✏i are the ⌦-background deformation parameters

entering the Nekrasov partition functions.
2As explained in [20, 28], the SU(2)R is broken by the orbifold, but a diagonal U(1)R remains. Moreover, instead of the U(1)r

of N = 2, a global symmetry U(1)⇥U(1)k�1 ⇥U(1)k�1 which is heavily constraining the theory.
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Abstract

This is the first in a series of papers on the search for the 2D CFT description of a large class of 4D N = 1
gauge theories. Here, we identify the 2D CFT symmetry algebra and its representations, namely the conformal
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while the expectation values of the scalar fields in the dual (magnetic) theory are given by

a
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@F(a)
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. (1.6)

The electromagnetic duality acts on the Coulomb moduli as the modular transformation
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2 SL(2,Z) . (1.7)

The prepotential is determined using an auxiliary curve called the SW curve

F (t, v) = 0 (1.8)

together with a meromorphic di↵erential �
SW

. The derivatives of the meromorphic one-

form with respect to the moduli of the SW curve1 are the holomorphic di↵erentials of the

curve. The Coulomb moduli are then computed according to

a
i

=

I

Ai

�
SW

and a
D

i =

I

B

i
�
SW

, (1.9)

where A
i

and B
i

are the basic cycles of the algebraic curve with intersection number

A
i

·Bj = �j
i

. The prepotential itself can be found by integrating (2.3). Moreover, contour

integrals of the meromorphic di↵erential �
SW

around its poles give linear combinations of

the bare quark masses (m
i

).

hQIi = 0 m
i

= 0 h�i = a = 0 (1.10)

E
r

with � = r

u
`

= htr�`i (1.11)

1The moduli of the SW curve u for the SU(2) example is the gauge invariant Coulomb moduli u =

htr�2i+ . . . .
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Recall 2D Ward Identities: 

Example: 
N=2 SU(2) Free trinion

N=2 SU(N) 
Free trinion

N = 4 super Yang-Mills (SYM), the Montonen-Olive SL(2,Z) duality can be geometrically realized as the

modular group of a torus by compactifying the 6D (2, 0) SCFT on a torus [5]. Similarly, a large class of 4D

N = 2 superconformal field theories (SCFTs)s, referred to as class S [6,7], can be obtained via compactification

of (a twisted version of) the 6D (2, 0) SCFT on Riemann surfaces of genus g and with n punctures. The

parameter space of the exactly marginal gauge couplings is identified with the complex structure moduli space

of the Riemann surface. What is more, the partition function of the 4D N = 2 theories on a four sphere1 [9]

are equal to correlation functions of the 2D Liouville/Toda CFT on that Riemann surface [10,11], which is the

core of the celebrated AGT(W) correspondence. The 4D/2D interplay was originally discovered for the N = 2

class S theories in [6] by studying the SW curves and realizing that they arise from the compactification of

M5-branes on Riemann surfaces decorated with punctures. See [12, 13] for recent reviews.

Motivated by the above developments for N = 2 theories, we wish to explore how much mileage we can get

for theories with only N = 1 supersymmetry. We begin by recalling that it is not uncommon to find exactly

marginal couplings also in N = 1 supersymmetric theories [14, 15], with the AdS/CFT correspondence o↵ering

a natural route to several examples of N = 1 orbifold daughters of N = 4 SYM [16, 17]. A very large class of

4D N = 1 SCFTs, naturally called S
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[18, 19], arise from M5-branes probing the C2/� ADE singularity. Their

study was originated in [20], with the Sk class arising after compactification of Zk orbifolds of the (2,0) theory,

see also [21,22] and [18,23–27]. The SW curves for the class Sk theories were derived and studied in [28], using

Witten’s M-theory approach [29].

For N = 2 theories, the SW curves completely solve the IR theory. The N = 2 supersymmetry and more

specifically the SU(2)R relates the holomorphic superpotential to the non-holomorphic (in N = 1 superspace)

Kähler part and thus we can obtain the full prepotential. For theories with only N = 1 supersymmetry, we can

only hope to fix the holomorphic superpotential part. However, there are N = 1 examples for which also the

Kähler part can be fixed, see for example [30,31]. From a field theory point of view this should be a consequence

of an extra global symmetry. For the theories in class S
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, we expect more, than for generic N = 1theories, due
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Kähler part can be fixed, see for example [30,31]. From a field theory point of view this should be a consequence
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12.2 SU(N) quiver theories and tame punctures
12.2.1 Quiver gauge theories

To this aim, we introduce a new diagrammatic notation for N=2 gauge theories. This notation is
related to but distinct from the trivalent one introduced in Sec. 9.5.

A diagram is composed of squares and circles with integers written in them, and edges con-
necting squares and circles. A square with N stands for a U(N) flavor symmetry, and a circle with
N an SU(N) gauge symmetry. An edge connecting two objects with N and M written within
them represents a hypermultiplet (Qa

i , Q̃
i
a) where i = 1, . . . , N and j = 1, . . . ,M . They are in the

tensor product of the fundamental representation of SU(N) and SU(M), and is called the bifun-
damental hypermultiplet. Such a diagram specifies an N=2 gauge theory. This class of theories
is often called quiver gauge theories.

N N

N NN
0 ∞

q 1

q

0 ∞

1qq' q'
N NN

q
N

q'

Figure 12.5: SU(N) quiver theory

The simplest cases are when all the squares and circles have the same number N written in
them, see Fig. 12.5. The first one in the figure is just a bifundamental hypermultiplet. The second
one is the SU(N) theory with 2N flavors. The last one is an SU(N)1 ⇥ SU(N)2 theory, so that

• there is a bifundamental hypermultiplet for SU(N)1 ⇥ SU(N)2, and

• there are N fundamental hypermultiplets for SU(N)1, and

• there are N fundamental hypermultiplets for SU(N)2.

Note that both SU(N)1 and SU(N)2 have zero beta function.
Their Seiberg-Witten solutions can be obtained by combining the knowledge we acquired so

far. Namely, each edge corresponds to the bifundamental hypermultiplet of SU(N) ⇥ SU(N),
which we know to come from a three punctured sphere of 6d theory of type SU(N), with two full
punctures and one simple puncture. All we have to do then is to prepare one such sphere for each
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As before, we can rescale v = xt and write the curve as
PN

`=1

�
(3)

k` (t)x
k(N�`) = 0, with the curve coe�cients

(see (90) for the definition of the Casimirs) �(3)

0

= 1 and

�
(3)

k` (t) = (�1)`
c(`,k)L t� c(`,k)R

tk`(t� 1)
for ` = 1, . . . , N . (9)

The above coe�cients can be directly obtained by taking the limit q ! 0 in (6) and setting

uk`(q = 0) �! (�1)`+1 c(`,k)R . (10)

The UV curves corresponding to the free trinion and to the SCQCD theories are depicted in figure 2. They are

three and respectively four punctured5 spheres with the punctures at t = 0 and t = 1 being full punctures �,

while those at t = 1 and t = q are simple punctures •, see [28].

Figure 2: The UV curves of the trinion and of the SCQCDk theories. They are 3, respectively 4-punctured
spheres. The full punctures are depicted by � and placed at t = 0 and t = 1, while the simple punctures • are
at t = 1 and at t = q.

Gaiotto Shifts in x for k = 1. Due to the orbifold relation (2), we are allowed to shift the variable x for

k = 1, but not for k > 1. This shift is the consequence of the additional U(1) degrees of freedom that are

present for k = 1 but, as we shall see more in detail later, disappear for k > 1. For k = 1, if we go from an

equation
PN

i=0

xi�i to
PN

i=0

xi�0
i by making the tranformation x ! x� �

1

, then we find

�0
` =

NX

j=N�`

✓
j

N � `

◆
�N�j(��

1

)j+i�N =
X̀

j=0

✓
N � j

N � `

◆
�j(��

1

)`�j . (11)

We remind that �
0

= 1 before and after the transformation. It is clear that the shift leaves the 2-form

⌦
2

= d�SW = dx ^ dt unchanged, however the structure of the poles of �SW on the various sheets of the curve

does change, see [28]. If we put the shift parameter  equal to 1

N , then the coe�cient �0
1

vanishes - the resulting

curve is known as the Gaiotto curve. Let us denote the curve coe�cients for the Gaiotto curve by �̃
(n)
` . As

we shall review later, their expansion around the poles in t gives the charges of the WN algebra. One easily

5The UV curves are characterized by the meromorphic di↵erentials �
(n)
s that have only poles and no branch cuts. The additional

punctures F discussed in [28] will not be relevant for our purposes here.
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Different S-duality frames the UV curve

Curve decomposition and S-duality 

are accompanied by the exchange of the representations of the SO(8) flavor symmetry,

V

S C
(9.4.14)

where V , S, C are eight dimensional irreducible representations (vector, spinor, conjugate spinor)
of SO(8). These exchanges of three irreducible eight dimensional representations are induced by
the outer automorphism, and are known as the triality of the group SO(8), whose Dynkin diagram
is also shown in Fig. 9.11. This triality was originally found in [3]. The exposition in this subsection
followed the one given in [8].

The Higgs branch of this system can be studied in any of these descriptions. Originally we
have hypermultiplets qaI , where a = 1, 2 and I = 1, . . . , 8. The gauge invariant combination is

M[IJ ] = qaI q
b
J✏ab. (9.4.15)

In the dual, we have hypermultiplets q̃ã
Ĩ
, where ã = 1, 2 are for dual SU(2) and Ĩ = 1, . . . , 8 are

for the spinor representation of the SO(8) flavor symmetry. The basic gauge invariant is then

M̃[Ĩ J̃ ] = q̃ã
Ĩ
q̃b̃
J̃
✏ãb̃. (9.4.16)

Both M[IJ ] and M̃[Ĩ J̃ ] are in the adjoint representation of SO(8), and can be naturally identified
using the outer automorphism of SO(8). We can check that the constraints satisfied by M[IJ ] and
M̃[Ĩ J̃ ] are invariant under the outer automorphism. This shows that the Higgs branch are the same
as complex spaces.

9.5 Generalization
9.5.1 Trivalent diagrams

A

B

CA

B

C

0 ∞

q 1
A

B C

D
A

B C

D

q

Figure 9.12: Trivalent diagrams and corresponding ultraviolet curves
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3 33

2
3

3
3 ⊃ 1

Figure 12.16: S-duality of SU(3) with 6 flavors involves the theory MN(E6).

and on the right, we have the extended Dynkin diagram of E6 with one node removed.16 We
clearly see subgroups SU(3)3 and SU(6) ⇥ SU(2). We already saw above that this theory has
only one Coulomb branch operator, and its dimension is three. This nicely fits the feature of a
rank-1 superconformal theory announced to exist in Sec. 10.4. This is equivalent to Minahan-
Nemeschansky’s theory MN(E6).

33

3

Figure 12.17: The theory MN(E6) = R3 = T3

We conclude that we have the following duality:

SU(3) theory with 6 flavors at the strong coupling q ! 1

,

weakly-coupled SU(2) gauge multiplet coupled to one doublet
and to the theory MN(E6) of Minahan-Nemeschansky.

(12.3.6)

We can give a few more checks to this duality. The first one concerns the current two-point
functions. Firstly, we computed the current two-point function for the SU(2) flavor symmetry in
(12.3.4). Then the whole E6 flavor currents, which include the SU(2) ones, should have the same

16There is a general theorem for any G stating that there is always a maximal subgroup whose Dynkin diagram is
given by the extended Dynkin diagram of G minus one node.
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Gauging

Free hyper  
(trinion) 

The trifundamental hypermultiplet consisting of N=1 chiral multiplets qa↵u for a,↵, u = 1, 2
played the central role in the analysis so far. Let us introduce a shorthand notation for it, by rep-
resenting it by a trivalent vertex with labels A, B, C as in Fig. 9.12, signifying the symmetries
SU(2)A, SU(2)B, SU(2)C , acting on the indices a, ↵, u respectively.

The ultraviolet curve for this system is given by a sphere with three punctures A, B, C, and the
Seiberg-Witten curve is given by

⌃ : �2 � �(z) = 0 (9.5.1)

where �(z) is given by the condition that the coe�cients of the double poles are given by µ2
A, µ2

B,
µ2
C at each of the punctures A,B,C, as in (9.3.7).

Now, the SU(2) theory with four flavors can be obtained by taking two copies of trifundamen-
tals, and coupling an SU(2) gauge multiplet to them. We denote it by taking two trivalent vertices,
and connecting them by a line, as shown in Fig. 9.12. We put the exponentiated coupling q on the
connecting line.

Starting with this trivalent diagram, we can easily write down the Lagrangian of the theory.
The free parameters in the theory are the mass parameters µA,B,C,D and the UV coupling q. The
ultraviolet curve of this system is given by a sphere with four punctures A, B, C, D, and the
Seiberg-Witten curve is given by

⌃ : �2 � �(z) = 0 (9.5.2)

where �(z) is given by the condition that its residues are given by µ2
X at each of the punctures

X = A,B,C,D as in (9.2.10). The triality of the SU(2) theory with four flavors, shown already
in Fig. 9.11, can be depicted in terms of the trivalent diagrams as in Fig. 9.13.

A

B C

D

q

A

C B

D

1/q

A

C

B

1−q

D

Figure 9.13: Triality, using trivalent diagrams.

This way, we can regard the trivalent diagram as a shorthand to represent the UV Lagrangian.
The Seiberg-Witten solution to this given UV Lagrangian theory is given just by replacing each
trivalent vertex with a three punctured sphere, and a connecting line with a connecting tube. This
is a surprisingly concise method to obtain the Seiberg-Witten solutions to N=2 gauge theories.
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S-duality looks like  
crossing equation!

As before, we can rescale v = xt and write the curve as
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for ` = 1, . . . , N . (2.8)

The above coe�cients can be directly obtained by taking the limit q ! 0 in (2.5) and setting

uk`(q = 0) �! (�1)`+1 c(`,k)R . (2.9)

The UV curves corresponding to the free trinion and to the SCQCD theories are depicted in figure 2. They are

three and respectively four punctured5 spheres with the punctures at t = 0 and t = 1 being full punctures �,

while those at t = 1 and t = q are simple punctures •, see [28].

Figure 2: The UV curves of the trinion and of the SCQCDk theories. They are 3, respectively 4-punctured
spheres. The full punctures are depicted by � and placed at t = 0 and t = 1, while the simple punctures • are
at t = 1 and at t = q.

Gaiotto Shifts in x for k = 1. Due to the orbifold relation (2.2), we are allowed to shift the variable x for

k = 1, but not for k > 1. This shift is the consequence of the additional U(1) degrees of freedom that are

present for k = 1 but, as we shall see more in detail later, disappear for k > 1. For k = 1, if we go from an

equation
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, then we find
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We remind that �
0

= 1 before and after the transformation. It is clear that the shift leaves the 2-form

⌦
2

= d�SW = dx ^ dt unchanged, however the structure of the poles of �SW on the various sheets of the curve

does change, see [28]. If we put the shift parameter  equal to 1

N , then the coe�cient �0
1

vanishes - the resulting

curve is known as the Gaiotto curve. Let us denote the curve coe�cients for the Gaiotto curve by �̃
(n)
` . As

we shall review later, their expansion around the poles in t gives the charges of the WN algebra. One easily

5The UV curves are characterized by the meromorphic di↵erentials �
(n)
s that have only poles and no branch cuts. The additional

punctures F discussed in [28] will not be relevant for our purposes here.
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From the curves to the 2D CFT

 The symmetry algebra that underlies the 2D CFT = WkN algebra

The reps are very special reps of the WkN algebra

Obtain them from the N=2 SU(kN) after replacing:

Comparisons with the curves. We refer to appendix D for the computations of the W
2

and W
3

blocks

relevant for the comparison with the curve coe�cients and to [43] for an overview of the techniques needed for

these computations.

For the stress-energy tensor, we compute hhT (t) ii
3

in (109) and hhT (t) ii
4

to quadratic order in q in (116).

Comparing them with �̃
(n)
2

= �
(n)
2

� N�1

2N (�(n)
1

)2, with the �
(n)
s from (6),(9), leads to a perfect agreement if one

sets the Coulomb branch parameter u
2

to be equal to11

u
2

(q) =� a(2) +
q

ã(2)

"
� c(2)L c(2)R

2
+

(N � 1) a(1)(ML c(2)R + c(2)L MR)

2N
� a(2)

⇣N � 1

N
MLMR +

c(2)L

2
+

c(2)R

2

⌘

+
(N � 1) a(1) a(2)(ML +MR)

2N
+ a(2)

⇣a(2)

2
� N � 1

2N
(a(1))2

⌘#
+O(q2) . (58)

Similarly, hhW
3

(t) ii
3

is to be found in (120) and hhW
3

(t) ii
4

can be computed to linear order in q with the

tools provided in appendix D.3. We compare them with �̃
(n)
3

, where

�̃
(n)
3

= �
(n)
3

� (N � 2)

N
�
(n)
1

�
(n)
2

+
(N � 2)(N � 1)

3N2

(�(n)
1

)3 . (59)

The comparison works perfectly if we use the parameter identification of section 3.2 and if we express u
3

as a

function of q, of the a(s) and of the mass parameters, just like we did for u
2

in (58). One can even perform the

comparison for W
4

, see [44] for the commutation relations, but the computations become very tedious and we

omit them.

4 The AGT correspondence for the Sk theories.

Having reviewed in the last section some essential elements of the AGT correspondence, we can now apply them

to the Sk theories. The main principle guiding us is the observation that the class Sk curves for SU(N) can be

obtained from the N = 2 S curves for SU(Nk).

In order to see that, we introduce a map that takes the SU(Nk) curve and sets the mass/Coulomb parameters

to special values. Let us write this map as ⇡N,k and define its action on the SU(Nk) masses and Coulomb

parameters as follows

m
SU(Nk)
L, j+Ns 7�! mL, j e

2⇡i

k

s , m
SU(Nk)
R, j+Ns 7�! mR, j e

2⇡i

k

s , a
SU(Nk)
j+Ns 7�! aj e

2⇡i

k

s , (60)

m
SU(Nk)
j+Ns 7�! mj e

2⇡i

k

s a
SU(Nk)
j+Ns 7�! aj e

2⇡i

k

s (61)

where the indices run as j = 1, . . . , N , s = 0, . . . , k� 1. The parameters on the right hand side of (60) are those

of the class Sk SU(N) theory. Since
Qk�1

s=0

�
v � m e

2⇡i

k

s
�
= vk � mk, it is clear from the curve equations (3)

and (8) that ⇡N,k maps the N = 2 SU(Nk) curve with k = 1 to the N = 1 Sk SU(N) curve. Furthermore, it is

11Observe that the transition from the SCQCD curve to the free trinion one makes us set ai = mR, i, which puts u`(q = 0) =

(�1)`+1 c
(`)
R , see (10), (56) and (58).
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Figure 4: This figure depicts the three and four point W-blocks. Using conformal symmetry, for three points,
we set z

1

= Œ, z
2

= 1 and z
3

= 0, while for four points, we put z
1

= Œ, z
2

= 1, z
3

= q and z
4

= 0. The dashed
lines indicate descendant fields.

where a = (a
1

, . . . , aN ) and Y = {Y
1

, . . . , YN } is a set of N Young diagrams and the building blocks of Z
inst

are defined in appendix E. The partition function is related to the W-blocks as

Z
inst

= B
U(1)

Bw(w
1

, w
2

, w
3

, w
4

|q) . (43)

We remark that to relate the CFT data to the 4D Nekrasov partition functions, one should rescale all parameters
with dimension of mass as m æ mÔ

‘
1

‘
2

and also replace Q æ ‘Ô
‘

1

‘
2

.
The WN algebra charges wi are obtained by using the parametrization for ↵i in section 3.2 and using the

identities eqs. (23) and (24). The U(1) contribution, the 4-point block B
U(1)

, is given by the formula (103)
derived in appendix D.1

B
U(1)

= (1 ≠ q)p
2

p
3 = (1 ≠ q)

(ML≠a(1)

)(MR≠a(1) ≠N‘)

N‘
1

‘
2 (44)

with the charges p
2

= ≠i ML≠a(1)

Ô
N‘

1

‘
2

and p
3

= i MR≠a(1) ≠N‘Ô
N‘

1

‘
2

(compare with (56)). In the above, we have used
qN

i=1

ai = a(1), see (33).

3.4 Comparisons of the curves with the blocks

We now want to compare the curve coe�cients „¸ with the WN blocks, for three and for four points. In order
to connect the blocks with the curve, we need to introduce yet another object, namely the 3-point W-block with
the insertion of an arbitrary current J(t) at point t. We write it as

�
12w(J(t); Y) def= È V

1

(Œ)V
2

(1)J(t) (W≠YVw) (0) Í
È V

1

(Œ)V
2

(1)Vw(0) Í . (45)

The numerator of the above quantity is strictly speaking a 4-point function, but since J(t) is a symmetry current
and not an arbitrary object, the dependence of t can be obtained by expanding J(t) in modes and using the
blocks “

12w(Y). Thus, we refer to �
12w(J(t); Y) as a 3-point block with an insertion of a current.

Armed with that definition, we define the weighted current correlation functions ÈÈ J(t) ÍÍ as the following
ratio of blocks:

ÈÈ J(t) ÍÍn
def= n-point W-block with insertion of J(t)

n-point W-block , (46)
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conservative approach - if such a relation exists, then the SW curve of the Sk theories knows about it and will

illuminate the path leading to the symmetry algebra/representations underlying the 2D CFT. Following the

N = 2 class S paradigm [10,32,33], we first compare the meromorphic di↵erentials �` of the SW curves derived

in [28] with the weighted current correlation functions3 hh J`(t) ii computed on the CFT side. Specifically, the

identification works in the semi-classical limit ✏ ! 0

lim
✏1,2!0

hh J`(t) iin = �
(n)
` (t)

where ✏ = ✏1 + ✏2, with the ✏i being the ⌦-background deformation parameters. Since the CFT primary

fields enter in the computation of hh J`(t) ii, the above identification dictates to us their quantum numbers. In

particular, we can learn the form of the CFT representations that the primary fields live in.

We discover that the spectral curves of the 4D SU(N) gauge theories of class Sk can be reproduced from

the 2D CFT weighted current correlation functions of the WNk algebra with non-unitary primary fields. This

is based on the observation that the SW curves of SU(N) class Sk theories can be obtained from the N = 2

SU(Nk) curves by tuning the mass/Coulomb branch parameters appropriately. On the CFT side, one then

simply computes the conformal/W-blocks for WNk with Nk = 2, 3, 4, . . . and sets the parameters to appropriate

values. In addition, we use the known AGT correspondence for theN = 2 SU(Nk) theories to derive a conjecture

for the N = 1 class Sk instanton partition functions.

This article is structured as follows. We begin in section 2 by reviewing the construction of the SW curves

for the class Sk theories. We introduce some of their properties and discuss the weak coupling limit and the

Gaiotto curve. The next section 3 is concerned with recapitulating some aspects of the AGT correspondence

that are essential for our work such as the identifications of the parameters on both sides of the duality and

the relationships between the 2D CFT blocks and the 4D instanton partition functions. Since this is a review

section, the readers familiar with the AGT correspondence can move directly to the next section 4 in which we

present our main results concerning the structures of the CFT representations, the comparisons with the Sk SW

curves and the investigation of the (orbifold) Nekrasov instanton partition functions. We conclude in section 5

where we also overview some potential directions of future research that our article suggests. Most technical

computations as well as bulky formulas are stored in the appendices.

2 The curves

The starting point of our work is the SW curves. By comparing them to the 2D CFT 3 and 4-point blocks, we

will discover the algebra and the representations that underly the 2D theory we are looking for. In this section

3We define the hh J`(t) ii in section 3.4. For now, it su�ces to point out that for the simplest case of three fields they can be
computed as a ratio of correlation function

hh J`(t) ii3 =
h J`(t)V1(x1)V2(x2)V3(x3) i

hV1(x1)V2(x2)V3(x3) i
,

with the Vi being primary fields.
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2D Conformal Blocks = Instanton P.F.

We have the reps of the WkN algebra for ε1,2 = 0 (from the curve)

Demand: the structure of the multiplet (null states) not change ε1,2 ≠ 0

The blocks for ε1,2 ≠ 0: proposal for the instanton partition functions:

If w and c turn on Q ≠ 0 as in Liouville/Toda,                                                   

then we obtain them from the N=2 SU(kN) after replacing:

Of course, it is possible to consider the cases in which V
1

or V
2

are not primary, but we do not need them

here.

• A similar object to � is the vertex

�̄w;34

(Y) =
hW�YVw |V

3

(1)V
4

(0)i
hVw |V

3

(1)V
4

(0)i , (42)

i.e. the normalized scalar product of a state with the product of two primary fields inserted at 1 and at

0. While for the Virasoro case, there is no need to introduce the �̄ since �̄
�;34

= �
43�

(see the recursion

relations (111)), this is not true anymore for the general WN algebra.

One can depict the 3 and 4-point blocks graphically as sketched in 4.

Figure 4: This figure depicts the three and four point W-blocks. Using conformal symmetry, for three points,
we set z

1

= 1, z
2

= 1 and z
3

= 0, while for four points, we put z
1

= 1, z
2

= 1, z
3

= q and z
4

= 0. The dashed
lines indicate descendant fields.

The instanton partition functions and the blocks. The AGT correspondence identifies the Nekrasov

instanton partition function Z
inst

to the W-blocks, after an appropriate factor has been removed. In the case

that we are dealing with, namely for the N = 2 SU(N) SCQCD with NF = 2N , the instanton partition function

reads

Z
inst

=
X

Y

q|Y|Z
vec

(a,Y)
NY

i=1

Z
antifund

(a,Y;�mL, i)
NY

j=1

Z
fund

(a,Y;mR, j) , (43)

where a = (a
1

, . . . , aN ) and Y = {Y
1

, . . . , YN} is a set of N Young diagrams and the building blocks of Z
inst

are defined in appendix E. The partition function is related to the W-blocks as

Z
inst

= B
U(1)

Bw(w1

,w
2

,w
3

,w
4

|q) . (44)

Z
inst

= Bw(w1

,w
2

,w
3

,w
4

|q) . (45)

We remark that to relate the CFT data to the 4D Nekrasov partition functions, one should rescale all parameters

with dimension of mass as m ! mp
✏1✏2

and also replace Q ! ✏p
✏1✏2

.
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Comparisons with the curves. We refer to appendix D for the computations of the W
2

and W
3

blocks

relevant for the comparison with the curve coe�cients and to [43] for an overview of the techniques needed for

these computations.

For the stress-energy tensor, we compute hhT (t) ii
3

in (109) and hhT (t) ii
4

to quadratic order in q in (116).

Comparing them with �̃
(n)
2

= �
(n)
2

� N�1

2N (�(n)
1

)2, with the �
(n)
s from (6),(9), leads to a perfect agreement if one

sets the Coulomb branch parameter u
2

to be equal to11

u
2

(q) =� a(2) +
q

ã(2)

"
� c(2)L c(2)R

2
+

(N � 1) a(1)(ML c(2)R + c(2)L MR)

2N
� a(2)

⇣N � 1

N
MLMR +

c(2)L

2
+

c(2)R

2

⌘

+
(N � 1) a(1) a(2)(ML +MR)

2N
+ a(2)

⇣a(2)

2
� N � 1

2N
(a(1))2

⌘#
+O(q2) . (58)

Similarly, hhW
3

(t) ii
3

is to be found in (120) and hhW
3

(t) ii
4

can be computed to linear order in q with the

tools provided in appendix D.3. We compare them with �̃
(n)
3

, where

�̃
(n)
3

= �
(n)
3

� (N � 2)

N
�
(n)
1

�
(n)
2

+
(N � 2)(N � 1)

3N2

(�(n)
1

)3 . (59)

The comparison works perfectly if we use the parameter identification of section 3.2 and if we express u
3

as a

function of q, of the a(s) and of the mass parameters, just like we did for u
2

in (58). One can even perform the

comparison for W
4

, see [44] for the commutation relations, but the computations become very tedious and we

omit them.

4 The AGT correspondence for the Sk theories.

Having reviewed in the last section some essential elements of the AGT correspondence, we can now apply them

to the Sk theories. The main principle guiding us is the observation that the class Sk curves for SU(N) can be

obtained from the N = 2 S curves for SU(Nk).

In order to see that, we introduce a map that takes the SU(Nk) curve and sets the mass/Coulomb parameters

to special values. Let us write this map as ⇡N,k and define its action on the SU(Nk) masses and Coulomb

parameters as follows

m
SU(Nk)
L, j+Ns 7�! mL, j e

2⇡i

k

s , m
SU(Nk)
R, j+Ns 7�! mR, j e

2⇡i

k

s , a
SU(Nk)
j+Ns 7�! aj e

2⇡i

k

s , (60)

m
SU(Nk)
j+Ns 7�! mj e

2⇡i

k

s a
SU(Nk)
j+Ns 7�! aj e

2⇡i

k

s (61)

where the indices run as j = 1, . . . , N , s = 0, . . . , k� 1. The parameters on the right hand side of (60) are those

of the class Sk SU(N) theory. Since
Qk�1

s=0

�
v � m e

2⇡i

k

s
�
= vk � mk, it is clear from the curve equations (3)

and (8) that ⇡N,k maps the N = 2 SU(Nk) curve with k = 1 to the N = 1 Sk SU(N) curve. Furthermore, it is

11Observe that the transition from the SCQCD curve to the free trinion one makes us set ai = mR, i, which puts u`(q = 0) =

(�1)`+1 c
(`)
R , see (10), (56) and (58).
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 Free trinion P.F. = 2D CFT 3pt functions 

For the free trinion theory on S4 : explicitly do the PI (determinant). 

We know the conformal blocks: can write crossing equations. 

Is the free trinion P.F. a solution of the crossing equations ??

3pt functions (dynamics)  +  Blocks   =   AGTk 

The above clearly agrees with (77) and (82). We have checked for higher k that for k > 1 equation (86)
is equal to 1

‘
1

‘
2

Pk(‘,a)

P Õ
k

(‘,a)

!
ak ≠ Mk

L

" !
ak ≠ Mk

R

"
, where Pk and P Õ

k are homogeneous polynomials in ‘ and a with
degP Õ

k ≠ degPk = 2(k ≠ 1).
In conclusion, we see that the Nekrasov partition function (85) does indeed reproduce the CFT blocks with

non-unitary fields. It still remains to determine closed formulas for the summands z
(N,k)

inst

([Y]) that do not
depend on the phases introduced by fiN,k.

5 Conclusion and Outlook

In this article, we showed that the Seiberg-Witten curves of the SU(N) class Sk gauge theories derived in [28]
can be obtained from the weighted current correlation functions ÈÈ Ws(t) ÍÍ of the WNk algebra once the mass
parameters of the SU(Nk) theory have been properly identified under the Zk orbifold condition. To do this,
we first found the quantum numbers of the vertex operators V§ and V• of the full and the simple punctures
respectively, and observed that in general the punctures correspond to non-unitary representations of WNk.
We then argued that the null vectors of the simple punctures are inherited from the SU(Nk) and performed
several checks of our proposal by computing ÈÈ Ws(t) ÍÍn for s = 2, 3 and both n = 3 and n = 4 points and
comparing with the meromorphic di�erentials of the Seiberg-Witten curve. We furthermore conjectured that
the SU(Nk) Nekrasov instanton partition functions with the orbifold values of the masses and the Coulomb
branch parameters (83) give the instanton contributions of the SU(N) class Sk gauge theories. Moreover, it is
natural to further conjecture that the algebra, the blocks and the instanton partition functions of any theory in
class S

�

is also obtained in this way, with the masses and the Coulomb branch parameters identified under the
� œADE orbifold condition.

It seems natural to think that the full extend of the AGT correspondence applies to the class S
�

gauge
theories. A necessary first step involves the computation of the full 3-point functions of two full and one simple
puncture, which can then be used through a block decomposition à la (35) to compute the full 4-point CFT
correlation function. This correlation function should correspond to the S4 partition function of the SU(N)
class Sk theories. For the 3-point functions of two full punctures and one simple one, the appropriate 4D theory
is a free one, namely the orbifold of the free trinion:

ZS4

free trinion

=
+

V§(Œ)V•(1)V§(0)
,

. (88)

Since we are dealing with a free theory, the S4 partition function can be straightforwardly computed by counting
the eigenvalues of Dirac and Laplace operators. This is work in progress [44]. Once these 3-point correlation
functions have been computed, one also needs to check that the 4-point function satisfies the CFT crossing
relations.

For N = 2 gauge theories in 4D, the S4 partition function is not scheme independent [45] and the scheme
dependence is understood as transformations of the Kähler potential of the conformal manifold. For theories
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Summary

We constructed spectral curves for N=1 theories in class Sk.

The curves: 2D symmetry algebra (WkN) and representations.

Conformal Blocks         Instanton partition function 

Free trinion partition functions on S4  =  3pt functions
[in progress Carstensen,EP,Mitev]

Is there  AGTk ? 
 4D partition functions = 2D CFT correlators



Future

Compute the instantons with standard Field theory techniques.

Orbifold Nekrasov or use Dp/D(p-4) systems.

 Orbifold Pestun, to get the partition function on S4.

 Go away from the orbifold point (we have the curves and the 2D blocks).

Get the AGTk from (1,0) 6D à la Cordova and Jafferis.

[with Carstensen, Hayling, Panerai, Papageorgakis]

[in progress Bourton, EP]

[in progress Bourton, EP]



Thank you!


