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Introduction

I will be discussing several algebraic structures that can be associated to N = 2
superconformal theories in four dimensions.

These are all shadows of the full CFT operator algebra:

=
X

kOi(x)

Oj(y)

Ok(x)

ck
ij(x � y)

The CFT data (i.e., list of local operators and their OPE coefficients) is sufficient to
determine any correlation function of local operators and is strongly constrained by OPE
associativity (crossing symmetry).

Subsets of this CFT data are recycled in various simpler algebras we will discuss.
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N = 2 SCFTs: Local operators

Local operators in N = 2 SCFTs are organized into representations of the
superconformal algebra su(2, 2|2).

These representations are further subdivided into finite-dimensional representations of
the subalgebra

RE × su(2)1 × su(2)2 × su(2)R × u(1)r

We label operators by their charges (E, j1, j2, R, r) under the Cartan subalgebra.

In addition, there are sixteen nilpotent, fermionic symmetries:

• Poincaré supercharges: QIα and Q̃Iα̇ with I = 1, 2, α = ±, α̇ = ±.
• Special conformal supercharges: SαI and S̃α̇I .
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N = 2 SCFTs: Subalgebras

There are many interesting and simpler algebras encoded in the full OPE algebra.

They can be defined by passing to cohomologies (or similar constructions) with respect
to supercharges.

Coulomb chiral ring: RC
• Built from operators with E = r.
• Commutative, associative C-algebra.
• Freely generated in examples: MC = Spec(RC) algebraically boring.
• Defined as cohomology of Donaldson-Witten supercharge

QDW = Q1
+ +Q2

− .

• cf., Ben-Zvi’s talk.
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N = 2 SCFTs: Subalgebras

There are many interesting and simpler algebras encoded in the full OPE algebra.

They can be defined by passing to cohomologies (or similar constructions) with respect
to supercharges.

Higgs chiral ring: RH
• Built from operators with E = 2R.
• Commutative, associative, Poisson algebra.
• MH = Spec(RH) a symplectic singularity (really hyperkähler).

• Defined as simultaneous cohomology of four supercharges:
{
Q1
α , Q̃1

α̇

}
.
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N = 2 SCFTs: Subalgebras

There are many interesting and simpler algebras encoded in the full OPE algebra.

They can be defined by passing to cohomologies (or similar constructions) with respect
to supercharges.

Hall-Littlewood chiral ring: RHL
• Built from operators with E = 2R+ r.
• Commutative, associative C-algebra (actually Poisson).
• Spec(RHL) is something like an (odd) coherent sheaf onMH .

• Simultaneous cohomology of three supercharges:
{
Q1
α , Q̃1

−̇

}
.
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N = 2 SCFTs: Subalgebras

There are many interesting and simpler algebras encoded in the full OPE algebra.

They can be defined by passing to cohomologies (or similar constructions) with respect
to supercharges.

“Schur algebra”: Vcomm.

• Built from Schur operators with E = 2R+ j1 + j2.
• Commutative vertex algebra (really a vertex Poisson algebra).
• Geometry of this algebra has not been seriously studied as far as I know.
• Something like derived symplectic quotient of jet scheme of representation space for

gauge theories.
• Defined by holomorphic/topological twist,

cf. [Johansen], [Kapustin], [Costello]

QSch = Q1
− + Q̃1

−̇
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N = 2 SCFTs: Subalgebras

The previous constructions all apply in the non-conformal case.

With conformal invariance, get additional fermionic symmetries and can define new
cohomologies.

Associated vertex operator algebra: V
[Beem-van Rees-Lemos-Liendo-Peelaers, 2013]

• Non-commutative vertex operator algebra.
• This is a quantization of the Schur algebra.
• Arises upon taking cohomology of “funny” supercharge,

Q = Q1
− + S̃−̇1 .

• (Should also be realizable as a novel Ω-deformation of holomorphic/topological
twist in conformal theories.)
cf. [Butson-Costello-Gaiotto]
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VOA review: basics

For our purposes, a VOA is a meromorphic OPE algebra in two dimensions.

O1(z)O2(w) ∼
∑
k

c k
12 Ok(w)

(z − w)h1+h2−hk
.

Each operator can be expanded in a Laurent series,

O(z) =
∞∑

n=−∞

znO−h−n , On ∈ End(V) ,

where we also denote by V the space of local operators at the origin.

There is a simple operator-state map in terms of these Laurent modes,

O(0)⇔ O−h|Ω〉 , ∂nO(0)⇔ O−h−n|Ω〉 , . . .
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VOA review: operations

The normally ordered product of two operators is the operator that is defined at the
origin according to

NO(a, b)(0) := a−hab−hb |Ω〉 .

NO(·, ·) is generally non-commutative and non-associative.

Can also introduce a secondary bracket (first of infinitely many n’th brackets)

{a, b} := a−ha+1b−hb |Ω〉 .

This acts by picking out the simple pole in the OPE,

{a, b}(w) =
∮

dz

2πia(z)b(w) .
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VOA review: vocabulary

A strong generator of a VOA is an sl(2) primary that cannot be written as a normally
ordered product.

All operators in a VOA can be written as normally ordered products of the strong
generators and their derivatives.

Conjecture
VOAs associated to N = 2 SCFTs are strongly finitely generated
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The associated VOA: construction

Our vector space V is the space of Schur operators in the SCFT.

Operators at general points in the plane are defined via twisted translation,

Y (O, z) = O(z) =
[
ezL−1+z̄(L̄−1+R−)OSch(0)e−zL−1−z̄(L̄−1+R−)

]
Q

In terms of a basis O(α1···α2R) for the su(2)R representation,

O(z) =
[
O(+···+)(z, z̄) + z̄O+···+−(z, z̄) + . . .+ z̄2RO(−···−)(z, z̄)

]
Q

The conformal weight of the vertex operator is given by

h = E −R = R+ j1 + j2 .

Meromorphicity at the level of cohomology is guaranteed by the superconformal algebra.
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The associated VOA: properties

I want to discuss a variety of structural properties of the associated VOAs of
four-dimensional SCFTs.

Certain general properties follow more or less directly:

• 1
2Z-valued conformal grading (uncorrelated with parity).

• Four dimensional theory local =⇒ V ⊇ Vir−12c4d (c4d > 0) .
• Continuous G global symmetry =⇒ V ⊇ V−k4d/2(g) (k4d > 0) .
• RHL generators =⇒ strong V-generators .
• RHL elements =⇒ Virasoro primaries .
• Schur index =⇒ VOA character,

ISch(q) := qc4d/2STrH(S3)q
E−R = STrVqL0−c/24 =: χV(q)

• Null states are removed (i.e., always in simple quotient) .
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The associated VOA: filtration

• V is triply graded as a vector space by R, r, and h:

V =
⊕
h,R,r

Vh,R,r .

• OPE violates R conservation but is compatible with filtration

Fh,R,r =
⊕
k>0

Vh,R−k,r .

• Normally ordered product is filtered.

NO(Fh1,R1,r1 ,Fh2,R2,r2) ∈ Fh1+h2,R1+R2,r1+r2 .

• Secondary bracket is filtered of degree −1,

{Fh1,R1,r1 ,Fh2,R2,r2} ∈ Fh1+h2−1,R1+R2−1,r1+r2 .
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The associated VOA: filtration

This is a good filtration, so the associated graded (with the operations inherited from
normally ordered products and the secondary bracket) is a vertex Poisson algebra. [H. Li]

grFV ∼= Vcomm .

By further restricting to subspaces with h = R or h = R+ r, we recover RH and RHL
(as Poisson algebras).

This is great! Associated VOA plus filtration gives a lot of physics!

Problem:
No general construction for filtration... maybe not intrinsic to VOA?

Easier problem:
Only construct RH ; then we don’t need the whole filtration.

Christopher Beem (Oxford) String Math 2017, Universität Hamburg July 27, 2017 15 / 40



Higgs branch recovery

To discuss the Higgs branch, let me introduce some of vector subspaces of V:

VH :=
⊕
h>R

Vh,R,r =
⊕
h

Fh,h−1,r ,

VH :=
⊕
VR,R,0 ∼= V/VH .

In addition, the following subspace can be defined intrinsically in the VOA,

C2(V) := span {a−ha−1b , a , b ∈ V}

C2(V) (and obviously VH) are two-sided ideals for the normally ordered product.

We thus have a chain of ideals with respect to the normally ordered product:

V ⊃ VH ⊃ C2(V) .
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Higgs branch recovery

Direct calculation shows that the commutator and associator of the normally ordered
product lie within C2(V), so in VH

[V,V] ⊂ C2(V) ⊆ VH ,

[V,V,V] ⊂ C2(V) ⊆ VH .

Also the symmetrizer and Jacobiator of the secondary bracket lie in C2(V)

{V,V}+ ⊂ C2(V) ⊆ VH ,

{V,V,V} ⊂ C2(V) ⊆ VH .

So NO( , ) and the secondary bracket induce the structure of a commutative Poisson
algebra on V/C2(V) as well as on RH .
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The C2 algebra

C2(V) defined intrinsically in the VOA, so we have an intrinsic construction of a
commutative Poisson algebra, Zhu’s C2-algebra:

RV := (V/C2(V) , NO( , ) , {·, ·} ) .

On the other hand, our four-dimensional construction tells us we can reconstruct the
Higgs chiral ring given VH :

RH =
(
V/VH , NO( , ) , {·, ·}

)
.

What is the difference between RV and RH?

RH := RV/I , I = VH/C2(V) .

What is this ideal I?
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Recovering RH

RH is a reduced commutative C-algebra, i.e., it has no nilpotents.

RV has no reason to be reduced; in many VOAs it is not. So I ⊇ Nil(RV).

Conjecture
Nilpotent elements are the only obstruction to identifying RH with RV . That is to say,

I = Nil(RV)

In other words, we are suggesting that

MH = Spec(RV)red = “Associated Variety” XV

The associated variety has been studied by Tomoyuki Arakawa and collaborators.

VOAs whose associated varieties are symplectic are dubbed quasi-Lisse.
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Examples: empty Higgs branch

When the vector space RV is finite, a VOA is called C2-cofinite.

C2-cofiniteness is a necessary condition for rationality, so any SCFT whose associated
VOA is rational must have an empty Higgs branch.

Example: (A1, A2n) AD Theories
V(A1,A2n) = V ir(2, 2n+ 3):

RV = C[t]/〈t2n+2〉 , {t, t} = 0 ,
RH = C .

Remark
C2-cofinite algebras, which for some time were the primary object of study in the
literature, are an incredibly special case in the world of associated VOAs. Most SCFTs
have Higgs branches.
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Non-empty Higgs branch
Example: (A1, D2n+1) Argyres-Douglas Theories
V(A1,D2n+1) = V−4n/(2n+1)(su(2)):

RV = C[j1, j2, j3]/〈jAΩn〉 , {jA, jB} = fABCj
C .

RH = C[j1, j2, j3]/〈Ω〉 ∼= C2/Z2 .

Example: (A1, A5) Argyres-Douglas Theory
V(A1,A5) = BPc=−23/2 .

RV = C[x, y, z, t]/〈xy + z3 − 3
2 tz, t

3〉 , {z, x} = 1 , {z, y} = −y , {x, y} = 3z2 .

RH = C[x, y, z]/〈xy + z3〉 , {z, x} = 1 , {z, y} = −y , {x, y} = 3z2 .

RH ∼= C3/Z3 .
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Consequences

Observe that any strong V-generator that is not a Higgs chiral ring generator must be
nilpotent in RV . In particular this includes the stress tensor.

We conclude there must always exist a null vector N in the vacuum module of the VOA
of the form

NT = (L−2)k|Ω〉+ ϕ , ϕ ∈ C2(V) .

As in RCFT, can derive differential constraints on correlation functions by inserting the
null vector and demanding that the result vanish.

We apply this to the case of the torus partition function, i.e., vacuum character, i.e.,
Schur index of the four-dimensional theory.

Precisely this situation has been studied in various places in the literature.
[Mathur, Mukhi, Sen (1988)], [Zhu (1996)], [Gaberdiel, Keller (2008)], [Gaberdiel, Lang (2008)]
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Consequences

Disclaimer
The following derivation sketch is morally true, but not technically accurate.

The full result, which is only guaranteed to hold for quasi-Lisse VOAs, was proven
recently by [Arakawa-Kawasetsu (2016)].

In their proof, the primary trick is showing that in the quasi-Lisse case one can evade an
obstruction that I will be ignoring.
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Modular recursion

We require

STrV(o(NT )qL0−c/24) = 0 ,

where o(a) = a0 for a ∈ V.

For our null vector, this gives

STrV(o((L−2)k)qL0−c/24) = STrV(o(ϕ)qL0−c/24) .

The trick is to evaluate the left and right hand sides differently in terms of operations on
the vacuum character.

Christopher Beem (Oxford) String Math 2017, Universität Hamburg July 27, 2017 24 / 40



Modular recursion

Left hand side:

STrV
(
o(Lk[−2]Ω)qL0− c

24
)

= Pk(D)STrV
(
qL0− c

24
)
,

where Pk(D) is modular covariant differential operator of order k and weight 2k.

P2(D) = D
(1)
q ,

P4(D) = D
(2)
q + c

2E4(q) ,

P6(D) = D
(3)
q +

(
8 + c

2

)
E4(q)D(1)

q + 10cE6(q) ,

· · ·
where

D
(k)
q f = ∂(2k−2) ◦ · · · ◦ ∂(2) ◦ ∂(0) .

∂(k) = (q∂q + kE2(q)) .
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Modular recursion

Right hand side:

STrV
(
o(a[−ha−1]b)q

L0− c
24
)

=
′∑

k>1

(1− 2k)E2k

[
e2πiha

1

]
(q) TrV

(
o(a[2k−ha]b)q

L0− c
24
)
.

Applying formula reduces dimension of the operator whose zero mode appears in the
trace, so this will eventually terminate. When stress tensors show up, evaluate them in
terms of the same differential operators as for the left hand side.

Twisted Eisenstein series appear when half-integer graded operators are involved.

Thus we get modular differential equations for Γ0(2) ⊂ PSL(2,Z) for half-integer cases.
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Consequences: Modularity

We are led to an extraordinary claim:

The Schur index of any N = 2 SCFT is a solution of a finite order linear modular
differential equation whose coefficients are polynomials in (twisted) Eistenstein series.

Schur indices are thus an enormous source of vector-valued (pseudo-)modular forms of
weight zero.

Additionally, as there is a finite-dimensional space of such operators for any given weight,
it is a simple matter to test this claim (for a given weight) in examples where the Schur
index is known.
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Consequences: Modularity

Example: Rank one F -theory SCFTs.

These are theories of single D3 branes probing singular fibers of elliptically fibered K3 in
F-theory, labelled by a0, a1, a2, d4, e6, e7, e8.

Find uniform second order equation,

Dg = D(2) − 5(h∨ + 1)(h∨ − 1)E4(q) .

where for a0 we formally set h∨ = 6/5.

Solutions have integer coefficients more generally for g in “Deligne-Cvitanović
exceptional series”:

a0 ⊂ a1 ⊂ a2 ⊂ g2 ⊂ d4 ⊂ f4 ⊂ e6 ⊂ e7 ⊂ e7+ 1
2
⊂ e8 .

No SCFTs for f4, g2 (or e7+ 1
2
) yet, though VOAs exist.

(Impossible? cf. [Shimizu, Tachikawa, Zafrir (2017)])
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Consequences: Modularity

N = 4 SYM with low rank su(n) gauge algebra

N ord(D) Modular Group Dimensions hi Conjugate dimensions h̃i
2 2 Γ0(2) − 1

2 , 0 (− 3
8 )2

3 4 Γ (−1)3, 0 —–

4 6 Γ0(2) (−2)2, (− 3
2 )3, 0 (− 15

8 )4, (− 7
8 )2

5 9 Γ (−3)5, (−2)3, 0 —–

6 12 Γ0(2) (− 9
2 )3, (−4)5, (− 5

2 )3, 0 (− 35
8 )6, (− 27

8 )4, (− 11
8 )2

7 16 Γ (−6)7, (−5)5, (−3)3, 0 —–
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Consequences: Modularity

A1 theories of class S

Cg,s ord(D) Modular Group Indicial roots hi Conjugate roots h̃i dimVD
C0,3 1 Γ0(2) 0 (− 1

2 ) 0

C0,4 2 Γ −1, 0 — 0

C0,5 4 Γ0(2) (−1)3, 0 (− 3
2 ), (− 1

2 )3 0

C0,6 6 Γ −2, (−1)4, 0 — 0

C0,7 13 Γ0(2) (−2)5, (−1)3, 0, (?)4 − 5
2 , (−

3
2 )5,−( 1

2 )3, (?)4 2

C0,8 16 Γ −3, (−2)6, (−1)4, 0, (?)4 — 0

C1,1 2 Γ0(2) − 1
2 , 0 (− 1

2 )2 0

C1,2 4 Γ (−1)2,− 1
3 , 0 — 0

C1,3 6 Γ0(2) − 3
2 , (−1)3,− 1

2 , 0 (− 3
2 )2, (− 1

2 )4 0

C1,4 9 Γ (−2)2, (−1)5, (0)2 — 0

C2,0 6 Γ (−1)4, (0)2 — 0

C2,1 11 Γ0(2) (− 3
2 )4, (−1)3, 0, (?)3 (− 3

2 )4, (− 1
2 )4, (?)3 1
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Intepretation of additional solutions

The derivation of the LMDE goes through without trouble for characters of nontrivial
modules as long as they have

• Finite-dimensional L0 weight spaces (or generalized weight spaces).
• Bounded below conformal dimension.

N = (2, 2) superconformal surface operators necessarily furnish modules for the VOA
(cf. Clay’s talk).

Expect these to fill out the modular representation of the vacuum character.

Warning
The above two conditions are not generally necessary for a healthy surface defect.
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Intepretation of additional solutions

There may be reasonably nice modules with infinite-dimensional L0 eigenspaces, but
with finite-dimensional weight spaces upon further refining by additional flavor fugacities.
(cf., admissible-level affine current algebras).

In this case a couple of things can happen:

• Taking sums and differences of simple characters — treated as analytic functions
rather than formal power series — yields a quantity that is finite when flavor
fugacity is set to zero.

• A regularization of the singular behavior of the characters at zero flavor fugacity
yields a “fake” character that may contain logarithms even if the original characters
did not.
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Consequences: Cardy behavior

Suppose that under an S-transformation q → q̃, we have

χV(q̃) =
∑
i

S0iχ̃i(q) , χ̃i(q) ∼ q−c/24+hi(1 + . . .) .

The χ̃i(q) are the full set of solutions of the modular equation (in the case of PSL(2,Z))
or of the conjugate modular equation (in the case of Γ0(2)).

This gives us control over the q → 1 limit of the vacuum character,

lim
τ→0

logχV(q) ∼ πiceff

12τ + . . . , ceff := c2d − 24 mini(h̃i) .

This same limit is controlled by the Weyl anomaly coefficients of the four-dimensional
theory by a generalization of arguments of Di Pietro and Komargodski.

lim
τ→0

log ISchur(q) ∼
4πi(c4d − a4d)

τ
.

Christopher Beem (Oxford) String Math 2017, Universität Hamburg July 27, 2017 33 / 40



Consequences: Cardy behavior

So the smallest (conjugate) character weight determines the a4d-anomaly:

a4d = hmin

2 − 5c2d
48 .

Combined with unitarity bounds of Hofman-Maldacena, this gives a constraint,

c2d
8 6 hmin 6 0 .

Observation:
Indications that hi < 0 for all non-vacuum characters appearing in the modular orbit as
well.

This is already enough to eliminate certain VOAs from consideration as associated
VOAs, e.g., (5, 8), (7, 11), (8, 13), and (9, 14) Virasoro VOAs just to name a few.
[More extensive results to this effect for affine current algebras due to Cordova & Shao]
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A complete example

For N = 4 super Yang-Mills with su(2) gauge algebra, the associated VOA is the small
N = 4 superconformal algebra at c = −9,

T (z)T (w) ∼
−9
2

(z − w)4 +
2T (w)

(z − w)2 +
T ′(w)
z − w

,

JA(z)JB(w) ∼
−3
4 κAB

(z − w)2 +
fABCJ

C(w)
z − w

,

JA(z)Gα(z) ∼
(σA) α

β
Gβ(w)

z − w
,

JA(z)G̃α(z) ∼
(σA) α

β
G̃β(w)

z − w
,

Gα(z)G̃β(w) ∼
−3εαβ

(z − w)3 +
−4(σA)αβJA(w)

(z − w)2 +
εαβT (w)− 2(σA)αβJA(w)

z − w
.

For this value of the central charge, T (z) is actually given by the Sugawara construction
with the su(2)R currents.
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A complete example

There are a variety of null states at dimensions h = 5/2 and h = 3 encoding various
chiral ring relations.

(NJG)α =
(

(σA) α
β
J
A
−1G

β

−3/2 −
1
2G

α
−5/2

)
Ω .

(NJG̃)α =
(

(σA) α
β
J
A
−1G̃

β

−3/2 −
1
2 G̃

α
−5/2

)
Ω .

(NGG̃)A =
(

(σA)αβGα−3/2G̃
β

−3/2 + 2fABCJ
B
−2J

C
−1 + 2JA−3 − 2L−2J

A
−1

)
Ω ,

NGG̃ =
(
εαβG

α
−3/2G̃

β

−3/2 + L−3
)

Ω ,

NGG = εαβ
(
G
α
−3/2G

β

−3/2

)
Ω ,

NG̃G̃ = εαβ
(
G̃
α
−3/2G̃

β

−3/2

)
Ω ,

Along with a dimension h = 4 “modular null”:

NT =
(

(L−2)2 + εαβ
(
G̃
α
−5/2G

β

−3/2 −G
α
−5/2G̃

β

−3/2

)
− κAB

(
J
A
−2J

B
−2

)
− 1

2L−4
)

Ω .
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A complete example

The C2 algebra is given by

RV = C[jA, ωα, ω̃α, t]/I ,

with

I = 〈2(j ⊗ j)0 − t, t2, (j ⊗ ω)1/2, (j ⊗ ω̃)1/2, (ω ⊗ ω̃), (ω ⊗ ω), (ω̃ ⊗ ω̃)〉

We recover the Higgs chiral ring by removing the nilradical,

RH = C2/Z2 .

The Poisson bracket comes along as well.
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A complete example

The modular null (responsible for t2 = 0) gives rise to a second order modular
differential operator annihilating the vacuum character,

DN=4
su(2) = D(2)

q − 2E2
[−1

+1

]
(τ)D(1)

q − 18E4(τ) + 18E4
[−1

+1

]
(τ) .

The second character annihilated by this operator has h = −1/2 and is logarithmic.
However this logarithm is resolved upon including flavor fugacities.
[C.B., W. Peelaers]

The conjugate differential operator whose solutions control the q → 1 limit is

D̃N=4
su(2) = D(2)

q − 2E2
[+1
−1

]
(τ)D(1)

q − 18E4(τ) + 18E4
[+1
−1

]
(τ) .

This has solutions with h̃min = −3/8, which correctly reproduces the a4d = 3/4 Weyl
anomaly.
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Conclusions
Extensions

• Can include flavor fugacities and get differential equations for flavored indices.
This can resolve issue of finite-dim’l weight spaces for modules.

• Modify recursion relations to account for global symmetry twists.
Many surface operators, including canonical surface operators in class S, give rise to
twisted modules.

Open Questions

• How to predict the order of the LMDE/dimension of modular representation?
Is it meaningful? The flavor-refined case is apparently related to the three-dimensional
Coulomb branch [Fredrickson, Pei, W. Yan, Ye (2017)], [Neitzke, F. Yan]

• Can we extract the HL chiral ring from the VOA?
• Intrinsic way to find the R-filtration/grading on V?

Partial progress by J. Song (2016), work ongoing.
This would allow the imposition of very strong constraints from unitarity.
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