RIEMANN-HILBERT PROBLEMS FROM DONALDSON-THOMAS THEORY

Tom Bridgeland

University of Sheffield

Preprints: 1611.03697 and 1703.02776.

Two types of parameters in string theory:

- (I) Deformation parameters.
- (II) Stability parameters.

Exchanged by mirror symmetry.

Two types of parameters in string theory:

- (I) Deformation parameters.
- (II) Stability parameters.

Exchanged by mirror symmetry.

The deformation space carries a variation of Hodge structures.

Can one construct similar geometric structures on stability space?

Two types of parameters in string theory:

- (I) Deformation parameters.
- (II) Stability parameters.

Exchanged by mirror symmetry.

The deformation space carries a variation of Hodge structures.

Can one construct similar geometric structures on stability space?

The obvious data to use is Donaldson-Thomas invariants.

Two types of parameters in string theory:

- (I) Deformation parameters.
- (II) Stability parameters.

Exchanged by mirror symmetry.

The deformation space carries a variation of Hodge structures.

Can one construct similar geometric structures on stability space?

The obvious data to use is Donaldson-Thomas invariants.

Fundamental property: Kontsevich-Soibelman wall-crossing formula. Strong analogy with Stokes factors from differential equations. 1. BPS structures.

The output of (unrefined) DT theory

THE OUTPUT OF (UNREFINED) DT THEORY

- A BPS structure (Γ, Z, Ω) consists of
- (A) An abelian group $\Gamma\cong\mathbb{Z}^{\oplus n}$ with a skew-symmetric form

$$\langle -,-\rangle\colon \Gamma\times\Gamma\to\mathbb{Z}$$

(B) A homomorphism of abelian groups $Z \colon \Gamma \to \mathbb{C}$, (C) A map of sets $\Omega \colon \Gamma \to \mathbb{Q}$.

THE OUTPUT OF (UNREFINED) DT THEORY

- A BPS structure (Γ, Z, Ω) consists of
- (A) An abelian group $\Gamma\cong \mathbb{Z}^{\oplus n}$ with a skew-symmetric form

 $\langle -, - \rangle \colon \Gamma \times \Gamma \to \mathbb{Z}$

(B) A homomorphism of abelian groups $Z \colon \Gamma \to \mathbb{C}$, (C) A map of sets $\Omega \colon \Gamma \to \mathbb{Q}$.

satisfying the conditions:

- (1) Symmetry: $\Omega(-\gamma) = \Omega(\gamma)$ for all $\gamma \in \Gamma$,
- (II) Support property: fixing a norm $\|\cdot\|$ on the finite-dimensional vector space $\Gamma \otimes_{\mathbb{Z}} \mathbb{R}$, there is a C > 0 such that

$$\Omega(\gamma) \neq 0 \implies |Z(\gamma)| > C \cdot ||\gamma||.$$

EXAMPLE: CONIFOLD BPS STRUCTURE

5 / 25

EXAMPLE: CONIFOLD BPS STRUCTURE

Take
$$\Gamma = \mathbb{Z}^{\oplus 2}$$
 with $\langle -, - \rangle = 0$ and $Z(r, d) = ir - d$. Set

$$\Omega(\gamma) = egin{cases} 1 & ext{if } \gamma = \pm(1,d) ext{ for some } d \in \mathbb{Z}, \ -2 & ext{if } \gamma = (0,d) ext{ for some } 0
eq d \in \mathbb{Z}, \ 0 & ext{ otherwise.} \end{cases}$$

This arises from DT theory applied to the resolved conifold.

POISSON ALGEBRAIC TORUS

POISSON ALGEBRAIC TORUS

Consider the algebraic torus with character lattice Γ :

$$\mathbb{T}_{+} = \operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C}^{*}) \cong (\mathbb{C}^{*})^{n}$$
$$\mathbb{C}[\mathbb{T}_{+}] = \bigoplus_{\gamma \in \Gamma} \mathbb{C} \cdot x_{\gamma} \cong \mathbb{C}[x_{1}^{\pm 1}, \cdots, x_{n}^{\pm n}].$$

The form $\langle -,-\rangle$ induces an invariant Poisson structure on $\mathbb{T}_+:$

$$\{\mathbf{x}_{\alpha}, \mathbf{x}_{\beta}\} = \langle \alpha, \beta \rangle \cdot \mathbf{x}_{\alpha} \cdot \mathbf{x}_{\beta}.$$

POISSON ALGEBRAIC TORUS

Consider the algebraic torus with character lattice Γ :

$$\mathbb{T}_{+} = \operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C}^{*}) \cong (\mathbb{C}^{*})^{n}$$
$$\mathbb{C}[\mathbb{T}_{+}] = \bigoplus_{\gamma \in \Gamma} \mathbb{C} \cdot x_{\gamma} \cong \mathbb{C}[x_{1}^{\pm 1}, \cdots, x_{n}^{\pm n}].$$

The form $\langle -, - \rangle$ induces an invariant Poisson structure on \mathbb{T}_+ :

$$\{\mathbf{x}_{\alpha},\mathbf{x}_{\beta}\}=\langle \alpha,\beta\rangle\cdot\mathbf{x}_{\alpha}\cdot\mathbf{x}_{\beta}.$$

More precisely we should work with an associated torsor $\mathbb{T}_{-} = \{g: \Gamma \to \mathbb{C}^* : g(\gamma_1 + \gamma_2) = (-1)^{\langle \gamma_1, \gamma_2 \rangle} g(\gamma_1) \cdot g(\gamma_2) \},\$

which we call the twisted torus.

DT HAMILTONIANS

DT HAMILTONIANS

The DT invariants $\mathsf{DT}(\gamma) \in \mathbb{Q}$ of a BPS structure are defined by

$$\mathsf{DT}(\gamma) = \sum_{\gamma = n\alpha} \frac{\Omega(\alpha)}{n^2}$$

For any ray $\ell = \mathbb{R}_{>0} \cdot z \subset \mathbb{C}^*$ we consider the generating function

$$\mathsf{DT}(\ell) = \sum_{Z(\gamma) \in \ell} \mathsf{DT}(\gamma) \cdot x_{\gamma}.$$

A ray $\ell \subset \mathbb{C}^*$ is called active if this expression is nonzero.

DT HAMILTONIANS

The DT invariants $\mathsf{DT}(\gamma) \in \mathbb{Q}$ of a BPS structure are defined by

$$\mathsf{DT}(\gamma) = \sum_{\gamma = n\alpha} \frac{\Omega(\alpha)}{n^2}$$

For any ray $\ell = \mathbb{R}_{>0} \cdot z \subset \mathbb{C}^*$ we consider the generating function

$$\mathsf{DT}(\ell) = \sum_{Z(\gamma) \in \ell} \mathsf{DT}(\gamma) \cdot x_{\gamma}.$$

A ray $\ell \subset \mathbb{C}^*$ is called active if this expression is nonzero.

We would like to think of the time 1 Hamiltonian flow of the function $DT(\ell)$ as defining a Poisson automorphism $S(\ell)$ of the torus \mathbb{T} .

Making sense of $S(\ell)$

Making sense of $S(\ell)$

FORMAL APPROACH

Restrict to classes γ lying in a positive cone $\Gamma^+ \subset \Gamma$, consider

$$\mathbb{C}[x_1^{\pm 1}, \cdots, x_n^{\pm 1}] \supset \mathbb{C}[x_1, \cdots, x_n] \subset \mathbb{C}[[x_1, \cdots, x_n]],$$

and the automorphism $S(\ell)^* = \exp\{DT(\ell), -\}$ of this completion.

Making sense of $S(\ell)$

FORMAL APPROACH

Restrict to classes γ lying in a positive cone $\Gamma^+\subset \Gamma$, consider

$$\mathbb{C}[x_1^{\pm 1}, \cdots, x_n^{\pm 1}] \supset \mathbb{C}[x_1, \cdots, x_n] \subset \mathbb{C}[[x_1, \cdots, x_n]],$$

and the automorphism $S(\ell)^* = \exp\{DT(\ell), -\}$ of this completion.

ANALYTIC APPROACH

Restrict attention to BPS structures which are convergent:

$$\exists R>0 ext{ such that } \sum_{\gamma\in \Gamma} |\Omega(\gamma)|\cdot e^{-R|Z(\gamma)|}<\infty.$$

Then on suitable analytic open subsets of \mathbb{T} the sum $\mathsf{DT}(\ell)$ is absolutely convergent and its time 1 Hamiltonian flow $S(\ell)$ exists.

BIRATIONAL TRANSFORMATIONS

Often the maps $S(\ell)$ are birational automorphisms of \mathbb{T} .

BIRATIONAL TRANSFORMATIONS

Often the maps $S(\ell)$ are birational automorphisms of \mathbb{T} . Note

$$\exp\bigg\{\sum_{n\geq 1}\frac{x_{n\gamma}}{n^2},-\bigg\}(x_\beta)=x_\beta\cdot(1-x_\gamma)^{\langle\beta,\gamma\rangle}.$$

BIRATIONAL TRANSFORMATIONS

Often the maps $S(\ell)$ are birational automorphisms of \mathbb{T} . Note

$$\exp\bigg\{\sum_{n\geq 1}\frac{x_{n\gamma}}{n^2},-\bigg\}(x_{\beta})=x_{\beta}\cdot(1-x_{\gamma})^{\langle\beta,\gamma\rangle}$$

Whenever a ray $\ell \subset \mathbb{C}^*$ satisfies

(I) only finitely many active classes have $Z(\gamma_i) \in \ell$, (II) these classes are mutually orthogonal $\langle \gamma_i, \gamma_j \rangle = 0$, (III) the corresponding BPS invariants $\Omega(\gamma_i) \in \mathbb{Z}$. there is a formula

$$\mathrm{S}(\ell)^*(x_eta) = \prod_{Z(\gamma) \in \ell} (1-x_\gamma)^{\Omega(\gamma) \cdot \langle eta, \gamma
angle}.$$

A framed variation of BPS structures over a complex manifold S is a collection of BPS structures (Γ, Z_s, Ω_s) indexed by $s \in S$ such that

A framed variation of BPS structures over a complex manifold S is a collection of BPS structures (Γ, Z_s, Ω_s) indexed by $s \in S$ such that

(1) The numbers $Z_s(\gamma) \in \mathbb{C}$ vary holomorphically.

A framed variation of BPS structures over a complex manifold S is a collection of BPS structures (Γ, Z_s, Ω_s) indexed by $s \in S$ such that

(I) The numbers $Z_s(\gamma) \in \mathbb{C}$ vary holomorphically.

(II) For any convex sector $\Delta \subset \mathbb{C}^*$ the clockwise ordered product

$$\mathrm{S}_{s}(\Delta) = \prod_{\ell \in \Delta} \mathrm{S}_{s}(\ell) \in \mathsf{Aut}(\mathbb{T})$$

is constant whenever the boundary of Δ remains non-active.

Part (ii) is the Kontsevich-Soibelman wall-crossing formula.

A framed variation of BPS structures over a complex manifold S is a collection of BPS structures (Γ, Z_s, Ω_s) indexed by $s \in S$ such that

(I) The numbers $Z_s(\gamma) \in \mathbb{C}$ vary holomorphically.

(II) For any convex sector $\Delta \subset \mathbb{C}^*$ the clockwise ordered product

$$\mathrm{S}_{\mathfrak{s}}(\Delta) = \prod_{\ell \in \Delta} \mathrm{S}_{\mathfrak{s}}(\ell) \in \mathsf{Aut}(\mathbb{T})$$

is constant whenever the boundary of Δ remains non-active.

Part (ii) is the Kontsevich-Soibelman wall-crossing formula.

The complete set of numbers $\Omega_s(\gamma)$ at some point $s \in S$ determines them for all other points $s \in S$.

Let
$$\Gamma = \mathbb{Z}^{\oplus 2} = \mathbb{Z}e_1 \oplus \mathbb{Z}e_2$$
 with $\langle e_1, e_2 \rangle = 1$. Then
 $\mathbb{C}[\mathbb{T}] = \mathbb{C}[x_1^{\pm 1}, x_2^{\pm 1}], \quad \{x_1, x_2\} = x_1 \cdot x_2.$

Let
$$\Gamma = \mathbb{Z}^{\oplus 2} = \mathbb{Z}e_1 \oplus \mathbb{Z}e_2$$
 with $\langle e_1, e_2 \rangle = 1$. Then

$$\mathbb{C}[\mathbb{T}] = \mathbb{C}[x_1^{\pm 1}, x_2^{\pm 1}], \quad \{x_1, x_2\} = x_1 \cdot x_2.$$

A central charge $Z \colon \Gamma \to \mathbb{C}$ is determined by $z_i = Z(e_i)$. Take

$$S = \mathfrak{h}^2 = \{(z_1, z_2) : z_i \in \mathfrak{h}\}.$$

Let
$$\Gamma = \mathbb{Z}^{\oplus 2} = \mathbb{Z}e_1 \oplus \mathbb{Z}e_2$$
 with $\langle e_1, e_2 \rangle = 1$. Then

$$\mathbb{C}[\mathbb{T}] = \mathbb{C}[x_1^{\pm 1}, x_2^{\pm 1}], \quad \{x_1, x_2\} = x_1 \cdot x_2.$$

A central charge $Z \colon \Gamma \to \mathbb{C}$ is determined by $z_i = Z(e_i)$. Take

$$S = \mathfrak{h}^2 = \{(z_1, z_2) : z_i \in \mathfrak{h}\}.$$

Define BPS invariants as follows:

(A) $\text{Im}(z_2/z_1) > 0$. Set $\Omega(\pm e_1) = \Omega(\pm e_2) = 1$, all others zero. (B) $\text{Im}(z_2/z_1) < 0$. Set $\Omega(\pm e_1) = \Omega(\pm (e_1 + e_2)) = \Omega(\pm e_2) = 1$.

Wall-crossing formula: A_2 case

Wall-crossing formula: A_2 case

Two types of BPS structures appear, as illustrated below

Wall-crossing formula: A_2 case

Two types of BPS structures appear, as illustrated below

The wall-crossing formula is the cluster pentagon identity $C_{(0,1)} \circ C_{(1,0)} = C_{(1,0)} \circ C_{(1,1)} \circ C_{(0,1)}.$ $C_{\alpha} \colon x_{\beta} \mapsto x_{\beta} \cdot (1 - x_{\alpha})^{\langle \alpha, \beta \rangle}.$
2. The Riemann-Hilbert problem.

Fix a BPS structure (Γ, Z, Ω) and a point $\xi \in \mathbb{T}$.

Fix a BPS structure (Γ, Z, Ω) and a point $\xi \in \mathbb{T}$.

Find a piecewise holomorphic function $\Phi \colon \mathbb{C}^* \to \mathbb{T}$ satisfying:

Fix a BPS structure (Γ, Z, Ω) and a point $\xi \in \mathbb{T}$.

Find a piecewise holomorphic function $\Phi \colon \mathbb{C}^* \to \mathbb{T}$ satisfying: (I) (Jumping): When t crosses an active ray ℓ clockwise, $\Phi(t) \mapsto S(\ell)(\Phi(t)).$

Fix a BPS structure (Γ, Z, Ω) and a point $\xi \in \mathbb{T}$.

Find a piecewise holomorphic function $\Phi \colon \mathbb{C}^* \to \mathbb{T}$ satisfying: (I) (Jumping): When t crosses an active ray ℓ clockwise, $\Phi(t) \mapsto S(\ell)(\Phi(t)).$

(II) (Limit at 0): Write $\Phi_{\gamma}(t)$) = $x_{\gamma}(\Phi(t))$. As $t \to 0$,

$$\Phi_{\gamma}(t) \cdot e^{Z(\gamma)/t} \to x_{\gamma}(\xi).$$

Fix a BPS structure (Γ, Z, Ω) and a point $\xi \in \mathbb{T}$.

Find a piecewise holomorphic function $\Phi \colon \mathbb{C}^* \to \mathbb{T}$ satisfying: (I) (Jumping): When t crosses an active ray ℓ clockwise, $\Phi(t) \mapsto S(\ell)(\Phi(t)).$

(II) (Limit at 0): Write $\Phi_{\gamma}(t)$) = $x_{\gamma}(\Phi(t))$. As $t \to 0$, $\Phi_{\gamma}(t) \cdot e^{Z(\gamma)/t} \to x_{\gamma}(\xi)$.

(III) (Growth at ∞): For any $\gamma \in \Gamma$ there exists k > 0 with $|t|^{-k} < |\Phi_{\gamma}(t)| < |t|^{k}$ as $t \to \infty$.

Consider the following BPS structure

(I) The lattice $\Gamma = \mathbb{Z} \cdot \gamma$ is one-dimensional. Thus $\langle -, - \rangle = 0$.

(II) The central charge $Z \colon \Gamma \to \mathbb{C}$ is determined by $z = Z(\gamma) \in \mathbb{C}^*$,

(III) The only non-vanishing BPS invariants are $\Omega(\pm \gamma) = 1$.

Consider the following BPS structure

(1) The lattice $\Gamma = \mathbb{Z} \cdot \gamma$ is one-dimensional. Thus $\langle -, - \rangle = 0$.

(II) The central charge $Z\colon \Gamma o \mathbb{C}$ is determined by $z=Z(\gamma)\in \mathbb{C}^*$,

(III) The only non-vanishing BPS invariants are $\Omega(\pm\gamma) = 1$.

Then $\mathbb{T}=\mathbb{C}^*$ and all automorphisms $\mathrm{S}(\ell)$ are the identity.

$$\Phi_{\gamma}(t) = \xi \cdot \exp(-z/t) \in \mathbb{T} = \mathbb{C}^*.$$

Consider the following BPS structure

(I) The lattice $\Gamma = \mathbb{Z} \cdot \gamma$ is one-dimensional. Thus $\langle -, - \rangle = 0$. (II) The central charge $Z \colon \Gamma \to \mathbb{C}$ is determined by $z = Z(\gamma) \in \mathbb{C}^*$, (III) The only non-vanishing BPS invariants are $\Omega(\pm \gamma) = 1$. Then $\mathbb{T} = \mathbb{C}^*$ and all automorphisms $S(\ell)$ are the identity. $\Phi_{\gamma}(t) = \xi \cdot \exp(-z/t) \in \mathbb{T} = \mathbb{C}^*$.

Now double the BPS structure: take the lattice $\Gamma \oplus \Gamma^{\vee}$ with canonical skew form, and extend Z and Ω by zero. Consider

$$y(t)=\Phi_{\gamma^ee}(t)\colon \mathbb{C}^* o\mathbb{C}^*.$$

Consider the case $\xi = 1$. The map $y \colon \mathbb{C}^* \to \mathbb{C}^*$ should satisfy

Consider the case $\xi = 1$. The map $y \colon \mathbb{C}^* \to \mathbb{C}^*$ should satisfy

(I) y is holomorphic away from the rays $\mathbb{R}_{>0} \cdot (\pm z)$ and has jumps $y(t) \mapsto y(t) \cdot (1 - x(t)^{\pm 1})^{\pm 1}, \quad x(t) = \exp(-z/t),$

as t moves clockwise across them.

Consider the case $\xi = 1$. The map $y \colon \mathbb{C}^* \to \mathbb{C}^*$ should satisfy

(I) y is holomorphic away from the rays $\mathbb{R}_{>0} \cdot (\pm z)$ and has jumps $y(t) \mapsto y(t) \cdot (1 - x(t)^{\pm 1})^{\pm 1}, \quad x(t) = \exp(-z/t),$

as t moves clockwise across them. (II) $y(t) \rightarrow 1$ as $t \rightarrow 0$.

Consider the case $\xi = 1$. The map $y \colon \mathbb{C}^* \to \mathbb{C}^*$ should satisfy

(I) y is holomorphic away from the rays $\mathbb{R}_{>0} \cdot (\pm z)$ and has jumps $y(t) \mapsto y(t) \cdot (1 - x(t)^{\pm 1})^{\pm 1}, \quad x(t) = \exp(-z/t),$

as t moves clockwise across them.

(II)
$$y(t) \rightarrow 1$$
 as $t \rightarrow 0$.

(III) there exists k > 0 such that

$$|t|^{-k} < |y(t)| < |t|^k$$
 as $t o \infty.$

Solution: the Gamma function

Solution: the Gamma function

The doubled A_1 problem has the unique solution

$$y(t) = \Delta \left(\frac{\pm z}{2\pi i t}\right)^{\mp 1}$$
 where $\Delta(w) = \frac{e^w \cdot \Gamma(w)}{\sqrt{2\pi} \cdot w^{w-\frac{1}{2}}},$

in the half-planes $\pm \ln(t/z) > 0$.

Solution: the Gamma function

The doubled A_1 problem has the unique solution

$$y(t) = \Delta \left(\frac{\pm z}{2\pi i t}\right)^{\mp 1}$$
 where $\Delta(w) = \frac{e^w \cdot \Gamma(w)}{\sqrt{2\pi} \cdot w^{w-\frac{1}{2}}},$

in the half-planes $\pm \ln(t/z) > 0$.

This is elementary: all you need is

$$\Gamma(w)\cdot\Gamma(1-w)=rac{\pi}{\sin(\pi w)},\quad \Gamma(w+1)=w\cdot\Gamma(w),$$

$$\log \Delta(w) \sim \sum_{g=1}^{\infty} \frac{B_{2g}}{2g(2g-1)} w^{1-2g}.$$

Suppose given a framed variation of BPS structures (Γ, Z_p, Ω_p) over a complex manifold S such that

$$\pi\colon S\to \operatorname{Hom}_{\mathbb{Z}}(\Gamma,\mathbb{C})=\mathbb{C}^n, \quad s\mapsto Z_s,$$

is a local isomorphism. Taking a basis $(\gamma_1, \dots, \gamma_n) \subset \Gamma$ we get local co-ordinates $z_i = Z_s(\gamma_i)$ on S.

Suppose given a framed variation of BPS structures (Γ, Z_p, Ω_p) over a complex manifold S such that

$$\pi\colon S\to \operatorname{Hom}_{\mathbb{Z}}(\Gamma,\mathbb{C})=\mathbb{C}^n, \quad s\mapsto Z_s,$$

is a local isomorphism. Taking a basis $(\gamma_1, \dots, \gamma_n) \subset \Gamma$ we get local co-ordinates $z_i = Z_s(\gamma_i)$ on S.

Suppose we are given analytically varying solutions $\Phi_{\gamma}(z_i, t)$ to the Riemann-Hilbert problems associated to (Γ, Z_s, Ω_s) .

Suppose given a framed variation of BPS structures (Γ, Z_p, Ω_p) over a complex manifold S such that

$$\pi\colon S\to \operatorname{Hom}_{\mathbb{Z}}(\Gamma,\mathbb{C})=\mathbb{C}^n, \quad s\mapsto Z_s,$$

is a local isomorphism. Taking a basis $(\gamma_1, \dots, \gamma_n) \subset \Gamma$ we get local co-ordinates $z_i = Z_s(\gamma_i)$ on S.

Suppose we are given analytically varying solutions $\Phi_{\gamma}(z_i, t)$ to the Riemann-Hilbert problems associated to (Γ, Z_s, Ω_s) .

Define a function $\tau = \tau(z_i, t)$ by the relation

$$rac{\partial}{\partial t}\log \Phi_{\gamma_k}(z_i,t) = \sum_{j=1}^n \epsilon_{jk} rac{\partial}{\partial z_j}\log \tau(z_i,t), \quad \epsilon_{jk} = \langle \gamma_j, \gamma_k
angle.$$

In the A_1 case the τ -function is essentially the Barnes G-function.

$$\log \tau(z,t) \sim \sum_{g\geq 1} \frac{B_{2g}}{2g(2g-2)} \left(\frac{2\pi it}{z}\right)^{2g-2}.$$

In the A_1 case the τ -function is essentially the Barnes G-function.

$$\log \tau(z,t) \sim \sum_{g \geq 1} \frac{B_{2g}}{2g(2g-2)} \left(\frac{2\pi it}{z}\right)^{2g-2}$$

Whenever our BPS structures are uncoupled

$$\Omega(\gamma_i) \neq 0 \implies \langle \gamma_1, \gamma_2 \rangle = 0,$$

we can try to solve the RH problem by superposition of A_1 solutions. This works precisely if only finitely many $\Omega(\gamma) \neq 0$.

In the A_1 case the τ -function is essentially the Barnes G-function.

$$\log \tau(z,t) \sim \sum_{g \geq 1} \frac{B_{2g}}{2g(2g-2)} \left(\frac{2\pi it}{z}\right)^{2g-2}$$

Whenever our BPS structures are uncoupled

$$\Omega(\gamma_i) \neq 0 \implies \langle \gamma_1, \gamma_2 \rangle = 0,$$

we can try to solve the RH problem by superposition of A_1 solutions. This works precisely if only finitely many $\Omega(\gamma) \neq 0$.

$$\log \tau(z,t) \sim \sum_{g \geq 1} \sum_{\gamma \in \Gamma} \frac{\Omega(\gamma) \cdot B_{2g}}{2g(2g-2)} \left(\frac{2\pi i t}{Z(\gamma)}\right)^{2g-2}$$

Can apply this to coherent sheaves on a compact Calabi-Yau threefold supported in dimension ≤ 1 .

Can apply this to coherent sheaves on a compact Calabi-Yau threefold supported in dimension \leq 1. We have

$$\begin{split} \Gamma &= H_2(X,\mathbb{Z}) \oplus \mathbb{Z}, \quad Z(\beta,n) = 2\pi (\beta \cdot \omega_{\mathbb{C}} - n). \\ \Omega(\beta,n) &= \mathsf{GV}_0(\beta), \quad \Omega(0,n) = -\chi(X). \end{split}$$

Can apply this to coherent sheaves on a compact Calabi-Yau threefold supported in dimension $\leq 1.$ We have

$$\Gamma = H_2(X, \mathbb{Z}) \oplus \mathbb{Z}, \quad Z(\beta, n) = 2\pi(\beta \cdot \omega_{\mathbb{C}} - n).$$

 $\Omega(\beta, n) = \mathrm{GV}_0(\beta), \quad \Omega(0, n) = -\chi(X).$

Since $\chi(-,-) = 0$ these BPS structures are uncoupled.

Can apply this to coherent sheaves on a compact Calabi-Yau threefold supported in dimension \leq 1. We have

$$\begin{split} & \Gamma = H_2(X,\mathbb{Z}) \oplus \mathbb{Z}, \quad Z(\beta,n) = 2\pi(\beta \cdot \omega_{\mathbb{C}} - n). \\ & \Omega(\beta,n) = \mathsf{GV}_0(\beta), \quad \Omega(0,n) = -\chi(X). \end{split}$$
 Since $\chi(-,-) = 0$ these BPS structures are uncoupled.

$$\tau(\omega_{\mathbb{C}}, t) \stackrel{\text{pos. deg}}{\sim} \sum_{g \ge 2} \frac{\chi(X) B_{2g} B_{2g-2}}{4g (2g-2) (2g-2)!} \cdot (2\pi t)^{2g-2}$$

$$+\sum_{\beta\in H_2(X,\mathbb{Z})}\sum_{k\geq 1}\mathrm{GV}_0(\beta)\frac{e^{2\pi i\omega\cdot k\beta}}{4k}\sin^{-2}(i\pi tk).$$

Matches degenerate contributions from genus 0 GV invariants.

RESOLVED CONIFOLD AGAIN

RESOLVED CONIFOLD AGAIN

Take $\Gamma = \mathbb{Z}^{\oplus 2}$ with $\langle -, - \rangle = 0$ and

$$\Omega(\gamma) = egin{cases} 1 & ext{if } \gamma = \pm(1,d) ext{ for some } d \in \mathbb{Z}, \ -2 & ext{if } \gamma = (0,d) ext{ for some } 0
eq d \in \mathbb{Z}, \ 0 & ext{ otherwise}. \end{cases}$$

Resolved conifold again

Take $\Gamma = \mathbb{Z}^{\oplus 2}$ with $\langle -, - \rangle = 0$ and

$$\Omega(\gamma) = egin{cases} 1 & ext{if } \gamma = \pm(1,d) ext{ for some } d \in \mathbb{Z}, \ -2 & ext{if } \gamma = (0,d) ext{ for some } 0
eq d \in \mathbb{Z}, \ 0 & ext{ otherwise}. \end{cases}$$

We get a variation of BPS structures over

$$\{(v,w)\in\mathbb{C}^2:w\neq 0 \text{ and } v+dw\neq 0 \text{ for all } d\in\mathbb{Z}\}\subset\mathbb{C}^2$$

by setting $Z(r,d)=rv+dw.$

Non-perturbative partition function

The corresponding RH problems have unique solutions, which can be written explicitly in terms of Barnes double and triple sine functions.

NON-PERTURBATIVE PARTITION FUNCTION

The corresponding RH problems have unique solutions, which can be written explicitly in terms of Barnes double and triple sine functions.

$$\tau(\mathbf{v}, \mathbf{w}, t) = H(\mathbf{v}, \mathbf{w}, t) \cdot \exp(R(\mathbf{v}, \mathbf{w}, t)),$$
$$H(\mathbf{v}, \mathbf{w}, t) = \exp\left(\int_{\mathbb{R}+i\epsilon} \frac{e^{\mathbf{v}s} - 1}{e^{\mathbf{w}s} - 1} \cdot \frac{e^{ts}}{(e^{ts} - 1)^2} \cdot \frac{ds}{s}\right),$$
$$R(\mathbf{v}, \mathbf{w}, t) = \left(\frac{w}{2\pi i t}\right)^2 \left(\operatorname{Li}_3(e^{2\pi i \mathbf{v}/w}) - \zeta(3)\right) + \frac{i\pi}{12} \cdot \frac{\mathbf{v}}{w}.$$

The function H is a non-perturbative closed-string partition function.

FINITE-DIMENSIONAL ANALOGY
Matrix differential equation for $X : \mathbb{C}^* \to G = GL_n(\mathbb{C})$

$$rac{d}{dt}X(t)=\left(rac{U}{t^2}+rac{V}{t}
ight)X(t),\quad U,V\in\mathfrak{g}=\mathfrak{gl}_n(\mathbb{C}).$$

Take $U = \text{diag}(u_1, \cdots, u_n)$ with $u_i \neq u_j$ and V skew-symmetric.

Matrix differential equation for $X : \mathbb{C}^* \to G = GL_n(\mathbb{C})$

$$rac{d}{dt}X(t)=\left(rac{U}{t^2}+rac{V}{t}
ight)X(t),\quad U,V\in\mathfrak{g}=\mathfrak{gl}_n(\mathbb{C}).$$

Take $U = \text{diag}(u_1, \cdots, u_n)$ with $u_i \neq u_j$ and V skew-symmetric.

The Stokes rays are $\ell_{ij} = \mathbb{R}_{>0} \cdot (u_i - u_j)$.

Fact: in any half-plane centered on a non-Stokes ray there exists a unique solution such that $X(t) \cdot \exp(U/t) \rightarrow 1$ as $t \rightarrow 0$.

Matrix differential equation for $X : \mathbb{C}^* \to G = GL_n(\mathbb{C})$

$$rac{d}{dt}X(t)=\left(rac{U}{t^2}+rac{V}{t}
ight)X(t),\quad U,V\in\mathfrak{g}=\mathfrak{gl}_n(\mathbb{C}).$$

Take $U = \text{diag}(u_1, \cdots, u_n)$ with $u_i \neq u_j$ and V skew-symmetric.

The Stokes rays are $\ell_{ij} = \mathbb{R}_{>0} \cdot (u_i - u_j)$.

Fact: in any half-plane centered on a non-Stokes ray there exists a unique solution such that $X(t) \cdot \exp(U/t) \rightarrow 1$ as $t \rightarrow 0$.

The Stokes factors $S_{\ell_{ii}} \in G$ describe how these solutions jump.

Matrix differential equation for $X : \mathbb{C}^* \to G = GL_n(\mathbb{C})$

$$rac{d}{dt}X(t)=\left(rac{U}{t^2}+rac{V}{t}
ight)X(t),\quad U,V\in\mathfrak{g}=\mathfrak{gl}_n(\mathbb{C}).$$

Take $U = \text{diag}(u_1, \cdots, u_n)$ with $u_i \neq u_j$ and V skew-symmetric.

The Stokes rays are $\ell_{ij} = \mathbb{R}_{>0} \cdot (u_i - u_j)$.

Fact: in any half-plane centered on a non-Stokes ray there exists a unique solution such that $X(t) \cdot \exp(U/t) \rightarrow 1$ as $t \rightarrow 0$.

The Stokes factors $S_{\ell_{ii}} \in G$ describe how these solutions jump.

Iso-Stokes deformation: as U varies we can vary V in a unique way so that the product of Stokes factors in any fixed sector is constant.

Wall-crossing formula = iso-Stokes

Differential equation for $X \colon \mathbb{C}^* \to G = \operatorname{Aut}(\mathbb{T})$

$$rac{d}{dt}X(t)=igg(rac{Z}{t^2}+rac{F}{t}igg)X(t),$$

with $Z \in \operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C})$ and $F = \sum_{\gamma \in \Gamma} f_{\gamma} \cdot (x_{\gamma} + x_{-\gamma})$, where

$$\mathfrak{g} = \mathsf{Vect}(\mathbb{T}) = \mathsf{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C}) \oplus \bigoplus_{\gamma \in \Gamma} \mathbb{C} \cdot x_{\gamma}.$$

Differential equation for $X \colon \mathbb{C}^* \to G = \operatorname{Aut}(\mathbb{T})$

$$rac{d}{dt}X(t)=igg(rac{Z}{t^2}+rac{F}{t}igg)X(t),$$

with $Z \in \operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C})$ and $F = \sum_{\gamma \in \Gamma} f_{\gamma} \cdot (x_{\gamma} + x_{-\gamma})$, where

$$\mathfrak{g} = \mathsf{Vect}(\mathbb{T}) = \mathsf{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C}) \oplus \bigoplus_{\gamma \in \Gamma} \mathbb{C} \cdot x_{\gamma}.$$

Have Stokes rays are $\mathbb{R}_{>0} \cdot Z(\gamma)$ and Stokes factors $\mathrm{S}(\ell) \in G$.

Differential equation for $X \colon \mathbb{C}^* \to G = \operatorname{Aut}(\mathbb{T})$

$$rac{d}{dt}X(t)=igg(rac{Z}{t^2}+rac{F}{t}igg)X(t),$$

with $Z \in \operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C})$ and $F = \sum_{\gamma \in \Gamma} f_{\gamma} \cdot (x_{\gamma} + x_{-\gamma})$, where

$$\mathfrak{g}=\mathsf{Vect}(\mathbb{T})=\mathsf{Hom}_{\mathbb{Z}}(\Gamma,\mathbb{C})\oplus igoplus_{\gamma\in\Gamma}\mathbb{C}\cdot x_{\gamma}.$$

Have Stokes rays are $\mathbb{R}_{>0} \cdot Z(\gamma)$ and Stokes factors $S(\ell) \in G$. Wall-crossing formula is iso-Stokes condition.

Differential equation for $X \colon \mathbb{C}^* \to G = \operatorname{Aut}(\mathbb{T})$

$$rac{d}{dt}X(t)=igg(rac{Z}{t^2}+rac{F}{t}igg)X(t),$$

with $Z \in \operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C})$ and $F = \sum_{\gamma \in \Gamma} f_{\gamma} \cdot (x_{\gamma} + x_{-\gamma})$, where

$$\mathfrak{g}=\mathsf{Vect}(\mathbb{T})=\mathsf{Hom}_{\mathbb{Z}}(\Gamma,\mathbb{C})\oplus igoplus_{\gamma\in\Gamma}\mathbb{C}\cdot x_{\gamma}.$$

Have Stokes rays are $\mathbb{R}_{>0} \cdot Z(\gamma)$ and Stokes factors $S(\ell) \in G$. Wall-crossing formula is iso-Stokes condition.

Note that given $\xi \in \mathbb{T}$ there is a map $eval_{\xi} \colon G \to \mathbb{T}$.

FURTHER DIRECTIONS

(I) Theories of class S with $G = SL_2(\mathbb{C})$. Variation of BPS structures over space of meromorphic quadratic differentials. Monodromy of projective structures gives map to space of framed local systems. Fock-Goncharov co-ordinates give solutions to RH problem (joint with D. Allegretti).

FURTHER DIRECTIONS

- (I) Theories of class S with $G = SL_2(\mathbb{C})$. Variation of BPS structures over space of meromorphic quadratic differentials. Monodromy of projective structures gives map to space of framed local systems. Fock-Goncharov co-ordinates give solutions to RH problem (joint with D. Allegretti).
- (II) Analogy with Stokes data in finite-dimensional case. Allow ξ to vary to get RH problem with values in $G = Aut(\mathbb{T})$. Uncoupled case can be solved following Gaiotto (joint with A. Barbieri).

FURTHER DIRECTIONS

- (I) Theories of class S with $G = SL_2(\mathbb{C})$. Variation of BPS structures over space of meromorphic quadratic differentials. Monodromy of projective structures gives map to space of framed local systems. Fock-Goncharov co-ordinates give solutions to RH problem (joint with D. Allegretti).
- (II) Analogy with Stokes data in finite-dimensional case. Allow ξ to vary to get RH problem with values in $G = Aut(\mathbb{T})$. Uncoupled case can be solved following Gaiotto (joint with A. Barbieri).
- (III) Our current formalism gives the partition function without the terms in t^{2g-2} for g = 0, 1. In examples, these additional terms make τ satisfy a difference equation. How to understand this? Can we quantize the RH problem? (J. Calabrese).