

Mathematical Institute

A factorization view on states and observables

Claudia Scheimbauer

Mathematical Institute University of Oxford

Swiss National Science Foundation

Oxford Mathematics States versus observables

States (Schrödinger picture)

Observables (Heisenberg picture)

A factorization view on states and observables

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

States

Functorial field theory (from TFT/CFT)

Atiyah, Segal, Freed, Lurie, ...

 $\operatorname{Bord}^{\operatorname{II}} \to \operatorname{Vect}^{\otimes}$

 $\mapsto (V \otimes V \to V)$

Observables

Factorization algebras

Beilinson-Drinfeld, Lurie, Costello-Gwilliam,

Morrison-Walker, Ayala-Francis, ...

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

A factorization view on states and observables

э

A factorization view on states and observables

イロト 不得 トイヨト イヨト

A factorization view on states and observables

э

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

States - functorial topological field theories

A factorization view on states and observables

э.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Construction (Calaque–S., Haugseng, Johnson-Freyd–S.) Given a "nice" symmetric monoidal (∞, k) -category S, there is a symmetric monoidal $(\infty, n + k)$ -category $Alg_n(S)$.

э

イロト 不得 トイヨト イヨト

Construction (Calaque–S., Haugseng, Johnson-Freyd–S.)

Given a "nice" symmetric monoidal (∞, k) -category S, there is a symmetric monoidal $(\infty, n + k)$ -category $\operatorname{Alg}_n(S)$.

Application

 $S = \text{Cat}_k = k$ -linear categories, k-linear functors, natural transformations (is also a 2Vect):

- Alg₁(Cat_k) is natural home for tensor categories (cf. Turaev-Viro theory)
- Alg₂(Cat_k): objects are braided monoidal categories, e.g. Rep_q(g).

Cobordism Hypothesis and finiteness conditions

Hopkins-Lurie, Lurie, Ayala-Francis

A factorization view on states and observables

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Cobordism Hypothesis and finiteness conditions

Hopkins-Lurie, Lurie, Ayala-Francis

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Cobordism Hypothesis and finiteness conditions

Hopkins-Lurie, Lurie, Ayala-Francis

"*n*-dualizable" (over \mathbb{C}):

- n = 1: finite dimensional vector space
- ▶ n = 2: finite dimensional semi-simple algebra Lurie, Pstragowski
- ▶ n = 3, Alg₁(Cat_k): finite semi-simple tensor category; in particular, fusion category Douglas-Schommer-Pries-Snyder

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A relative version: twisted field theories

(not to be confused with boundary "relative" field theories)

Stolz-Teichner:

with either S or T the trivial theory $\mathbb{1} = k$, the other is the "twist". On closed manifold M: get $k \to T(M)$ (a vector in the vector space T(M)) or $S(M) \to k$ (a covector in the vector space S(M)).

Technically: lax or oplax natural transformation Johnson-Freyd-S.

Proposition (Johnson-Freyd–S.)

1-dimensional twisted topological field theories with target Alg_1 are fully determined by a morphism $_AM_B$ which has

(lax) a left adjoint, i.e. is finitely presented and projective over A, or (oplax) a right adjoint, i.e. is finitely presented and projective over B.

Example (Gwilliam–S.)

Take a (possibly infinite dimensional) vector space V, and view it as a bimodule $_{EndV}V_k$. This *always* determines a lax twisted theory, and an oplax twisted theory iff V is finite dimensional.

Observables versus states revisited

Can think of Z as the "trace".

э

(日)、

Observables versus states revisited

Can think of Z as the "trace".

Topological case: The twist arises from factorization homology of an E_n -algebra, with target (n + 1)Vect = Alg_n _{Calaque-S}.

-

(日)、

Twisted topological field theories in dimension 2

Abstract nonsense

Theorem (S.)

The factorization model of the $(\infty, 2)$ -category Alg₂ is fully

2-dualizable. (= "has duals" Lurie = "has adjoints" Francis)

proof

Twisted topological field theories in dimension 2

Abstract nonsense

Theorem (S.)

The factorization model of the $(\infty, 2)$ -category Alg_2 is fully 2-dualizable. (="has duals" Lurie = "has adjoints" Francis)

proof

Proposition (Gwilliam–S. after Johnson-Freyd–S.)

2-dimensional twisted topological field theories with target Alg_2 are fully determined by a morphism ${}_SM_T$ for which the unit and counit of the adjunction between M and its left adjoint have left adjoints.

(This holds iff the same statement with "right" holds.)

The example: Observables and states

Deligne's Conjecture:

Given an algebra A, its Hochschild cohomology Z(A) is an E_2 -algebra. Moreover, it acts on A.

 \Rightarrow bimodule $_{Z(A)}A_k$: generalization of $_{EndV}V_k$ from above, since Z(A)=derived endomorphisms of A as an (A, A)-bimodule =derived center of A.

The example: Observables and states

Deligne's Conjecture:

Given an algebra A, its Hochschild cohomology Z(A) is an E_2 -algebra. Moreover, it acts on A.

 \Rightarrow bimodule $_{Z(A)}A_k$: generalization of $_{EndV}V_k$ from above, since Z(A)=derived endomorphisms of A as an (A, A)-bimodule =derived center of A.

Theorem (Gwilliam-S.)

 $_{Z(A)}A_k$ determines a twisted field theory iff A is smooth and proper over Z(A). Explicitly, this means that

• A has a left adjoint as a $(Z(A), m_1^{op})$ -algebra

• A has a left adjoint as a " $A \otimes_{Z(A)} A^{op}$ -algebra".

The example: Observables and states continued

Example

Underived situation: A= polynomial differential operators (Weyl algebra) in characteristic p, Z(A)= usual center of A. Then,

- A is finitely presented and projective over Z(A)
- A is separable over Z(A).

The example: Observables and states continued

Example

Underived situation: A= polynomial differential operators (Weyl algebra) in characteristic p, Z(A)= usual center of A. Then,

- A is finitely presented and projective over Z(A)
- A is separable over Z(A).

cf B-model *M* variety, Coh(M) dg category of coherent sheaves is 2-dualizable if *M* is smooth and proper. Modifications of above would just need: smooth and proper over $HH^*(Coh(M)) = \Gamma(\Lambda T_M)$ (polyvector fields) (as factorization algebra: Li-Li)

Twisted topological field theories in dimension 2

The example: Observables and states

"Proof" of Theorem of existence of adjoints for 1-morphisms:

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト