Riemann-Hilbert problems from Donaldson-Thomas theory

Tom Bridgeland

University of Sheffield

Preprints: 1611.03697 and 1703.02776 .

Motivation

Motivation

Two types of parameters in string theory:
(I) Deformation parameters.
(iI) Stability parameters.

Exchanged by mirror symmetry.

Motivation

Two types of parameters in string theory:
(I) Deformation parameters.
(iI) Stability parameters.

Exchanged by mirror symmetry.
The deformation space carries a variation of Hodge structures.
Can one construct similar geometric structures on stability space?

Motivation

Two types of parameters in string theory:
(I) Deformation parameters.
(iI) Stability parameters.

Exchanged by mirror symmetry.
The deformation space carries a variation of Hodge structures.
Can one construct similar geometric structures on stability space?
The obvious data to use is Donaldson-Thomas invariants.

Motivation

Two types of parameters in string theory:
(I) Deformation parameters.
(iI) Stability parameters.

Exchanged by mirror symmetry.
The deformation space carries a variation of Hodge structures.
Can one construct similar geometric structures on stability space?
The obvious data to use is Donaldson-Thomas invariants.
Fundamental property: Kontsevich-Soibelman wall-crossing formula. Strong analogy with Stokes factors from differential equations.

1. BPS structures.

The output of (UnREFINED) DT THEORY

The output of (UnREFINED) DT THEORY

A BPS structure (Γ, Z, Ω) consists of
(A) An abelian group $\Gamma \cong \mathbb{Z}^{\oplus n}$ with a skew-symmetric form

$$
\langle-,-\rangle: \Gamma \times \Gamma \rightarrow \mathbb{Z}
$$

(в) A homomorphism of abelian groups $Z: \Gamma \rightarrow \mathbb{C}$,
(C) A map of sets $\Omega: \Gamma \rightarrow \mathbb{Q}$.

The output of (unrefined) DT Theory

A BPS structure (Γ, Z, Ω) consists of
(A) An abelian group $\Gamma \cong \mathbb{Z}^{\oplus n}$ with a skew-symmetric form

$$
\langle-,-\rangle: \Gamma \times \Gamma \rightarrow \mathbb{Z}
$$

(в) A homomorphism of abelian groups $Z: \Gamma \rightarrow \mathbb{C}$,
(C) A map of sets $\Omega: \Gamma \rightarrow \mathbb{Q}$.
satisfying the conditions:
(I) Symmetry: $\Omega(-\gamma)=\Omega(\gamma)$ for all $\gamma \in \Gamma$,
(ii) Support property: fixing a norm $\|\cdot\|$ on the finite-dimensional vector space $\Gamma \otimes_{\mathbb{Z}} \mathbb{R}$, there is a $C>0$ such that

$$
\Omega(\gamma) \neq 0 \Longrightarrow|Z(\gamma)|>C \cdot\|\gamma\| .
$$

Example: conifold BPS structure

Example: conifold BPS structure

Take $\Gamma=\mathbb{Z}^{\oplus 2}$ with $\langle-,-\rangle=0$ and $Z(r, d)=i r-d$. Set

$$
\Omega(\gamma)= \begin{cases}1 & \text { if } \gamma= \pm(1, d) \text { for some } d \in \mathbb{Z} \\ -2 & \text { if } \gamma=(0, d) \text { for some } 0 \neq d \in \mathbb{Z} \\ 0 & \text { otherwise }\end{cases}
$$

This arises from DT theory applied to the resolved conifold.

Poisson algebraic torus

Poisson algebraic torus

Consider the algebraic torus with character lattice Γ :

$$
\begin{gathered}
\mathbb{T}_{+}=\operatorname{Hom}_{\mathbb{Z}}\left(\Gamma, \mathbb{C}^{*}\right) \cong\left(\mathbb{C}^{*}\right)^{n} \\
\mathbb{C}\left[\mathbb{T}_{+}\right]=\bigoplus_{\gamma \in \Gamma} \mathbb{C} \cdot x_{\gamma} \cong \mathbb{C}\left[x_{1}^{ \pm 1}, \cdots, x_{n}^{ \pm n}\right] .
\end{gathered}
$$

The form $\langle-,-\rangle$ induces an invariant Poisson structure on \mathbb{T}_{+}:

$$
\left\{x_{\alpha}, x_{\beta}\right\}=\langle\alpha, \beta\rangle \cdot x_{\alpha} \cdot x_{\beta}
$$

Poisson algebraic torus

Consider the algebraic torus with character lattice Γ :

$$
\begin{gathered}
\mathbb{T}_{+}=\operatorname{Hom}_{\mathbb{Z}}\left(\Gamma, \mathbb{C}^{*}\right) \cong\left(\mathbb{C}^{*}\right)^{n} \\
\mathbb{C}\left[\mathbb{T}_{+}\right]=\bigoplus_{\gamma \in \Gamma} \mathbb{C} \cdot x_{\gamma} \cong \mathbb{C}\left[x_{1}^{ \pm 1}, \cdots, x_{n}^{ \pm n}\right] .
\end{gathered}
$$

The form $\langle-,-\rangle$ induces an invariant Poisson structure on \mathbb{T}_{+}:

$$
\left\{x_{\alpha}, x_{\beta}\right\}=\langle\alpha, \beta\rangle \cdot x_{\alpha} \cdot x_{\beta} .
$$

More precisely we should work with an associated torsor

$$
\mathbb{T}_{-}=\left\{g: \Gamma \rightarrow \mathbb{C}^{*}: g\left(\gamma_{1}+\gamma_{2}\right)=(-1)^{\left\langle\gamma_{1}, \gamma_{2}\right\rangle} g\left(\gamma_{1}\right) \cdot g\left(\gamma_{2}\right)\right\},
$$

which we call the twisted torus.

DT Hamiltonians

DT Hamiltonians

The DT invariants $\operatorname{DT}(\gamma) \in \mathbb{Q}$ of a BPS structure are defined by

$$
\operatorname{DT}(\gamma)=\sum_{\gamma=n \alpha} \frac{\Omega(\alpha)}{n^{2}} .
$$

For any ray $\ell=\mathbb{R}_{>0} \cdot z \subset \mathbb{C}^{*}$ we consider the generating function

$$
\mathrm{DT}(\ell)=\sum_{Z(\gamma) \in \ell} \mathrm{DT}(\gamma) \cdot x_{\gamma} .
$$

A ray $\ell \subset \mathbb{C}^{*}$ is called active if this expression is nonzero.

DT HAMILTONIANS

The DT invariants $\operatorname{DT}(\gamma) \in \mathbb{Q}$ of a BPS structure are defined by

$$
\operatorname{DT}(\gamma)=\sum_{\gamma=n \alpha} \frac{\Omega(\alpha)}{n^{2}} .
$$

For any ray $\ell=\mathbb{R}_{>0} \cdot z \subset \mathbb{C}^{*}$ we consider the generating function

$$
\mathrm{DT}(\ell)=\sum_{Z(\gamma) \in \ell} \mathrm{DT}(\gamma) \cdot x_{\gamma} .
$$

A ray $\ell \subset \mathbb{C}^{*}$ is called active if this expression is nonzero.
We would like to think of the time 1 Hamiltonian flow of the function DT (ℓ) as defining a Poisson automorphism $S(\ell)$ of the torus \mathbb{T}.

Making sense of $S(\ell)$

MAKING SENSE OF $S(\ell)$

Formal approach

Restrict to classes γ lying in a positive cone $\Gamma^{+} \subset \Gamma$, consider

$$
\mathbb{C}\left[x_{1}^{ \pm 1}, \cdots, x_{n}^{ \pm 1}\right] \supset \mathbb{C}\left[x_{1}, \cdots, x_{n}\right] \subset \mathbb{C}\left[\left[x_{1}, \cdots, x_{n}\right]\right],
$$

and the automorphism $\mathrm{S}(\ell)^{*}=\exp \{\mathrm{DT}(\ell),-\}$ of this completion.

Making sense of $S(\ell)$

FORMAL APPROACH

Restrict to classes γ lying in a positive cone $\Gamma^{+} \subset \Gamma$, consider

$$
\mathbb{C}\left[x_{1}^{ \pm 1}, \cdots, x_{n}^{ \pm 1}\right] \supset \mathbb{C}\left[x_{1}, \cdots, x_{n}\right] \subset \mathbb{C}\left[\left[x_{1}, \cdots, x_{n}\right]\right],
$$

and the automorphism $\mathrm{S}(\ell)^{*}=\exp \{\mathrm{DT}(\ell),-\}$ of this completion.

Analytic approach

Restrict attention to BPS structures which are convergent:

$$
\exists R>0 \text { such that } \sum_{\gamma \in \Gamma}|\Omega(\gamma)| \cdot e^{-R|Z(\gamma)|}<\infty .
$$

Then on suitable analytic open subsets of \mathbb{T} the sum $\mathrm{DT}(\ell)$ is absolutely convergent and its time 1 Hamiltonian flow $S(\ell)$ exists.

Birational transformations

Often the maps $S(\ell)$ are birational automorphisms of \mathbb{T}.

Birational transformations

Often the maps $S(\ell)$ are birational automorphisms of \mathbb{T}. Note

$$
\exp \left\{\sum_{n \geq 1} \frac{x_{n \gamma}}{n^{2}},-\right\}\left(x_{\beta}\right)=x_{\beta} \cdot\left(1-x_{\gamma}\right)^{\langle\beta, \gamma\rangle} .
$$

Birational transformations

Often the maps $S(\ell)$ are birational automorphisms of \mathbb{T}. Note

$$
\exp \left\{\sum_{n \geq 1} \frac{x_{n \gamma}}{n^{2}},-\right\}\left(x_{\beta}\right)=x_{\beta} \cdot\left(1-x_{\gamma}\right)^{\langle\beta, \gamma\rangle} .
$$

Whenever a ray $\ell \subset \mathbb{C}^{*}$ satisfies
(I) only finitely many active classes have $Z\left(\gamma_{i}\right) \in \ell$,
(II) these classes are mutually orthogonal $\left\langle\gamma_{i}, \gamma_{j}\right\rangle=0$,
(iII) the corresponding BPS invariants $\Omega\left(\gamma_{i}\right) \in \mathbb{Z}$.
there is a formula

$$
\mathrm{S}(\ell)^{*}\left(x_{\beta}\right)=\prod_{Z(\gamma) \in \ell}\left(1-x_{\gamma}\right)^{\Omega(\gamma) \cdot\langle\beta, \gamma\rangle} .
$$

Variation of BPS structures

Variation of BPS structures

A framed variation of BPS structures over a complex manifold S is a collection of BPS structures ($\Gamma, Z_{s}, \Omega_{s}$) indexed by $s \in S$ such that

Variation of BPS structures

A framed variation of BPS structures over a complex manifold S is a collection of BPS structures ($\Gamma, Z_{s}, \Omega_{s}$) indexed by $s \in S$ such that
(I) The numbers $Z_{s}(\gamma) \in \mathbb{C}$ vary holomorphically.

Variation of BPS structures

A framed variation of BPS structures over a complex manifold S is a collection of BPS structures ($\Gamma, Z_{s}, \Omega_{s}$) indexed by $s \in S$ such that
(I) The numbers $Z_{s}(\gamma) \in \mathbb{C}$ vary holomorphically.
(ii) For any convex sector $\Delta \subset \mathbb{C}^{*}$ the clockwise ordered product

$$
S_{s}(\Delta)=\prod_{\ell \in \Delta} S_{s}(\ell) \in \operatorname{Aut}(\mathbb{T})
$$

is constant whenever the boundary of Δ remains non-active.
Part (ii) is the Kontsevich-Soibelman wall-crossing formula.

Variation of BPS structures

A framed variation of BPS structures over a complex manifold S is a collection of BPS structures ($\Gamma, Z_{s}, \Omega_{s}$) indexed by $s \in S$ such that
(I) The numbers $Z_{s}(\gamma) \in \mathbb{C}$ vary holomorphically.
(iI) For any convex sector $\Delta \subset \mathbb{C}^{*}$ the clockwise ordered product

$$
S_{s}(\Delta)=\prod_{\ell \in \Delta} S_{s}(\ell) \in \operatorname{Aut}(\mathbb{T})
$$

is constant whenever the boundary of Δ remains non-active.
Part (ii) is the Kontsevich-Soibelman wall-crossing formula.
The complete set of numbers $\Omega_{s}(\gamma)$ at some point $s \in S$ determines them for all other points $s \in S$.

ExAmple: THE A_{2} CASE

Example: the A_{2} Case

Let $\Gamma=\mathbb{Z}^{\oplus 2}=\mathbb{Z} e_{1} \oplus \mathbb{Z} e_{2}$ with $\left\langle e_{1}, e_{2}\right\rangle=1$. Then

$$
\mathbb{C}[\mathbb{T}]=\mathbb{C}\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}\right], \quad\left\{x_{1}, x_{2}\right\}=x_{1} \cdot x_{2}
$$

ExAmple: THE A_{2} CASE

Let $\Gamma=\mathbb{Z}^{\oplus 2}=\mathbb{Z} e_{1} \oplus \mathbb{Z} e_{2}$ with $\left\langle e_{1}, e_{2}\right\rangle=1$. Then

$$
\mathbb{C}[\mathbb{T}]=\mathbb{C}\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}\right], \quad\left\{x_{1}, x_{2}\right\}=x_{1} \cdot x_{2} .
$$

A central charge $Z: \Gamma \rightarrow \mathbb{C}$ is determined by $z_{i}=Z\left(e_{i}\right)$. Take

$$
S=\mathfrak{h}^{2}=\left\{\left(z_{1}, z_{2}\right): z_{i} \in \mathfrak{h}\right\} .
$$

ExAmple: THE A_{2} CASE

Let $\Gamma=\mathbb{Z}^{\oplus 2}=\mathbb{Z} e_{1} \oplus \mathbb{Z} e_{2}$ with $\left\langle e_{1}, e_{2}\right\rangle=1$. Then

$$
\mathbb{C}[\mathbb{T}]=\mathbb{C}\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}\right], \quad\left\{x_{1}, x_{2}\right\}=x_{1} \cdot x_{2} .
$$

A central charge $Z: \Gamma \rightarrow \mathbb{C}$ is determined by $z_{i}=Z\left(e_{i}\right)$. Take

$$
S=\mathfrak{h}^{2}=\left\{\left(z_{1}, z_{2}\right): z_{i} \in \mathfrak{h}\right\} .
$$

Define BPS invariants as follows:
(A) $\operatorname{Im}\left(z_{2} / z_{1}\right)>0$. Set $\Omega\left(\pm e_{1}\right)=\Omega\left(\pm e_{2}\right)=1$, all others zero.
(в) $\operatorname{Im}\left(z_{2} / z_{1}\right)<0$. Set $\Omega\left(\pm e_{1}\right)=\Omega\left(\pm\left(e_{1}+e_{2}\right)\right)=\Omega\left(\pm e_{2}\right)=1$.

Wall-crossing formula: A_{2} case

Wall-crossing formula: A_{2} case

Two types of BPS structures appear, as illustrated below

2 active rays

3 active rays

Wall-crossing formula: A_{2} case

Two types of BPS structures appear, as illustrated below

The wall-crossing formula is the cluster pentagon identity

$$
\begin{gathered}
C_{(0,1)} \circ C_{(1,0)}=C_{(1,0)} \circ C_{(1,1)} \circ C_{(0,1)} . \\
C_{\alpha}: x_{\beta} \mapsto x_{\beta} \cdot\left(1-x_{\alpha}\right)^{\langle\alpha, \beta\rangle} .
\end{gathered}
$$

2. The Riemann-Hilbert problem.

The Riemann-Hilbert problem

Fix a BPS structure (Γ, Z, Ω) and a point $\xi \in \mathbb{T}$.

The Riemann-Hilbert problem

Fix a BPS structure (Γ, Z, Ω) and a point $\xi \in \mathbb{T}$.
Find a piecewise holomorphic function $\Phi: \mathbb{C}^{*} \rightarrow \mathbb{T}$ satisfying:

The Riemann-Hilbert problem

Fix a BPS structure (Γ, Z, Ω) and a point $\xi \in \mathbb{T}$.
Find a piecewise holomorphic function $\Phi: \mathbb{C}^{*} \rightarrow \mathbb{T}$ satisfying:
(I) (Jumping): When t crosses an active ray ℓ clockwise,

$$
\Phi(t) \mapsto S(\ell)(\Phi(t)) .
$$

The Riemann-Hilbert problem

Fix a BPS structure (Γ, Z, Ω) and a point $\xi \in \mathbb{T}$.
Find a piecewise holomorphic function $\Phi: \mathbb{C}^{*} \rightarrow \mathbb{T}$ satisfying:
(I) (Jumping): When t crosses an active ray ℓ clockwise,

$$
\Phi(t) \mapsto \mathrm{S}(\ell)(\Phi(t)) .
$$

(II) (Limit at 0): Write $\left.\Phi_{\gamma}(t)\right)=x_{\gamma}(\Phi(t))$. As $t \rightarrow 0$,

$$
\Phi_{\gamma}(t) \cdot e^{Z(\gamma) / t} \rightarrow x_{\gamma}(\xi) .
$$

The Riemann-Hilbert problem

Fix a BPS structure (Γ, Z, Ω) and a point $\xi \in \mathbb{T}$.
Find a piecewise holomorphic function $\Phi: \mathbb{C}^{*} \rightarrow \mathbb{T}$ satisfying:
(I) (Jumping): When t crosses an active ray ℓ clockwise,

$$
\Phi(t) \mapsto \mathrm{S}(\ell)(\Phi(t)) .
$$

(II) (Limit at 0): Write $\left.\Phi_{\gamma}(t)\right)=x_{\gamma}(\Phi(t))$. As $t \rightarrow 0$,

$$
\Phi_{\gamma}(t) \cdot e^{Z(\gamma) / t} \rightarrow x_{\gamma}(\xi) .
$$

(iii) (Growth at ∞): For any $\gamma \in \Gamma$ there exists $k>0$ with

$$
|t|^{-k}<\left|\Phi_{\gamma}(t)\right|<|t|^{k} \text { as } t \rightarrow \infty .
$$

The A_{1} ExAMPLE

The A_{1} EXAMPLE

Consider the following BPS structure
(I) The lattice $\Gamma=\mathbb{Z} \cdot \gamma$ is one-dimensional. Thus $\langle-,-\rangle=0$.
(ii) The central charge $Z: \Gamma \rightarrow \mathbb{C}$ is determined by $z=Z(\gamma) \in \mathbb{C}^{*}$,
(iii) The only non-vanishing BPS invariants are $\Omega(\pm \gamma)=1$.

The A_{1} ExAMPLE

Consider the following BPS structure
(I) The lattice $\Gamma=\mathbb{Z} \cdot \gamma$ is one-dimensional. Thus $\langle-,-\rangle=0$.
(ii) The central charge $Z: \Gamma \rightarrow \mathbb{C}$ is determined by $z=Z(\gamma) \in \mathbb{C}^{*}$,
(iii) The only non-vanishing BPS invariants are $\Omega(\pm \gamma)=1$.

Then $\mathbb{T}=\mathbb{C}^{*}$ and all automorphisms $S(\ell)$ are the identity.

$$
\Phi_{\gamma}(t)=\xi \cdot \exp (-z / t) \in \mathbb{T}=\mathbb{C}^{*} .
$$

The A_{1} ExAMPLE

Consider the following BPS structure
(I) The lattice $\Gamma=\mathbb{Z} \cdot \gamma$ is one-dimensional. Thus $\langle-,-\rangle=0$.
(ii) The central charge $Z: \Gamma \rightarrow \mathbb{C}$ is determined by $z=Z(\gamma) \in \mathbb{C}^{*}$,
(iii) The only non-vanishing BPS invariants are $\Omega(\pm \gamma)=1$.

Then $\mathbb{T}=\mathbb{C}^{*}$ and all automorphisms $S(\ell)$ are the identity.

$$
\Phi_{\gamma}(t)=\xi \cdot \exp (-z / t) \in \mathbb{T}=\mathbb{C}^{*}
$$

Now double the BPS structure: take the lattice $\Gamma \oplus \Gamma^{\vee}$ with canonical skew form, and extend Z and Ω by zero. Consider

$$
y(t)=\Phi_{\gamma^{\vee}}(t): \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}
$$

Doubled A_{1} Case

Doubled A_{1} CASE

Consider the case $\xi=1$. The map $y: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$ should satisfy

Doubled A_{1} CASE

Consider the case $\xi=1$. The map $y: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$ should satisfy
(I) y is holomorphic away from the rays $\mathbb{R}_{>0} \cdot(\pm z)$ and has jumps

$$
y(t) \mapsto y(t) \cdot\left(1-x(t)^{ \pm 1}\right)^{ \pm 1}, \quad x(t)=\exp (-z / t),
$$

as t moves clockwise across them.

Doubled A_{1} CASE

Consider the case $\xi=1$. The map $y: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$ should satisfy
(I) y is holomorphic away from the rays $\mathbb{R}_{>0} \cdot(\pm z)$ and has jumps

$$
y(t) \mapsto y(t) \cdot\left(1-x(t)^{ \pm 1}\right)^{ \pm 1}, \quad x(t)=\exp (-z / t),
$$

as t moves clockwise across them.
(II) $y(t) \rightarrow 1$ as $t \rightarrow 0$.

Doubled A_{1} CASE

Consider the case $\xi=1$. The map $y: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$ should satisfy
(I) y is holomorphic away from the rays $\mathbb{R}_{>0} \cdot(\pm z)$ and has jumps

$$
y(t) \mapsto y(t) \cdot\left(1-x(t)^{ \pm 1}\right)^{ \pm 1}, \quad x(t)=\exp (-z / t),
$$

as t moves clockwise across them.
(II) $y(t) \rightarrow 1$ as $t \rightarrow 0$.
(iii) there exists $k>0$ such that

$$
|t|^{-k}<|y(t)|<|t|^{k} \text { as } t \rightarrow \infty .
$$

Solution: the Gamma function

Solution: the Gamma function

The doubled A_{1} problem has the unique solution

$$
y(t)=\Delta\left(\frac{ \pm z}{2 \pi i t}\right)^{\mp 1} \quad \text { where } \quad \Delta(w)=\frac{e^{w} \cdot \Gamma(w)}{\sqrt{2 \pi} \cdot w^{w-\frac{1}{2}}},
$$

in the half-planes $\pm \operatorname{Im}(t / z)>0$.

Solution: the Gamma function

The doubled A_{1} problem has the unique solution

$$
y(t)=\Delta\left(\frac{ \pm z}{2 \pi i t}\right)^{\mp 1} \quad \text { where } \quad \Delta(w)=\frac{e^{w} \cdot \Gamma(w)}{\sqrt{2 \pi} \cdot w^{w-\frac{1}{2}}}
$$

in the half-planes $\pm \operatorname{Im}(t / z)>0$.
This is elementary: all you need is

$$
\begin{gathered}
\Gamma(w) \cdot \Gamma(1-w)=\frac{\pi}{\sin (\pi w)}, \quad \Gamma(w+1)=w \cdot \Gamma(w) \\
\log \Delta(w) \sim \sum_{g=1}^{\infty} \frac{B_{2 g}}{2 g(2 g-1)} w^{1-2 g} .
\end{gathered}
$$

The TAU FUNCTION

The TAU FUNCTION

Suppose given a framed variation of BPS structures ($\Gamma, Z_{p}, \Omega_{p}$) over a complex manifold S such that

$$
\pi: S \rightarrow \operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C})=\mathbb{C}^{n}, \quad s \mapsto Z_{s}
$$

is a local isomorphism. Taking a basis $\left(\gamma_{1}, \cdots, \gamma_{n}\right) \subset \Gamma$ we get local co-ordinates $z_{i}=Z_{s}\left(\gamma_{i}\right)$ on S.

The TAU FUNCTION

Suppose given a framed variation of BPS structures ($\Gamma, Z_{p}, \Omega_{p}$) over a complex manifold S such that

$$
\pi: S \rightarrow \operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C})=\mathbb{C}^{n}, \quad s \mapsto Z_{s}
$$

is a local isomorphism. Taking a basis $\left(\gamma_{1}, \cdots, \gamma_{n}\right) \subset \Gamma$ we get local co-ordinates $z_{i}=Z_{s}\left(\gamma_{i}\right)$ on S.
Suppose we are given analytically varying solutions $\Phi_{\gamma}\left(z_{i}, t\right)$ to the Riemann-Hilbert problems associated to ($\Gamma, Z_{s}, \Omega_{s}$).

The TAU FUNCTION

Suppose given a framed variation of BPS structures ($\Gamma, Z_{p}, \Omega_{p}$) over a complex manifold S such that

$$
\pi: S \rightarrow \operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C})=\mathbb{C}^{n}, \quad s \mapsto Z_{s}
$$

is a local isomorphism. Taking a basis $\left(\gamma_{1}, \cdots, \gamma_{n}\right) \subset \Gamma$ we get local co-ordinates $z_{i}=Z_{s}\left(\gamma_{i}\right)$ on S.
Suppose we are given analytically varying solutions $\Phi_{\gamma}\left(z_{i}, t\right)$ to the Riemann-Hilbert problems associated to ($\Gamma, Z_{s}, \Omega_{s}$).
Define a function $\tau=\tau\left(z_{i}, t\right)$ by the relation

$$
\frac{\partial}{\partial t} \log \Phi_{\gamma_{k}}\left(z_{i}, t\right)=\sum_{j=1}^{n} \epsilon_{j k} \frac{\partial}{\partial z_{j}} \log \tau\left(z_{i}, t\right), \quad \epsilon_{j k}=\left\langle\gamma_{j}, \gamma_{k}\right\rangle .
$$

Solution in uncoupled case

SOLUTION IN UNCOUPLED CASE

In the A_{1} case the τ-function is essentially the Barnes G -function.

$$
\log \tau(z, t) \sim \sum_{g \geq 1} \frac{B_{2 g}}{2 g(2 g-2)}\left(\frac{2 \pi i t}{z}\right)^{2 g-2} .
$$

SOLUTION IN UNCOUPLED CASE

In the A_{1} case the τ-function is essentially the Barnes G -function.

$$
\log \tau(z, t) \sim \sum_{g \geq 1} \frac{B_{2 g}}{2 g(2 g-2)}\left(\frac{2 \pi i t}{z}\right)^{2 g-2} .
$$

Whenever our BPS structures are uncoupled

$$
\Omega\left(\gamma_{i}\right) \neq 0 \Longrightarrow\left\langle\gamma_{1}, \gamma_{2}\right\rangle=0,
$$

we can try to solve the RH problem by superposition of A_{1} solutions. This works precisely if only finitely many $\Omega(\gamma) \neq 0$.

SOLUTION IN UNCOUPLED CASE

In the A_{1} case the τ-function is essentially the Barnes G -function.

$$
\log \tau(z, t) \sim \sum_{g \geq 1} \frac{B_{2 g}}{2 g(2 g-2)}\left(\frac{2 \pi i t}{z}\right)^{2 g-2} .
$$

Whenever our BPS structures are uncoupled

$$
\Omega\left(\gamma_{i}\right) \neq 0 \Longrightarrow\left\langle\gamma_{1}, \gamma_{2}\right\rangle=0,
$$

we can try to solve the RH problem by superposition of A_{1} solutions. This works precisely if only finitely many $\Omega(\gamma) \neq 0$.

$$
\log \tau(z, t) \sim \sum_{g \geq 1} \sum_{\gamma \in \Gamma} \frac{\Omega(\gamma) \cdot B_{2 g}}{2 g(2 g-2)}\left(\frac{2 \pi i t}{Z(\gamma)}\right)^{2 g-2}
$$

Geometric case: Curves on a CY_{3}

Can apply this to coherent sheaves on a compact Calabi-Yau threefold supported in dimension ≤ 1.

Geometric case: Curves on a CY_{3}

Can apply this to coherent sheaves on a compact Calabi-Yau threefold supported in dimension ≤ 1. We have

$$
\begin{gathered}
\Gamma=H_{2}(X, \mathbb{Z}) \oplus \mathbb{Z}, \quad Z(\beta, n)=2 \pi\left(\beta \cdot \omega_{\mathbb{C}}-n\right) . \\
\Omega(\beta, n)=\operatorname{GV}_{0}(\beta), \quad \Omega(0, n)=-\chi(X) .
\end{gathered}
$$

Geometric case: Curves on a CY_{3}

Can apply this to coherent sheaves on a compact Calabi-Yau threefold supported in dimension ≤ 1. We have

$$
\begin{gathered}
\Gamma=H_{2}(X, \mathbb{Z}) \oplus \mathbb{Z}, \quad Z(\beta, n)=2 \pi\left(\beta \cdot \omega_{\mathbb{C}}-n\right) . \\
\Omega(\beta, n)=\operatorname{GV}_{0}(\beta), \quad \Omega(0, n)=-\chi(X) .
\end{gathered}
$$

Since $\chi(-,-)=0$ these BPS structures are uncoupled.

Geometric case: curves on a CY_{3}

Can apply this to coherent sheaves on a compact Calabi-Yau threefold supported in dimension ≤ 1. We have

$$
\begin{gathered}
\Gamma=H_{2}(X, \mathbb{Z}) \oplus \mathbb{Z}, \quad Z(\beta, n)=2 \pi\left(\beta \cdot \omega_{\mathbb{C}}-n\right) . \\
\Omega(\beta, n)=\mathrm{GV}_{0}(\beta), \quad \Omega(0, n)=-\chi(X) .
\end{gathered}
$$

Since $\chi(-,-)=0$ these BPS structures are uncoupled.

$$
\begin{aligned}
& \tau\left(\omega_{\mathbb{C}}, t\right) \stackrel{\text { pos. deg }}{\sim} \sum_{g \geq 2} \frac{\chi(X) B_{2 g} B_{2 g-2}}{4 g(2 g-2)(2 g-2)!} \cdot(2 \pi t)^{2 g-2} \\
& \quad+\sum_{\beta \in H_{2}(X, \mathbb{Z})} \sum_{k \geq 1} \mathrm{GV}_{0}(\beta) \frac{e^{2 \pi i \omega \cdot k \beta}}{4 k} \sin ^{-2}(i \pi t k) .
\end{aligned}
$$

Matches degenerate contributions from genus 0 GV invariants.

Resolved conifold again

Resolved conifold again

Take $\Gamma=\mathbb{Z}^{\oplus 2}$ with $\langle-,-\rangle=0$ and

$$
\Omega(\gamma)= \begin{cases}1 & \text { if } \gamma= \pm(1, d) \text { for some } d \in \mathbb{Z} \\ -2 & \text { if } \gamma=(0, d) \text { for some } 0 \neq d \in \mathbb{Z} \\ 0 & \text { otherwise }\end{cases}
$$

Resolved conifold again

Take $\Gamma=\mathbb{Z}^{\oplus 2}$ with $\langle-,-\rangle=0$ and

$$
\Omega(\gamma)= \begin{cases}1 & \text { if } \gamma= \pm(1, d) \text { for some } d \in \mathbb{Z} \\ -2 & \text { if } \gamma=(0, d) \text { for some } 0 \neq d \in \mathbb{Z} \\ 0 & \text { otherwise }\end{cases}
$$

We get a variation of BPS structures over

$$
\left\{(v, w) \in \mathbb{C}^{2}: w \neq 0 \text { and } v+d w \neq 0 \text { for all } d \in \mathbb{Z}\right\} \subset \mathbb{C}^{2}
$$

by setting $Z(r, d)=r v+d w$.

Non-PERTURBATIVE PARTITION FUNCTION

The corresponding RH problems have unique solutions, which can be written explicitly in terms of Barnes double and triple sine functions.

Non-PERTURBATIVE PARTITION FUNCTION

The corresponding RH problems have unique solutions, which can be written explicitly in terms of Barnes double and triple sine functions.

$$
\begin{gathered}
\tau(v, w, t)=H(v, w, t) \cdot \exp (R(v, w, t)), \\
H(v, w, t)=\exp \left(\int_{\mathbb{R}+i \epsilon} \frac{e^{v s}-1}{e^{w s}-1} \cdot \frac{e^{t s}}{\left(e^{t s}-1\right)^{2}} \cdot \frac{d s}{s}\right), \\
R(v, w, t)=\left(\frac{w}{2 \pi i t}\right)^{2}\left(\operatorname{Li}_{3}\left(e^{2 \pi i v / w}\right)-\zeta(3)\right)+\frac{i \pi}{12} \cdot \frac{v}{w} .
\end{gathered}
$$

The function H is a non-perturbative closed-string partition function.

Finite-dimensional analogy

Finite-dimensional analogy

Matrix differential equation for $X: \mathbb{C}^{*} \rightarrow G=\mathrm{GL}_{n}(\mathbb{C})$

$$
\frac{d}{d t} X(t)=\left(\frac{U}{t^{2}}+\frac{V}{t}\right) X(t), \quad U, V \in \mathfrak{g}=\mathfrak{g l}_{n}(\mathbb{C}) .
$$

Take $U=\operatorname{diag}\left(u_{1}, \cdots, u_{n}\right)$ with $u_{i} \neq u_{j}$ and V skew-symmetric.

Finite-dimensional analogy

Matrix differential equation for $X: \mathbb{C}^{*} \rightarrow G=\mathrm{GL}_{n}(\mathbb{C})$

$$
\frac{d}{d t} X(t)=\left(\frac{U}{t^{2}}+\frac{V}{t}\right) X(t), \quad U, V \in \mathfrak{g}=\mathfrak{g l}_{n}(\mathbb{C})
$$

Take $U=\operatorname{diag}\left(u_{1}, \cdots, u_{n}\right)$ with $u_{i} \neq u_{j}$ and V skew-symmetric.
The Stokes rays are $\ell_{i j}=\mathbb{R}_{>0} \cdot\left(u_{i}-u_{j}\right)$.
Fact: in any half-plane centered on a non-Stokes ray there exists a unique solution such that $X(t) \cdot \exp (U / t) \rightarrow 1$ as $t \rightarrow 0$.

Finite-dimensional analogy

Matrix differential equation for $X: \mathbb{C}^{*} \rightarrow G=\mathrm{GL}_{n}(\mathbb{C})$

$$
\frac{d}{d t} X(t)=\left(\frac{U}{t^{2}}+\frac{V}{t}\right) X(t), \quad U, V \in \mathfrak{g}=\mathfrak{g l}_{n}(\mathbb{C})
$$

Take $U=\operatorname{diag}\left(u_{1}, \cdots, u_{n}\right)$ with $u_{i} \neq u_{j}$ and V skew-symmetric.
The Stokes rays are $\ell_{i j}=\mathbb{R}_{>0} \cdot\left(u_{i}-u_{j}\right)$.
Fact: in any half-plane centered on a non-Stokes ray there exists a unique solution such that $X(t) \cdot \exp (U / t) \rightarrow 1$ as $t \rightarrow 0$.
The Stokes factors $S_{\ell_{i j}} \in G$ describe how these solutions jump.

Finite-Dimensional Analogy

Matrix differential equation for $X: \mathbb{C}^{*} \rightarrow G=G L_{n}(\mathbb{C})$

$$
\frac{d}{d t} X(t)=\left(\frac{U}{t^{2}}+\frac{V}{t}\right) X(t), \quad U, V \in \mathfrak{g}=\mathfrak{g l}_{n}(\mathbb{C}) .
$$

Take $U=\operatorname{diag}\left(u_{1}, \cdots, u_{n}\right)$ with $u_{i} \neq u_{j}$ and V skew-symmetric.
The Stokes rays are $\ell_{i j}=\mathbb{R}_{>0} \cdot\left(u_{i}-u_{j}\right)$.
Fact: in any half-plane centered on a non-Stokes ray there exists a unique solution such that $X(t) \cdot \exp (U / t) \rightarrow 1$ as $t \rightarrow 0$.
The Stokes factors $S_{\ell_{i j}} \in G$ describe how these solutions jump.
Iso-Stokes deformation: as U varies we can vary V in a unique way so that the product of Stokes factors in any fixed sector is constant.

WALL-CROSSING FORMULA $=$ ISO-Stokes

WALL-CROSSING FORMULA $=$ ISO-Stokes

Differential equation for $X: \mathbb{C}^{*} \rightarrow G=\operatorname{Aut}(\mathbb{T})$

$$
\frac{d}{d t} X(t)=\left(\frac{Z}{t^{2}}+\frac{F}{t}\right) X(t)
$$

with $Z \in \operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C})$ and $F=\sum_{\gamma \in \Gamma} f_{\gamma} \cdot\left(x_{\gamma}+x_{-\gamma}\right)$, where

$$
\mathfrak{g}=\operatorname{Vect}(\mathbb{T})=\operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C}) \oplus \bigoplus_{\gamma \in \Gamma} \mathbb{C} \cdot x_{\gamma} .
$$

WALL-CROSSING FORMULA $=$ ISO-Stokes

Differential equation for $X: \mathbb{C}^{*} \rightarrow G=\operatorname{Aut}(\mathbb{T})$

$$
\frac{d}{d t} X(t)=\left(\frac{Z}{t^{2}}+\frac{F}{t}\right) X(t)
$$

with $Z \in \operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C})$ and $F=\sum_{\gamma \in \Gamma} f_{\gamma} \cdot\left(x_{\gamma}+x_{-\gamma}\right)$, where

$$
\mathfrak{g}=\operatorname{Vect}(\mathbb{T})=\operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C}) \oplus \bigoplus_{\gamma \in \Gamma} \mathbb{C} \cdot x_{\gamma}
$$

Have Stokes rays are $\mathbb{R}_{>0} \cdot Z(\gamma)$ and Stokes factors $S(\ell) \in G$.

WALL-CROSSING FORMULA $=$ ISO-Stokes

Differential equation for $X: \mathbb{C}^{*} \rightarrow G=\operatorname{Aut}(\mathbb{T})$

$$
\frac{d}{d t} X(t)=\left(\frac{Z}{t^{2}}+\frac{F}{t}\right) X(t)
$$

with $Z \in \operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C})$ and $F=\sum_{\gamma \in \Gamma} f_{\gamma} \cdot\left(x_{\gamma}+x_{-\gamma}\right)$, where

$$
\mathfrak{g}=\operatorname{Vect}(\mathbb{T})=\operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C}) \oplus \bigoplus_{\gamma \in \Gamma} \mathbb{C} \cdot x_{\gamma} .
$$

Have Stokes rays are $\mathbb{R}_{>0} \cdot Z(\gamma)$ and Stokes factors $S(\ell) \in G$. Wall-crossing formula is iso-Stokes condition.

Wall-crossing Formula $=$ ISO-Stokes

Differential equation for $X: \mathbb{C}^{*} \rightarrow G=\operatorname{Aut}(\mathbb{T})$

$$
\frac{d}{d t} X(t)=\left(\frac{Z}{t^{2}}+\frac{F}{t}\right) X(t)
$$

with $Z \in \operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C})$ and $F=\sum_{\gamma \in \Gamma} f_{\gamma} \cdot\left(x_{\gamma}+x_{-\gamma}\right)$, where

$$
\mathfrak{g}=\operatorname{Vect}(\mathbb{T})=\operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C}) \oplus \bigoplus_{\gamma \in \Gamma} \mathbb{C} \cdot x_{\gamma} .
$$

Have Stokes rays are $\mathbb{R}_{>0} \cdot Z(\gamma)$ and Stokes factors $S(\ell) \in G$. Wall-crossing formula is iso-Stokes condition.

Note that given $\xi \in \mathbb{T}$ there is a map eval $: G \rightarrow \mathbb{T}$.

Further Directions

(I) Theories of class S with $G=\mathrm{SL}_{2}(\mathbb{C})$. Variation of BPS structures over space of meromorphic quadratic differentials. Monodromy of projective structures gives map to space of framed local systems. Fock-Goncharov co-ordinates give solutions to RH problem (joint with D. Allegretti).

Further Directions

(I) Theories of class S with $G=\mathrm{SL}_{2}(\mathbb{C})$. Variation of BPS structures over space of meromorphic quadratic differentials. Monodromy of projective structures gives map to space of framed local systems. Fock-Goncharov co-ordinates give solutions to RH problem (joint with D. Allegretti).
(ii) Analogy with Stokes data in finite-dimensional case. Allow ξ to vary to get RH problem with values in $G=\operatorname{Aut}(\mathbb{T})$. Uncoupled case can be solved following Gaiotto (joint with A. Barbieri).

Further directions

(I) Theories of class S with $G=\mathrm{SL}_{2}(\mathbb{C})$. Variation of BPS structures over space of meromorphic quadratic differentials. Monodromy of projective structures gives map to space of framed local systems. Fock-Goncharov co-ordinates give solutions to RH problem (joint with D. Allegretti).
(ii) Analogy with Stokes data in finite-dimensional case. Allow ξ to vary to get RH problem with values in $G=\operatorname{Aut}(\mathbb{T})$. Uncoupled case can be solved following Gaiotto (joint with A. Barbieri).
(III) Our current formalism gives the partition function without the terms in $t^{2 g-2}$ for $g=0,1$. In examples, these additional terms make τ satisfy a difference equation. How to understand this? Can we quantize the RH problem? (J. Calabrese).

