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Motivation

Two types of parameters in string theory:

(i) Deformation parameters.

(ii) Stability parameters.

Exchanged by mirror symmetry.

The deformation space carries a variation of Hodge structures.

Can one construct similar geometric structures on stability space?

The obvious data to use is Donaldson-Thomas invariants.

Fundamental property: Kontsevich-Soibelman wall-crossing formula.

Strong analogy with Stokes factors from differential equations.
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1. BPS structures.



The output of (unrefined) DT theory

A BPS structure (Γ,Z ,Ω) consists of

(a) An abelian group Γ ∼= Z⊕n with a skew-symmetric form

〈−,−〉 : Γ× Γ→ Z

(b) A homomorphism of abelian groups Z : Γ→ C,

(c) A map of sets Ω: Γ→ Q.

satisfying the conditions:

(i) Symmetry: Ω(−γ) = Ω(γ) for all γ ∈ Γ,

(ii) Support property: fixing a norm ‖ · ‖ on the finite-dimensional
vector space Γ⊗Z R, there is a C > 0 such that

Ω(γ) 6= 0 =⇒ |Z (γ)| > C · ‖γ‖.
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Example: conifold BPS structure

Take Γ = Z⊕2 with 〈−,−〉 = 0 and Z (r , d) = ir − d . Set

Ω(γ) =


1 if γ = ±(1, d) for some d ∈ Z,
−2 if γ = (0, d) for some 0 6= d ∈ Z,
0 otherwise.

This arises from DT theory applied to the resolved conifold.

· · ·· · ·

· · ·· · ·
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Poisson algebraic torus

Consider the algebraic torus with character lattice Γ:

T+ = HomZ(Γ,C∗) ∼= (C∗)n

C[T+] =
⊕
γ∈Γ

C · xγ ∼= C[x±1
1 , · · · , x±nn ].

The form 〈−,−〉 induces an invariant Poisson structure on T+:

{xα, xβ} = 〈α, β〉 · xα · xβ.

More precisely we should work with an associated torsor

T− =
{
g : Γ→ C∗ : g(γ1 + γ2) = (−1)〈γ1,γ2〉g(γ1) · g(γ2)

}
,

which we call the twisted torus.
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DT Hamiltonians

The DT invariants DT(γ) ∈ Q of a BPS structure are defined by

DT(γ) =
∑
γ=nα

Ω(α)

n2
.

For any ray ` = R>0 · z ⊂ C∗ we consider the generating function

DT(`) =
∑

Z(γ)∈`

DT(γ) · xγ.

A ray ` ⊂ C∗ is called active if this expression is nonzero.

We would like to think of the time 1 Hamiltonian flow of the function
DT(`) as defining a Poisson automorphism S(`) of the torus T.

7 / 25



DT Hamiltonians

The DT invariants DT(γ) ∈ Q of a BPS structure are defined by

DT(γ) =
∑
γ=nα

Ω(α)

n2
.

For any ray ` = R>0 · z ⊂ C∗ we consider the generating function

DT(`) =
∑

Z(γ)∈`

DT(γ) · xγ.

A ray ` ⊂ C∗ is called active if this expression is nonzero.

We would like to think of the time 1 Hamiltonian flow of the function
DT(`) as defining a Poisson automorphism S(`) of the torus T.

7 / 25



DT Hamiltonians

The DT invariants DT(γ) ∈ Q of a BPS structure are defined by

DT(γ) =
∑
γ=nα

Ω(α)

n2
.

For any ray ` = R>0 · z ⊂ C∗ we consider the generating function

DT(`) =
∑

Z(γ)∈`

DT(γ) · xγ.

A ray ` ⊂ C∗ is called active if this expression is nonzero.

We would like to think of the time 1 Hamiltonian flow of the function
DT(`) as defining a Poisson automorphism S(`) of the torus T.

7 / 25



Making sense of S(`)

Formal approach
Restrict to classes γ lying in a positive cone Γ+ ⊂ Γ, consider

C[x±1
1 , · · · , x±1

n ] ⊃ C[x1, · · · , xn] ⊂ C[[x1, · · · , xn]],

and the automorphism S(`)∗ = exp{DT(`),−} of this completion.

Analytic approach
Restrict attention to BPS structures which are convergent:

∃R > 0 such that
∑
γ∈Γ

|Ω(γ)| · e−R|Z(γ)| <∞.

Then on suitable analytic open subsets of T the sum DT(`) is
absolutely convergent and its time 1 Hamiltonian flow S(`) exists.
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Birational transformations

Often the maps S(`) are birational automorphisms of T.

Note

exp

{∑
n≥1

xnγ
n2
,−
}

(xβ) = xβ · (1− xγ)〈β,γ〉.

Whenever a ray ` ⊂ C∗ satisfies

(i) only finitely many active classes have Z (γi) ∈ `,
(ii) these classes are mutually orthogonal 〈γi , γj〉 = 0,

(iii) the corresponding BPS invariants Ω(γi) ∈ Z.

there is a formula

S(`)∗(xβ) =
∏

Z(γ)∈`

(1− xγ)Ω(γ)·〈β,γ〉.
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Variation of BPS structures

A framed variation of BPS structures over a complex manifold S is a
collection of BPS structures (Γ,Zs ,Ωs) indexed by s ∈ S such that

(i) The numbers Zs(γ) ∈ C vary holomorphically.

(ii) For any convex sector ∆ ⊂ C∗ the clockwise ordered product

Ss(∆) =
∏
`∈∆

Ss(`) ∈ Aut(T)

is constant whenever the boundary of ∆ remains non-active.

Part (ii) is the Kontsevich-Soibelman wall-crossing formula.

The complete set of numbers Ωs(γ) at some point s ∈ S determines
them for all other points s ∈ S .
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Example: the A2 case

Let Γ = Z⊕2 = Ze1 ⊕ Ze2 with 〈e1, e2〉 = 1. Then

C[T] = C[x±1
1 , x±1

2 ], {x1, x2} = x1 · x2.

A central charge Z : Γ→ C is determined by zi = Z (ei). Take

S = h2 = {(z1, z2) : zi ∈ h}.

Define BPS invariants as follows:

(a) Im(z2/z1) > 0. Set Ω(±e1) = Ω(±e2) = 1, all others zero.

(b) Im(z2/z1) < 0. Set Ω(±e1) = Ω(±(e1 + e2)) = Ω(±e2) = 1.
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Wall-crossing formula: A2 case

Two types of BPS structures appear, as illustrated below

Z(e1)Z(e2)

Z(e1+e2)

2 active rays 3 active rays

Z(e2)Z(e1)

Z(e1+e2)

The wall-crossing formula is the cluster pentagon identity

C(0,1) ◦ C(1,0) = C(1,0) ◦ C(1,1) ◦ C(0,1).

Cα : xβ 7→ xβ · (1− xα)〈α,β〉.
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2. The Riemann-Hilbert problem.



The Riemann-Hilbert problem

Fix a BPS structure (Γ,Z ,Ω) and a point ξ ∈ T.

Find a piecewise holomorphic function Φ: C∗ → T satisfying:

(i) (Jumping): When t crosses an active ray ` clockwise,

Φ(t) 7→ S(`)(Φ(t)).

(ii) (Limit at 0): Write Φγ(t)) = xγ(Φ(t)). As t → 0,

Φγ(t) · eZ(γ)/t → xγ(ξ).

(iii) (Growth at ∞): For any γ ∈ Γ there exists k > 0 with

|t|−k < |Φγ(t)| < |t|k as t →∞.

14 / 25
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The A1 example

Consider the following BPS structure

(i) The lattice Γ = Z · γ is one-dimensional. Thus 〈−,−〉 = 0.

(ii) The central charge Z : Γ→ C is determined by z = Z (γ) ∈ C∗,

(iii) The only non-vanishing BPS invariants are Ω(±γ) = 1.

Then T = C∗ and all automorphisms S(`) are the identity.

Φγ(t) = ξ · exp(−z/t) ∈ T = C∗.

Now double the BPS structure: take the lattice Γ⊕ Γ∨ with
canonical skew form, and extend Z and Ω by zero. Consider

y(t) = Φγ∨(t) : C∗ → C∗.

15 / 25
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Doubled A1 case

Consider the case ξ = 1. The map y : C∗ → C∗ should satisfy

(i) y is holomorphic away from the rays R>0 · (±z) and has jumps

y(t) 7→ y(t) · (1− x(t)±1)±1, x(t) = exp(−z/t),

as t moves clockwise across them.

(ii) y(t)→ 1 as t → 0.

(iii) there exists k > 0 such that

|t|−k < |y(t)| < |t|k as t →∞.
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Solution: the Gamma function

The doubled A1 problem has the unique solution

y(t) = ∆

(
±z
2πit

)∓1

where ∆(w) =
ew · Γ(w)
√

2π · ww− 1
2

,

in the half-planes ± Im(t/z) > 0.

This is elementary: all you need is

Γ(w) · Γ(1− w) =
π

sin(πw)
, Γ(w + 1) = w · Γ(w),

log ∆(w) ∼
∞∑
g=1

B2g

2g(2g − 1)
w 1−2g .
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The tau function

Suppose given a framed variation of BPS structures (Γ,Zp,Ωp) over
a complex manifold S such that

π : S → HomZ(Γ,C) = Cn, s 7→ Zs ,

is a local isomorphism. Taking a basis (γ1, · · · , γn) ⊂ Γ we get local
co-ordinates zi = Zs(γi) on S .

Suppose we are given analytically varying solutions Φγ(zi , t) to the
Riemann-Hilbert problems associated to (Γ,Zs ,Ωs).

Define a function τ = τ(zi , t) by the relation

∂

∂t
log Φγk (zi , t) =

n∑
j=1

εjk
∂

∂zj
log τ(zi , t), εjk = 〈γj , γk〉.
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Solution in uncoupled case

In the A1 case the τ -function is essentially the Barnes G-function.

log τ(z , t) ∼
∑
g≥1

B2g

2g(2g − 2)

(
2πit

z

)2g−2

.

Whenever our BPS structures are uncoupled

Ω(γi) 6= 0 =⇒ 〈γ1, γ2〉 = 0,

we can try to solve the RH problem by superposition of A1 solutions.
This works precisely if only finitely many Ω(γ) 6= 0.

log τ(z , t) ∼
∑
g≥1

∑
γ∈Γ

Ω(γ) · B2g

2g(2g − 2)

(
2πit

Z (γ)

)2g−2
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Geometric case: curves on a CY3

Can apply this to coherent sheaves on a compact Calabi-Yau
threefold supported in dimension ≤ 1.

We have

Γ = H2(X ,Z)⊕ Z, Z (β, n) = 2π(β · ωC − n).

Ω(β, n) = GV0(β), Ω(0, n) = −χ(X ).

Since χ(−,−) = 0 these BPS structures are uncoupled.

τ(ωC, t)
pos. deg∼

∑
g≥2

χ(X )B2g B2g−2

4g (2g − 2) (2g − 2)!
· (2πt)2g−2

+
∑

β∈H2(X ,Z)

∑
k≥1

GV0(β)
e2πiω·kβ

4k
sin−2(iπtk).

Matches degenerate contributions from genus 0 GV invariants.
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Resolved conifold again

Take Γ = Z⊕2 with 〈−,−〉 = 0 and

Ω(γ) =


1 if γ = ±(1, d) for some d ∈ Z,
−2 if γ = (0, d) for some 0 6= d ∈ Z,
0 otherwise.

We get a variation of BPS structures over{
(v ,w) ∈ C2 : w 6= 0 and v + dw 6= 0 for all d ∈ Z

}
⊂ C2

by setting Z (r , d) = rv + dw .

· · ·· · ·

· · ·· · ·
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Non-perturbative partition function

The corresponding RH problems have unique solutions, which can be
written explicitly in terms of Barnes double and triple sine functions.

τ(v ,w , t) = H(v ,w , t) · exp(R(v ,w , t)),

H(v ,w , t) = exp

(∫
R+iε

evs − 1

ews − 1
· ets

(ets − 1)2
· ds
s

)
,

R(v ,w , t) =
( w

2πit

)2(
Li3(e2πiv/w )− ζ(3)

)
+

iπ

12
· v
w
.

The function H is a non-perturbative closed-string partition function.
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Finite-dimensional analogy

Matrix differential equation for X : C∗ → G = GLn(C)

d

dt
X (t) =

(
U

t2
+

V

t

)
X (t), U ,V ∈ g = gln(C).

Take U = diag(u1, · · · , un) with ui 6= uj and V skew-symmetric.

The Stokes rays are `ij = R>0 · (ui − uj).

Fact: in any half-plane centered on a non-Stokes ray there exists a
unique solution such that X (t) · exp(U/t)→ 1 as t → 0.

The Stokes factors S`ij ∈ G describe how these solutions jump.

Iso-Stokes deformation: as U varies we can vary V in a unique way
so that the product of Stokes factors in any fixed sector is constant.
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Wall-crossing formula = iso-Stokes

Differential equation for X : C∗ → G = Aut(T)

d

dt
X (t) =

(
Z

t2
+

F

t

)
X (t),

with Z ∈ HomZ(Γ,C) and F =
∑

γ∈Γ fγ · (xγ + x−γ), where

g = Vect(T) = HomZ(Γ,C)⊕
⊕
γ∈Γ

C · xγ.

Have Stokes rays are R>0 · Z (γ) and Stokes factors S(`) ∈ G .

Wall-crossing formula is iso-Stokes condition.

Note that given ξ ∈ T there is a map evalξ : G → T.

24 / 25



Wall-crossing formula = iso-Stokes

Differential equation for X : C∗ → G = Aut(T)

d

dt
X (t) =

(
Z

t2
+

F

t

)
X (t),

with Z ∈ HomZ(Γ,C) and F =
∑

γ∈Γ fγ · (xγ + x−γ), where

g = Vect(T) = HomZ(Γ,C)⊕
⊕
γ∈Γ

C · xγ.

Have Stokes rays are R>0 · Z (γ) and Stokes factors S(`) ∈ G .

Wall-crossing formula is iso-Stokes condition.

Note that given ξ ∈ T there is a map evalξ : G → T.

24 / 25



Wall-crossing formula = iso-Stokes

Differential equation for X : C∗ → G = Aut(T)

d

dt
X (t) =

(
Z

t2
+

F

t

)
X (t),

with Z ∈ HomZ(Γ,C) and F =
∑

γ∈Γ fγ · (xγ + x−γ), where

g = Vect(T) = HomZ(Γ,C)⊕
⊕
γ∈Γ

C · xγ.

Have Stokes rays are R>0 · Z (γ) and Stokes factors S(`) ∈ G .

Wall-crossing formula is iso-Stokes condition.

Note that given ξ ∈ T there is a map evalξ : G → T.

24 / 25



Wall-crossing formula = iso-Stokes

Differential equation for X : C∗ → G = Aut(T)

d

dt
X (t) =

(
Z

t2
+

F

t

)
X (t),

with Z ∈ HomZ(Γ,C) and F =
∑

γ∈Γ fγ · (xγ + x−γ), where

g = Vect(T) = HomZ(Γ,C)⊕
⊕
γ∈Γ

C · xγ.

Have Stokes rays are R>0 · Z (γ) and Stokes factors S(`) ∈ G .

Wall-crossing formula is iso-Stokes condition.

Note that given ξ ∈ T there is a map evalξ : G → T.

24 / 25



Wall-crossing formula = iso-Stokes

Differential equation for X : C∗ → G = Aut(T)

d

dt
X (t) =

(
Z

t2
+

F

t

)
X (t),

with Z ∈ HomZ(Γ,C) and F =
∑

γ∈Γ fγ · (xγ + x−γ), where

g = Vect(T) = HomZ(Γ,C)⊕
⊕
γ∈Γ

C · xγ.

Have Stokes rays are R>0 · Z (γ) and Stokes factors S(`) ∈ G .

Wall-crossing formula is iso-Stokes condition.

Note that given ξ ∈ T there is a map evalξ : G → T.

24 / 25



Further directions

(i) Theories of class S with G = SL2(C). Variation of BPS
structures over space of meromorphic quadratic differentials.
Monodromy of projective structures gives map to space of
framed local systems. Fock-Goncharov co-ordinates give
solutions to RH problem (joint with D. Allegretti).

(ii) Analogy with Stokes data in finite-dimensional case. Allow ξ to
vary to get RH problem with values in G = Aut(T). Uncoupled
case can be solved following Gaiotto (joint with A. Barbieri).

(iii) Our current formalism gives the partition function without the
terms in t2g−2 for g = 0, 1. In examples, these additional terms
make τ satisfy a difference equation. How to understand this?
Can we quantize the RH problem? (J. Calabrese).
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