Exact results for class S_k

Elli Pomoni

String Math 2017

[1512.06079 Coman, EP, Taki, Yagi]

[1703.00736 Mitev,EP]

[in progress]

Motivation: N=2 exact results

***** Seiberg-Witten theory: effective theory in the IR

* Nekrasov: instanton partition function

* Pestun: observables in the UV (path integral on the sphere localizes)

***** Gaiotto: 4D N=2 **class S**: 6D (2,0) on Riemann surface C_{g,n}

★ AGT: 4D partition functions = 2D CFT correlators

4D SC Index = 2D correlation function of a TFT

2D/4D relations

What can we do for N=1 theories?

- Superconformal Index
- Intriligator and Seiberg: generalized SW technology
- \Box No Localization on S^4 .
- An S⁴ partition function plagued with scheme ambiguities. [Gerchkovitz, Gomis, Komargodski 2014]
- Derivatives of the free energy scheme independent. [Bobev, Elvang, Kol, Olson, Pufu 2014]

Class S_k (S_{Γ}):

[Gaiotto,Razamat 2015]

- ★ N=1 SuperConformal
- ***** Obtained by **orbifolding** N=2 (inheritance)
- ***** Labeled by punctured Riemann Surface
- ★ Index = 2D correlation function of a TFT

Plan

Is there AGTk? 4D partition functions = 2D CFT correlators

* From the curves: 2D symmetry algebra and representations

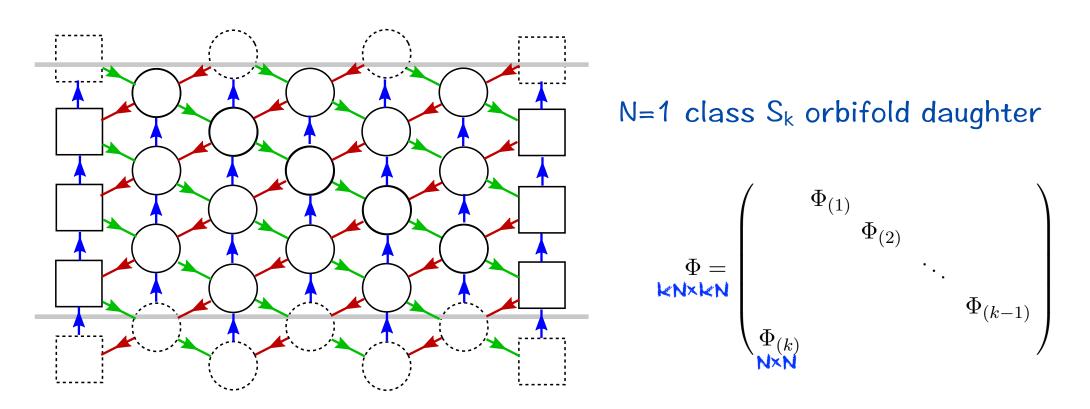
Class S_k

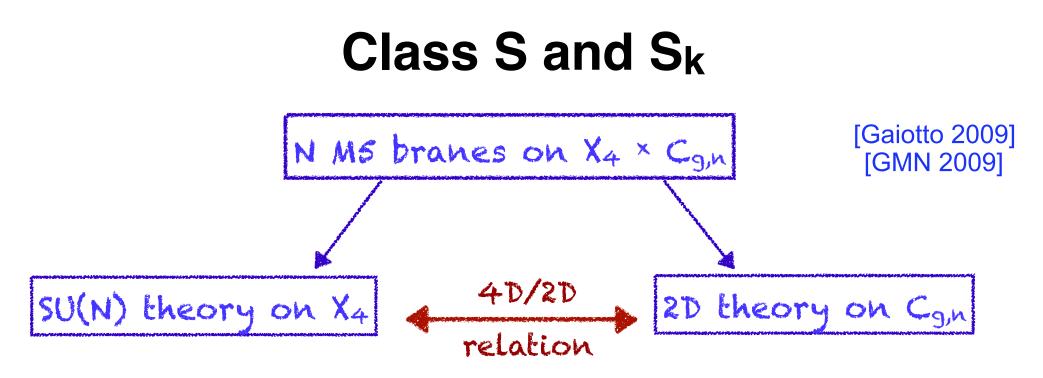
[Gaiotto,Razamat 2015]

Data collection theories (examples) with a Lagrangian description:

N=2 class S mother theory

Begin with N=2 class S with SU(kN) factors and Orbifold: [Douglas,Moore 1996]





6D (2,0) SCFT on Riemann surface: 4D N=2 theories of class S

Transverse C^2/Z_k Orbifold the 6D (2,0) SCFT to 6D (1,0) SCFT

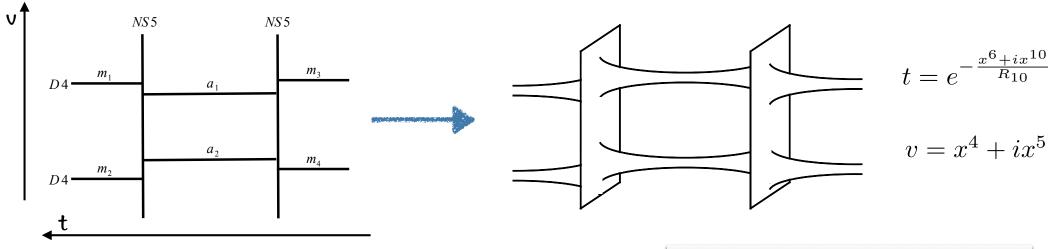
6D (1,0) SCFT on Riemann surface: 4D N=1 theories of class Sk

	x^0	x^1	x^2	x^3	x^4	x^5	x^6	x^7	x^8	x^9	x^{10}
N M5-branes	_	_	_	_	•	•	_	•	•	•	—
A_{k-1} orbifold	•	•	•	•	*	*	•	*	*	•	•

[Gaiotto,Razamat 2015]

Curves from M-theory

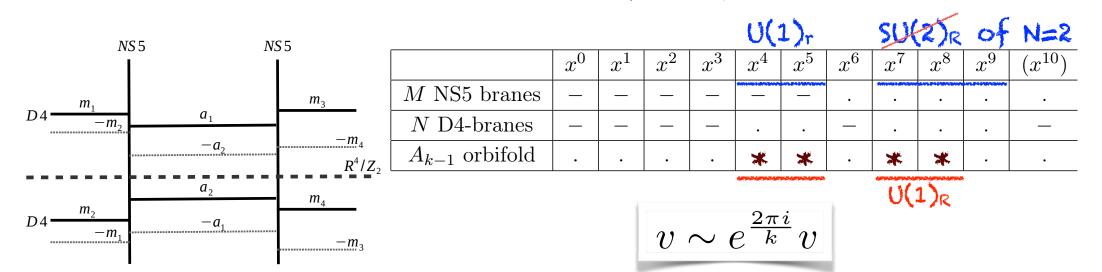
[Witten 1997]



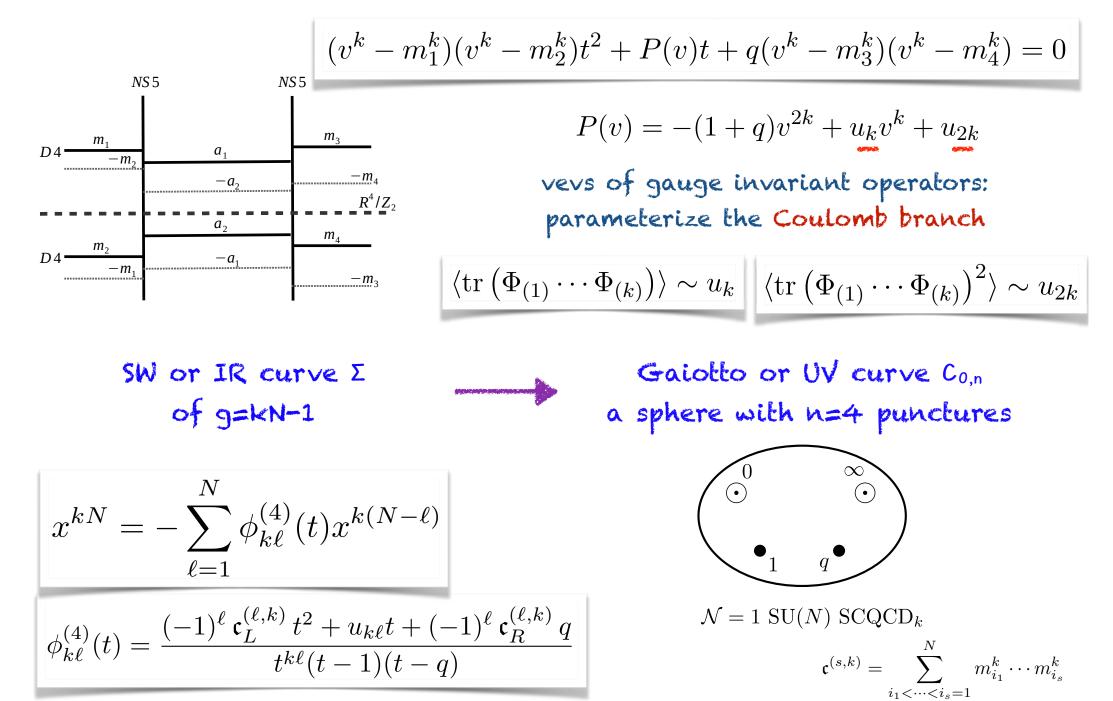
The Coulomb branch physics encoded in v,t space. The NS5/D4 is the classical configuration. 2D surface F(t,v)=0 in the 4D space $\{x^4, x^5, x^6, x^{10}\}=\{v,t\}.$

Take in account tension of the branes: include quantum effects.

single MS brane with non trivial topology: SW curve



Sk CUTVES [1512.06079 Coman, EP, Taki, Yagi]



The AGT correspondence

[Alday, Gaiotto, Tachikawa] [Wyllard]

A relation between:

- 4D N=2 theories of class S with SU(2)/SU(N) factors
- 2D Liouville/Toda CFT

$$\mathcal{Z}_{\mathbb{S}^4}\left[\mathcal{T}_{g,n}\right] = \int da \, \mathcal{Z}_{pert} \, |\mathcal{Z}_{inst}|^2 = \int d\alpha \, C \dots C \, |\mathcal{B}^{\alpha_i}_{\alpha}|^2 = \langle \prod_{i=1}^n V_{\alpha_i} \rangle_{\mathcal{C}_{g,n}}$$

4D gauge theory	2D CFT
instanton partition function	conformal block
perturbative part	3-point function
coupling constants	cross ratios
masses	external momenta
Coulomb moduli	internal momenta
generalized S-duality	crossing symmetry
Omega background	Coupling constant/central charge

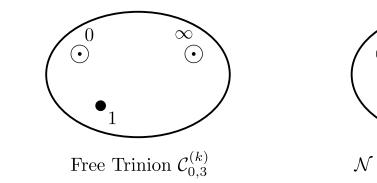


Figure 2: The UV curves of the trinion and of the $SCQCD_k$ the spheres. The full punctures are depicted by \odot and placed at t = 0 at t = 1 and at t = q.

Gaiotto Shifts in x for k = 1. Due to the orbifold relation (2 k = 1, but not for k > 1. This shift is the consequence of the present for k = 1 but, as we shall see more in detail later, disapped equation $\sum_{i=0}^{N} x^i \phi_i$ to $\sum_{i=0}^{N} x^i \phi'_i$ by making the transformation xB A $\begin{pmatrix} C \\ \phi'_{\ell} = \sum_{j=N-\ell}^{N} {j \choose N-\ell} \phi_{N-j} (-\kappa \phi_1)^{j+i-N} = \sum_{j=1}^{\ell} {j \choose N-\ell}$ We remind that $\phi_0 = 1$ before and after the transformation.

We remind that $\phi_0 = 1$ before and after the transformation. $\Omega_2 = d\lambda_{SW} = dx \wedge dt$ unchanged, however the structure of the polydoes change, see [28]. If we put the shift parameter κ equal to $\frac{1}{N}$, $\frac{1}{q}$ 1/q curve is known as the Galotto curve. Let us denote the curve conwe shall review later, their expansion around the poles in t gives $\frac{D}{R}$

С

А

⁵The UV curves are characterized by the meromorphic differentials φ_s⁽ⁿ⁾ the punctures ★ discussed in [28] will not be relevant for our purposes here.
 Figure 9.13: Triality, using trivalent diagrams.

From the curves to the 2D CFT

$$\lim_{\epsilon_{1,2}\to 0} \left\langle \left\langle J_{\ell}(t) \right\rangle \right\rangle_n = \phi_{\ell}^{(n)}(t)$$

 $\left<\left< J(t) \right>\right>_n \stackrel{\mathrm{def}}{=} \frac{n\text{-point W-block with insertion of } J(t)}{n\text{-point W-block}}$

***** The symmetry algebra that underlies the 2D CFT = W_{kN} algebra

***** The reps are **very special** reps of the W_{kN} algebra

★ Obtain them from the N=2 SU(kN) after replacing:

$$m_{j+Ns}^{\mathrm{SU}(Nk)} \longmapsto m_j \,\mathrm{e}^{\frac{2\pi i}{k}s} \qquad a_{j+Ns}^{\mathrm{SU}(Nk)} \longmapsto a_j \,\mathrm{e}^{\frac{2\pi i}{k}s}$$

[1703.00736 Mitev, EP]

2D Conformal Blocks = Instanton P.F.

K We have the reps of the W_{kN} algebra for $\varepsilon_{1,2} = 0$ (from the curve)

***** Demand: the structure of the multiplet (null states) not change $\varepsilon_{1,2} \neq 0$

***** The blocks for $\varepsilon_{1,2} \neq 0$: proposal for the instanton partition functions:

$$\mathcal{Z}_{\text{inst}} = \mathcal{B}_{\mathbf{w}}(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4 | q)$$

If w and c turn on $Q \neq 0$ as in Liouville/Toda,

then we obtain them from the N=2 SU(kN) after replacing:

$$m_{j+Ns}^{\mathrm{SU}(Nk)} \longmapsto m_j \,\mathrm{e}^{\frac{2\pi i}{k}s} \qquad a_{j+Ns}^{\mathrm{SU}(Nk)} \longmapsto a_j \,\mathrm{e}^{\frac{2\pi i}{k}s}$$

[1703.00736 Mitev, EP]

Free trinion P.F. = 2D CFT 3pt functions

[in progress Carstensen, EP, Mitev]

$$\mathcal{Z}_{\text{free trinion}}^{S^4} = \left\langle \mathsf{V}_{\bigodot}(\infty)\mathsf{V}_{\bullet}(1)\mathsf{V}_{\bigodot}(0) \right\rangle$$

***** For the free trinion theory on S^4 : explicitly do the PI (determinant).

* We know the conformal blocks: can write crossing equations.

***** Is the free trinion P.F. a solution of the crossing equations ??

***** *3pt functions (dynamics)* + *Blocks* = AGT_k

Summary

Is there AGT_k ? 4D partition functions = 2D CFT correlators

 \mathbf{M} We constructed spectral **curves** for N=1 theories in class S_{k} .

More than the curves: 2D symmetry algebra (W_{kN}) and representations.

✓ Conformal Blocks → Instanton partition function

 \Box Free trinion partition functions on $S^4 = 3pt$ functions

[in progress Carstensen, EP, Mitev]

Future

Compute the instantons with standard Field theory techniques.

[in progress Bourton, EP]

Orbifold Pestun, to get the partition function on S⁴.
[with Carstensen, Hayling, Panerai, Papageorgakis]

Go away from the orbifold point (we have the curves and the 2D blocks). [in progress Bourton, EP]

***** Get the AGT_k from (1,0) 6D à la Cordova and Jafferis.

Orbifold Nekrasov or use Dp/D(p-4) systems.

ж

Thank you!