FNSNF

A factorization view on states and observables

Claudia Scheimbauer
Mathematical Institute
University of Oxford
Swiss National Science Foundation

Oxford
Mathematics

States versus observables

States
 (Schrödinger picture)

Observables

(Heisenberg picture)

States versus observables

States

Observables

Functorial field theory (from TFT/CFT)

Atiyah, Segal, Freed, Lurie, ...

Bord $^{\amalg} \rightarrow$ Vect $^{\otimes}$

States - functorial topological field theories

Bord

Vect

- $\quad \longmapsto \quad$ vector space

States - functorial topological field theories

Bord

 Vect $\quad 2$ Vect $=\mathrm{Alg}_{1}$

homomorphism

States - functorial topological field theories

The target (higher) category

Construction (Calaque-S., Haugseng, Johnson-Freyd-S.) Given a "nice" symmetric monoidal (∞, k)-category \mathcal{S}, there is a symmetric monoidal $(\infty, n+k)$-category $\operatorname{Alg}_{n}(\mathcal{S})$.

The target (higher) category

Construction (Calaque-S., Haugseng, Johnson-Freyd-S.) Given a "nice" symmetric monoidal (∞, k)-category \mathcal{S}, there is a symmetric monoidal ($\infty, n+k$)-category $\operatorname{Alg}_{n}(\mathcal{S})$.

Application
$\mathcal{S}=$ Cat $_{k}=k$-linear categories, k-linear functors, natural transformations (is also a 2Vect):

- $\operatorname{Alg}_{1}\left(\mathrm{Cat}_{k}\right)$ is natural home for tensor categories (cf. Turaev-Viro theory)
- $\mathrm{Alg}_{2}\left(\mathrm{Cat}_{k}\right)$: objects are braided monoidal categories, e.g. $\operatorname{Rep}_{q}(\mathfrak{g})$.

Cobordism Hypothesis and finiteness conditions

Hopkins-Lurie, Lurie, Ayala-Francis

Cobordism Hypothesis and finiteness conditions

Hopkins-Lurie, Lurie, Ayala-Francis

Cobordism Hypothesis and finiteness conditions
Hopkins-Lurie, Lurie, Ayala-Francis

" n-dualizable" (over \mathbb{C}):

- $n=1$: finite dimensional vector space
- $n=2$: finite dimensional semi-simple algebra Lurie, Pstragowski
- $n=3, \operatorname{Alg}_{1}\left(\right.$ Cat $\left._{k}\right)$: finite semi-simple tensor category; in particular, fusion category Douglas-Schommer-Pries-Snyder

A relative version: twisted field theories
(not to be confused with boundary "relative" field theories)

Stolz-Teichner:

Bord $_{n}$
 $(n+1)$ Vect with either S or T the trivial theory $\mathbb{1}=k$, the other is the "twist". On closed manifold M : get $k \rightarrow T(M)$ (a vector in the vector space $T(M)$) or $S(M) \rightarrow k$ (a covector in the vector space $S(M)$).

Technically: lax or oplax natural transformation Johnson-Freyd-S.

Proposition (Johnson-Freyd-S.)

1-dimensional twisted topological field theories with target Alg_{1} are fully determined by a morphism ${ }_{A} M_{B}$ which has
(lax) a left adjoint, i.e. is finitely presented and projective over A, or (oplax) a right adjoint, i.e. is finitely presented and projective over B.

Example (Gwilliam-S.)
Take a (possibly infinite dimensional) vector space V, and view it as a bimodule End $V V_{k}$. This always determines a lax twisted theory, and an oplax twisted theory iff V is finite dimensional.

Observables versus states revisited
factorization algebra of observables/point operators
Stolz-Teichner's philosophy:

Can think of Z as the "trace".

Observables versus states revisited
factorization algebra of observables/point operators
Stolz-Teichner's philosophy:
Bord_{n}

Can think of Z as the "trace".

Topological case: The twist arises from factorization homology of an E_{n}-algebra, with target $(n+1)$ Vect $=\operatorname{Alg} g_{n}$ Calaque-S.

Twisted topological field theories in dimension 2

Abstract nonsense

Twisted topological field theories in dimension 2

Theorem (S.)

The factorization model of the $(\infty, 2)$-category Alg_{2} is fully
2-dualizable. (="has duals" Lurie $=$ "has adjoints" Francis)
proof
Proposition (Gwilliam-S. after Johnson-Freyd-S.)
2-dimensional twisted topological field theories with target Alg_{2} are fully determined by a morphism ${ }_{S} M_{T}$ for which the unit and counit of the adjunction between M and its left adjoint have left adjoints.
(This holds iff the same statement with "right" holds.)

Deligne's Conjecture:

Given an algebra A, its Hochschild cohomology $Z(A)$ is an E_{2}-algebra. Moreover, it acts on A.
\Rightarrow bimodule $Z(A) A_{k}$: generalization of ${ }_{\text {End }} V V_{k}$ from above, since $Z(A)=$ derived endomorphisms of A as an (A, A)-bimodule $=$ derived center of A.

Deligne's Conjecture:

Given an algebra A, its Hochschild cohomology $Z(A)$ is an E_{2}-algebra. Moreover, it acts on A.
\Rightarrow bimodule ${ }_{Z(A)} A_{k}$: generalization of ${ }_{\text {End } V} V_{k}$ from above, since $Z(A)=$ derived endomorphisms of A as an (A, A)-bimodule $=$ derived center of A.

Theorem (Gwilliam-S.)
$Z(A) A_{k}$ determines a twisted field theory iff A is smooth and proper over $Z(A)$. Explicitly, this means that

- A has a left adjoint as a $\left(Z(A), m_{1}^{o p}\right)$-algebra
- A has a left adjoint as a " $A \otimes_{Z(A)} A^{o p}$-algebra".

Twisted topological field theories in dimension 2

The example: Observables and states continued

Example

Underived situation: $A=$ polynomial differential operators (Weyl algebra) in characteristic $p, Z(A)=$ usual center of A. Then,

- A is finitely presented and projective over $Z(A)$
- A is separable over $Z(A)$.

Example

Underived situation: $A=$ polynomial differential operators (Weyl algebra) in characteristic $p, Z(A)=$ usual center of A. Then,

- A is finitely presented and projective over $Z(A)$
- A is separable over $Z(A)$.
cf B-model M variety, $\operatorname{Coh}(M)$ dg category of coherent sheaves is 2-dualizable if M is smooth and proper.
Modifications of above would just need: smooth and proper over $H H^{*}(\operatorname{Coh}(M))=\Gamma\left(\Lambda T_{M}\right)($ polyvector fields) (as factorization algebra: Li-Li)

"Proof" of
 of existence of adjoints for 1-morphisms:

1-morphism

bend right

counit of left adjoint

