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Two types of parameters in string theory:
(1) Deformation parameters.
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MOTIVATION

Two types of parameters in string theory:
(1) Deformation parameters.

(11) Stability parameters.

Exchanged by mirror symmetry.

The deformation space carries a variation of Hodge structures.

Can one construct similar geometric structures on stability space?
The obvious data to use is Donaldson-Thomas invariants.

Fundamental property: Kontsevich-Soibelman wall-crossing formula.

Strong analogy with Stokes factors from differential equations.
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1. BPS structures.



THE OUTPUT OF (UNREFINED) DT THEORY



THE OUTPUT OF (UNREFINED) DT THEORY

A BPS structure (', Z, Q) consists of

(A) An abelian group I' = Z®" with a skew-symmetric form
(—,—=): TxI=>Z

(B) A homomorphism of abelian groups Z: I' — C,

(¢) Amapofsets Q: T — Q.
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THE OUTPUT OF (UNREFINED) DT THEORY

A BPS structure (', Z, Q) consists of
(A) An abelian group I' = Z®" with a skew-symmetric form

(—,—=): TxI—>Z
(B) A homomorphism of abelian groups Z: I — C,
(¢) Amapofsets Q: T — Q.
satisfying the conditions:

(1) Symmetry: Q(—~) = Q(v) for all v €T,
(11) Support property: fixing a norm || - || on the finite-dimensional
vector space ' ®z R, there is a C > 0 such that

Q) #0 = [Z(N] > C- 1,
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EXAMPLE: CONIFOLD BPS STRUCTURE



EXAMPLE: CONIFOLD BPS STRUCTURE
Take I = Z%2 with (—, —) =0 and Z(r,d) = ir — d. Set

1 if y==£(1,d) for some d € Z,
Q(y) =4¢ -2 ify=(0,d) for some 0 # d € Z,

0 otherwise.

This arises from DT theory applied to the resolved conifold.

L 5/ 75



POISSON ALGEBRAIC TORUS



POISSON ALGEBRAIC TORUS

Consider the algebraic torus with character lattice I':
T, = Homg(l,C*) = (C*)"

C[T4] :@C-XV%C[XP,--» X"

yel

The form (—, —) induces an invariant Poisson structure on T

{Xa,Xg} = <O‘76> " Xo t XB-
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POISSON ALGEBRAIC TORUS

Consider the algebraic torus with character lattice I':
T, = Homg(l,C*) = (C*)"

ClT.] = @C'X’Y = C[Xlilv"' >X3[n]-

yel

The form (—, —) induces an invariant Poisson structure on T
{Xa, X3} = (0, B) - X4 - X3.

More precisely we should work with an associated torsor

T_={g:T > C :g(n+7)=(-1)""2gn) g()}
which we call the twisted torus.
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DT HAMILTONIANS

The DT invariants DT(7) € Q of a BPS structure are defined by

DT(7) = > )

n2

Y=no

For any ray / =R - z C C* we consider the generating function

DT(¢) = ) DT(y)-x,.

Z(v)el

A ray ¢ C C* is called active if this expression is nonzero.
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DT HAMILTONIANS

The DT invariants DT(7) € Q of a BPS structure are defined by

DT(7) = > )

n2

Y=no

For any ray / =R - z C C* we consider the generating function

DT(¢) = ) DT(y)-x,.

Z(v)eL

A ray ¢ C C* is called active if this expression is nonzero.

We would like to think of the time 1 Hamiltonian flow of the function
DT(¢) as defining a Poisson automorphism S(¢) of the torus T.

e 444 7/2
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MAKING SENSE OF S(/)

FORMAL APPROACH
Restrict to classes 7 lying in a positive cone '™ C I, consider

C[X]:_l:la e 7X;1t1] D) C[Xb' T 7Xn] C C[[Xb"' aXn]]7

and the automorphism S(¢)* = exp{DT(¢), —} of this completion.
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MAKING SENSE OF S(/)

FORMAL APPROACH
Restrict to classes 7 lying in a positive cone '™ C I, consider

C[Xitla e 7X;|:1] D) C[le' o 7Xn] C C[[Xh' o aXn]]7

and the automorphism S(¢)* = exp{DT(¢), —} of this completion.

ANALYTIC APPROACH
Restrict attention to BPS structures which are convergent:

3R > 0 such that Z 1Q(7)] - e R0 < 0.
yel
Then on suitable analytic open subsets of T the sum DT(¢) is
absolutely convergent and its time 1 Hamiltonian flow S(¢) exists.
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Often the maps S(¢) are birational automorphisms of T.



BIRATIONAL TRANSFORMATIONS

Often the maps S(¢) are birational automorphisms of T. Note

Xn
e { 3255 - o) =+ (1 )

n>1
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BIRATIONAL TRANSFORMATIONS

Often the maps S(¢) are birational automorphisms of T. Note

Xn
P { > —}(xﬁ) =g+ (1= ,)07.

n>1

Whenever a ray ¢ C C* satisfies

(1) only finitely many active classes have Z(v;) € ¢,
(11) these classes are mutually orthogonal (v;,7;) =0,
(111) the corresponding BPS invariants Q(v;) € Z.

there is a formula

S(0)*(xg) = H (1 — x,)R0)B),

Z(v)et

L o
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VARIATION OF BPS STRUCTURES

A framed variation of BPS structures over a complex manifold S is a
collection of BPS structures (I', Z, ;) indexed by s € S such that
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VARIATION OF BPS STRUCTURES

A framed variation of BPS structures over a complex manifold S is a
collection of BPS structures (I', Z, ;) indexed by s € S such that

(1) The numbers Zs(y) € C vary holomorphically.
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VARIATION OF BPS STRUCTURES

A framed variation of BPS structures over a complex manifold S is a
collection of BPS structures (I', Z, ;) indexed by s € S such that

(1) The numbers Zs(7) € C vary holomorphically.

(11) For any convex sector A C C* the clockwise ordered product

=[] S:(¢) € Aut(T

leA

is constant whenever the boundary of A remains non-active.

Part (ii) is the Kontsevich-Soibelman wall-crossing formula.
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VARIATION OF BPS STRUCTURES

A framed variation of BPS structures over a complex manifold S is a
collection of BPS structures (I', Z, ;) indexed by s € S such that

(1) The numbers Zs(7) € C vary holomorphically.

(11) For any convex sector A C C* the clockwise ordered product

=[] S:(¢) € Aut(T)

leA

is constant whenever the boundary of A remains non-active.
Part (ii) is the Kontsevich-Soibelman wall-crossing formula.

The complete set of numbers () at some point s € S determines
them for all other points s € S.

e 444 10/ 25



EXAMPLE: THE A, CASE



EXAMPLE: THE A, CASE

Let I = Z%2 = Ze, @ Ze, with (1, &) = 1. Then

C[T] = (C[xlﬂ,xfl], {x1,%} = x1 - x.
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EXAMPLE: THE A, CASE

Let [ = Z% = Ze; ® Ze, with (e, &) = 1. Then
CIT] = Clx™ %], X%} = x - x.
A central charge Z: I — C is determined by z; = Z(e;). Take

S=b>={(z1,2): z € h}.
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EXAMPLE: THE A, CASE

Let [ = Z% = Ze; ® Ze, with (e, &) = 1. Then
C[T] = Clx™, 5],  {x,%} =x1 - x.
A central charge Z: I — C is determined by z; = Z(e;). Take
S=b>={(z1,2): z € h}.

Define BPS invariants as follows:
(A) Im(z2/z1) > 0. Set Q(+e1) = Q(£e) = 1, all others zero.
(B) Im(z/z) < 0. Set Q(+e1) = Q(£(e1 + &)) = Q(+e) = 1.

e 444 11/ 25



WALL-CROSSING FORMULA: A, CASE



WALL-CROSSING FORMULA: A, CASE

Two types of BPS structures appear, as illustrated below

Z(e1+e)s Z(e1te)
1

Z(e2) / Z(er) Z(e1) Z(e2)

2 active rays 3 active rays
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WALL-CROSSING FORMULA: A, CASE

Two types of BPS structures appear, as illustrated below

Z(e1+e)s Z(e1te)
1

Z(e2) / Z(er) Z(e1) Z(e2)

2 active rays 3 active rays

The wall-crossing formula is the cluster pentagon identity

Co.) © G100 = C,0) © ) © Co,1)-

Co: Xg > x5 - (1 — x5) @2,

L 10 1015
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Fix a BPS structure (I', Z,Q) and a point £ € T.
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THE RIEMANN-HILBERT PROBLEM

Fix a BPS structure (I', Z,Q) and a point £ € T.

Find a piecewise holomorphic function ®: C* — T satisfying:
(1) (Jumping): When t crosses an active ray ¢ clockwise,

&(t) = S(O)((2))-
(11) (Limit at 0): Write ®,(t)) = x,(®(t)). As t — 0,

(1) - e“0 = ().
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THE RIEMANN-HILBERT PROBLEM

Fix a BPS structure (I', Z,Q) and a point £ € T.

Find a piecewise holomorphic function ®: C* — T satisfying:
(1) (Jumping): When t crosses an active ray ¢ clockwise,

&(t) = S(0)(®(2)).
(11) (Limit at 0): Write ®,(t)) = x,(®(t)). As t — 0,
(1) - e“0 = ().
(111) (Growth at oco): For any v € I there exists k > 0 with

[t| 7% < |®,(t)] < |t|* as t — oo.

e 444 14 /25



THE A; EXAMPLE



THE A; EXAMPLE

Consider the following BPS structure

(1) The lattice [ = Z - 7y is one-dimensional. Thus (—, —) = 0.

(11) The central charge Z: I — C is determined by z = Z(~) € C*,
(111) The only non-vanishing BPS invariants are Q(+v) = 1.
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THE A; EXAMPLE

Consider the following BPS structure
(1) The lattice [ = Z - 7y is one-dimensional. Thus (—, —) = 0.
(11) The central charge Z: I — C is determined by z = Z(~) € C*,
(111) The only non-vanishing BPS invariants are Q(+v) = 1.
Then T = C* and all automorphisms S(¢) are the identity.
S, (t) =& -exp(—2z/t) e T =C".
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THE A; EXAMPLE

Consider the following BPS structure
(1) The lattice [ = Z - 7y is one-dimensional. Thus (—, —) = 0.
(11) The central charge Z: I — C is determined by z = Z(~) € C*,
(111) The only non-vanishing BPS invariants are Q(+v) = 1.
Then T = C* and all automorphisms S(¢) are the identity.
O, (t) =& -exp(—z/t) e T =C".
Now double the BPS structure: take the lattice ' & 'V with

canonical skew form, and extend Z and 2 by zero. Consider

y(t) =P (t): C = C".

e 444 15 / 25



DOUBLED A; CASE



DOUBLED A; CASE

Consider the case £ = 1. The map y: C* — C* should satisfy



DOUBLED A; CASE

Consider the case £ = 1. The map y: C* — C* should satisfy

(1) y is holomorphic away from the rays R~ - (£z) and has jumps

y(t) = y(t) - (L= x(6))5,  x(t) = exp(-z/t),

as t moves clockwise across them.
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DOUBLED A; CASE

Consider the case £ = 1. The map y: C* — C* should satisfy
(1) y is holomorphic away from the rays R~ - (£z) and has jumps
y(t) = y(t) - (1= x(t))*, x(t) = exp(~2/t),

as t moves clockwise across them.

(1) y(t) - 1last—0.

e 444 16 / 25



DOUBLED A; CASE

Consider the case £ = 1. The map y: C* — C* should satisfy
(1) y is holomorphic away from the rays R~ - (£z) and has jumps
y(t) = y(8) - (1= x(8))*, x(t) = exp(—2/t),
as t moves clockwise across them.

(1) y(t) > 1last—0.
(111) there exists k > 0 such that

1t| 7% < |y(t)] < |t|* as t — oo.

e 444 16 / 25



SOLUTION: THE GAMMA FUNCTION



SOLUTION: THE GAMMA FUNCTION

The doubled A; problem has the unique solution

+z\ "' e” - I'(w)
t)=Al — h A = —
y(t) (27rit> where - Aw) = T

in the half-planes £+ Im(t/z) > 0.
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SOLUTION: THE GAMMA FUNCTION

The doubled A; problem has the unique solution

+z \ ™ .
y(t) = A(ﬁ) where  A(w) = e Tw)

in the half-planes +Im(t/z) > 0

This is elementary: all you need is

(e

Mw) -T1—-w)=

MNw+1)=w-T(w),

sin(mw)’
log A(w) ~ wi-2,
°8 ; 2g( 2g )
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THE TAU FUNCTION

Suppose given a framed variation of BPS structures (I, Z,,,) over
a complex manifold S such that

m: S — Homy(I,C) =C", s~ Z,

is a local isomorphism. Taking a basis (y1,---,7,) C I we get local
co-ordinates z; = Z,(y;) on S.
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THE TAU FUNCTION

Suppose given a framed variation of BPS structures (I, Z,,,) over
a complex manifold S such that

m: S — Homy(I,C) =C", s~ Z,

is a local isomorphism. Taking a basis (y1,---,7,) C I we get local
co-ordinates z; = Z,(y;) on S.

Suppose we are given analytically varying solutions ®.,(z;, t) to the
Riemann-Hilbert problems associated to (I, Z;, €2).
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THE TAU FUNCTION

Suppose given a framed variation of BPS structures (I, Z,,,) over
a complex manifold S such that

m: S — Homy(I,C) =C", s~ Z,
is a local isomorphism. Taking a basis (y1,---,7,) C I we get local
co-ordinates z; = Z,(y;) on S.

Suppose we are given analytically varying solutions ®.,(z;, t) to the
Riemann-Hilbert problems associated to (I, Z;, €2).

Define a function 7 = 7(z;, t) by the relation

n

0 0
ot log @, (2, t) = Z Ejka_zj log 7(zi, 1), € = (v, W)

j=t

e 444 18 / 25



SOLUTION IN UNCOUPLED CASE



SOLUTION IN UNCOUPLED CASE

In the A; case the 7-function is essentially the Barnes G-function.

B omit 7
log 7(z, t) ~ E £ ( ) :
= 222 —2)\ z

e 444 19 / 25



SOLUTION IN UNCOUPLED CASE

In the A; case the 7-function is essentially the Barnes G-function.

Bog omit\ 62
IOgT(Z’t)NZQg(Qg_2)< . ) )

g>1

Whenever our BPS structures are uncoupled

Qi) #0 = (711,72) =0,

we can try to solve the RH problem by superposition of A; solutions.
This works precisely if only finitely many Q(v) # 0.
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SOLUTION IN UNCOUPLED CASE

In the A; case the 7-function is essentially the Barnes G-function.

Bog omit\ 62
lOgT(Z’t)NZQg(Qg_2)< . ) )

g>1

Whenever our BPS structures are uncoupled

Qi) #0 = (711,72) =0,

we can try to solve the RH problem by superposition of A; solutions.
This works precisely if only finitely many Q(v) # 0.

By, [ 2mit \ 2 7?
log 7(z, t) £ ( )
~2 Z 2 ( 2g 2)\Z(7)

g>1 ~el

e 444 19 / 25



(GEOMETRIC CASE: CURVES ON A CY3

Can apply this to coherent sheaves on a compact Calabi-Yau
threefold supported in dimension < 1.
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Can apply this to coherent sheaves on a compact Calabi-Yau
threefold supported in dimension < 1. We have

[=H(X.Z)®Z, Z(5,n)=2n(6we—n).

Q(B,n) = GVo(F), Q(0,n) = —x(X).
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GEOMETRIC CASE: CURVES ON A CY3

Can apply this to coherent sheaves on a compact Calabi-Yau
threefold supported in dimension < 1. We have

[=H(X.Z)®Z, Z(5,n)=2n(6we—n).

Q(8,n) = GVo(B), Q(0,n) = —x(X).
Since x(—, —) = 0 these BPS structures are uncoupled.

pos. deg X(X) B2g B2g—2 2g—2
~Y * 2 g
m(we, t) 2 4g (2g — 2) (2g — 2)! (27t)

27rlw kB

+ 0> > GV 3)< T sin~2(imtk).

BEH,(X,Z) k>1

Matches degenerate contributions from genus 0 GV invariants.
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RESOLVED CONIFOLD AGAIN



RESOLVED CONIFOLD AGAIN
Take ' = Z%2 with (—,—) =0 and
1 ify==£(1,d) for some d € Z,

Q(v) =149 -2 ify=(0,d) for some 0 # d € Z,
0  otherwise.
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RESOLVED CONIFOLD AGAIN
Take ' = Z%? with (—, —) = 0 and

1 if y==£(1,d) for some d € Z,
Q(v) =149 -2 ify=(0,d) for some 0 # d € Z,

0  otherwise.
We get a variation of BPS structures over

{(v,iw)eC?>:w#0and v+dw#0foralld eZ} C C?

by setting Z(r,d) = rv + dw.
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NON-PERTURBATIVE PARTITION FUNCTION

The corresponding RH problems have unique solutions, which can be
written explicitly in terms of Barnes double and triple sine functions.
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NON-PERTURBATIVE PARTITION FUNCTION

The corresponding RH problems have unique solutions, which can be
written explicitly in terms of Barnes double and triple sine functions.

T(v,w,t) = H(v,w, t) - exp(R(v, w, t)),

e” —1 et ds
H t) = . L=
(V7 W7 ) eXp (/R+IE eWS _ 1 (ets . 1)2 S >7

w
R(V, w, t) = (ﬁ

) (Lis(e™) — @) + 2 L.

The function H is a non-perturbative closed-string partition function.

L o 7



FINITE-DIMENSIONAL ANALOGY



FINITE-DIMENSIONAL ANALOGY

Matrix differential equation for X: C* — G = GL,(C)

d u Vv

—X(t) = =+ — | X(t Vv =gl .

GXO= (5 +1)X0. UVes=u,©)
Take U = diag(uy, - - - , up) with u; # uj and V skew-symmetric.
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FINITE-DIMENSIONAL ANALOGY

Matrix differential equation for X: C* — G = GL,(C)

d u Vv
—X(t)=(=+— | X(t vV = gl,(C).
GXO= (5 +1)X0. UVes=u,©)
Take U = diag(uy, - - - , up) with u; # uj and V skew-symmetric.
The Stokes rays are ¢;; = Roq - (u; — u;).

Fact: in any half-plane centered on a non-Stokes ray there exists a
unique solution such that X(t) - exp(U/t) — 1 as t — 0.
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The Stokes factors Sy, € G describe how these solutions jump.
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FINITE-DIMENSIONAL ANALOGY

Matrix differential equation for X: C* — G = GL,(C)

d u Vv

—X(t) = =+ — | X(t Vv =gl .

GXO= (5 +1)X0. UVes=u,©)
Take U = diag(uy, - - - , up) with u; # uj and V' skew-symmetric.

The Stokes rays are ¢;; = Roq - (u; — u;).

Fact: in any half-plane centered on a non-Stokes ray there exists a
unique solution such that X(t) - exp(U/t) — 1 as t — 0.

The Stokes factors Sy, € G describe how these solutions jump.

Iso-Stokes deformation: as U varies we can vary V in a unique way
so that the product of Stokes factors in any fixed sector is constant.

e 444 23 / 25



WALL-CROSSING FORMULA = ISO-STOKES



WALL-CROSSING FORMULA = ISO-STOKES

Differential equation for X: C* — G = Aut(T)
Z F
x() = (5 + %)X

t

with Z € Homz(I',C) and F = - (xy + x_), where

ver

g = Vect(T) = Homy(I,C) & @C Xy .

yerl
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WALL-CROSSING FORMULA = ISO-STOKES

Differential equation for X: C* — G = Aut(T)
d Z F
— X(t) = X(t
GX0 = (5+7)X0,

with Z € Homz(I',C) and F = - (xy + x_), where

ver

g = Vect(T) = Homz(I,C) & P C - x,.

yerl

Have Stokes rays are R~ - Z(y) and Stokes factors S(¢) € G.
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WALL-CROSSING FORMULA = ISO-STOKES

Differential equation for X: C* — G = Aut(T)
d Z F
SX0 = (F+7 )X,

dt 2t

with Z € Homz(I',C) and F =3 f, - (x, + x_), where

g = Vect(T) = Homz(I,C) & P C - x,.

yerl

Have Stokes rays are R.q - Z(7y) and Stokes factors S(¢) € G.

Wall-crossing formula is iso-Stokes condition.
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WALL-CROSSING FORMULA = ISO-STOKES

Differential equation for X: C* — G = Aut(T)

9 x(t) = (5 4 f)X(t),

dt t2 ot
with Z € Homz(I',C) and F =3 f, - (x, + x_), where
g = Vect(T) = Homz(I,C) & P C - x,.

yerl

Have Stokes rays are R.q - Z(7y) and Stokes factors S(¢) € G.
Wall-crossing formula is iso-Stokes condition.

Note that given { € T there is a map eval;: G — T.
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FURTHER DIRECTIONS

(1) Theories of class S with G = SL,(C). Variation of BPS
structures over space of meromorphic quadratic differentials.
Monodromy of projective structures gives map to space of
framed local systems. Fock-Goncharov co-ordinates give
solutions to RH problem (joint with D. Allegretti).
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(11) Analogy with Stokes data in finite-dimensional case. Allow ¢ to
vary to get RH problem with values in G = Aut(T). Uncoupled
case can be solved following Gaiotto (joint with A. Barbieri).
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FURTHER DIRECTIONS

(1) Theories of class S with G = SL,(C). Variation of BPS
structures over space of meromorphic quadratic differentials.
Monodromy of projective structures gives map to space of
framed local systems. Fock-Goncharov co-ordinates give
solutions to RH problem (joint with D. Allegretti).

(11) Analogy with Stokes data in finite-dimensional case. Allow ¢ to
vary to get RH problem with values in G = Aut(T). Uncoupled
case can be solved following Gaiotto (joint with A. Barbieri).

(111) Our current formalism gives the partition function without the
terms in t2672 for g = 0, 1. In examples, these additional terms
make T satisfy a difference equation. How to understand this?
Can we quantize the RH problem? (J. Calabrese).

e 444 25 / 25



