# BPS Particles, Superconformal Indices, and Chiral Algebras

Clay Córdova

School of Natural Sciences Institute for Advanced Study

String Math, 2017

#### In Collaboration With:



(a) Shu-Heng Shao (IAS)



(b) Davide Gaiotto (Perimiter)

 $4d~\mathcal{N}=2$  quantum field theory is at the center of a rich and enduring interplay between physics and mathematics

Many results flow from the combination of two principles

 $4d~\mathcal{N}=2$  quantum field theory is at the center of a rich and enduring interplay between physics and mathematics

Many results flow from the combination of two principles

Renormalization Group: QFTs are organized by scale

Short Distance  $(UV) \longrightarrow \text{Long Distance } (IR)$ 

This flow simplifies the physics. e.g. non-abelian gauge theory in the UV can flow to an abelian gauge theory in the IR

 $4d~\mathcal{N}=2$  quantum field theory is at the center of a rich and enduring interplay between physics and mathematics

Many results flow from the combination of two principles

Renormalization Group: QFTs are organized by scale

Short Distance 
$$(UV) \longrightarrow \text{Long Distance } (IR)$$

This flow simplifies the physics. e.g. non-abelian gauge theory in the UV can flow to an abelian gauge theory in the IR

 Supersymmetry Invariance: certain supersymmetric observables are protected (i.e. invariant) under the flow



 $4d~\mathcal{N}=2$  quantum field theory is at the center of a rich and enduring interplay between physics and mathematics

Many results flow from the combination of two principles

Renormalization Group: QFTs are organized by scale

Short Distance  $(UV) \longrightarrow \text{Long Distance } (IR)$ 

This flow simplifies the physics. e.g. non-abelian gauge theory in the UV can flow to an abelian gauge theory in the IR

- Supersymmetry Invariance: certain supersymmetric observables are protected (i.e. invariant) under the flow
   If we compute a protected observable in the UV and IR we often obtain very different expressions for the same quantity
  - ullet Example: Donaldson Theory  $\longrightarrow$  Seiberg-Witten Theory



## Ingredients

In this talk we present a new conjectural  $UV \longrightarrow IR$  relationship for an index  $\mathcal{I}(q)$  (a q series) that can be associated to any  $\mathcal{N}=2$  quantum field theory.  $(\mathcal{I}(q) \equiv \text{Schur index})$ 

## Ingredients

In this talk we present a new conjectural  $UV \longrightarrow IR$  relationship for an index  $\mathcal{I}(q)$  (a q series) that can be associated to any  $\mathcal{N}=2$  quantum field theory.  $(\mathcal{I}(q) \equiv \text{Schur index})$ 

- \$\mathcal{I}(q)\$ can be expressed as a sum over local operators (UV data) in the QFT
- If the UV theory is conformal,  $\mathcal{I}(q)$  is the a character of a chiral algebra (modular properties!)

## Ingredients

In this talk we present a new conjectural  $UV \longrightarrow IR$  relationship for an index  $\mathcal{I}(q)$  (a q series) that can be associated to any  $\mathcal{N}=2$  quantum field theory.  $(\mathcal{I}(q) \equiv \text{Schur index})$ 

- $\mathcal{I}(q)$  can be expressed as a sum over local operators (UV data) in the QFT
- If the UV theory is conformal,  $\mathcal{I}(q)$  is the a character of a chiral algebra (modular properties!)

The IR formulation involves BPS particles (generalized and refined DT invariants). It has the following ingredients:

- rank r of the Coulomb branch (number of U(1)'s in IR )
- generating function of BPS particles  ${
  m Tr}\,[\mathcal{O}(q)]$  built from the Kontsevich and Soibelman wall-crossing technology

## Conjecture

Our main conjecture is a formula [Córdova-Shao]:

$$\underbrace{\mathcal{I}(q)}_{UV} = \underbrace{(q)^{2r}_{\infty} \operatorname{Tr}\left[\mathcal{O}(q)\right]}_{IR}$$

$$((q)_{\infty} = \prod_{n=1}^{\infty} (1 - q^n))$$

## Conjecture

Our main conjecture is a formula [Córdova-Shao]:

$$\underline{\mathcal{I}(q)} = \underbrace{(q)_{\infty}^{2r} \operatorname{Tr}[\mathcal{O}(q)]}_{IR}$$

$$((q)_{\infty} = \prod_{n=1}^{\infty} (1 - q^n))$$

Applied to CFT we find that generating functions of BPS states (DT invariants) are equal to characters of chiral algebras

Related ideas: [Cecotti-Neitzke-Vafa] and [Iqbal-Vafa]

## **Physics Motivations**

Why is this result interesting? A generic renormalization group flow starts in the UV at an asymptotically free or conformal theory and ends in a gapped or IR free theory.

- UV: characterized by the spectrum of local operators, and their operator product algebra
- IR: characterized by the spectrum of one-particle states

## **Physics Motivations**

Why is this result interesting? A generic renormalization group flow starts in the UV at an asymptotically free or conformal theory and ends in a gapped or IR free theory.

- UV: characterized by the spectrum of local operators, and their operator product algebra
- IR: characterized by the spectrum of one-particle states

What is the relation between these concepts?

Our conjecture is an explicit formula relating supersymmetric local operators and BPS particles

## Rough Intuition: Form Factors

One can get an intuition about why there should be a relation between particles and operators as follows

• Along the RG flow we still have the UV local operators, but vacuum changed to  $|0\rangle_{IR}$ 

## Rough Intuition: Form Factors

One can get an intuition about why there should be a relation between particles and operators as follows

- Along the RG flow we still have the UV local operators, but vacuum changed to  $|0\rangle_{\it IR}$
- Let  $\Phi(x)$  be a local operator and consider the state

$$|\Psi
angle = \Phi(0)|0
angle_{IR}$$

If the operator  $\Phi$  is supersymmetric, so is the above state  $|\Psi\rangle$ 

## Rough Intuition: Form Factors

One can get an intuition about why there should be a relation between particles and operators as follows

- Along the RG flow we still have the UV local operators, but vacuum changed to  $|0\rangle_{\it IR}$
- Let  $\Phi(x)$  be a local operator and consider the state

$$|\Psi
angle = \Phi(0)|0
angle_{IR}$$

If the operator  $\Phi$  is supersymmetric, so is the above state  $|\Psi\rangle$ 

 $|\Psi\rangle$  is a multiparticle state which we can think of as a jet of BPS particles

(This idea can be made precise for 2d QFTs. Interesting direction to explore in higher dimensions)



#### BPS particles have been widely studied

 Many constructions as cohomology of moduli: monopoles, quiver representations, coherent sheaves, special lagrangians, spectral networks, ...

#### BPS particles have been widely studied

- Many constructions as cohomology of moduli: monopoles, quiver representations, coherent sheaves, special lagrangians, spectral networks, ...
- Constructions depend on a central charge  $\mathcal Z$  (stability condition)
  - the central charge can be varied in a finite dimensional complex moduli space
  - BPS particle spectrum is locally constant but jumps across walls of real codimension one

#### BPS particles have been widely studied

- Many constructions as cohomology of moduli: monopoles, quiver representations, coherent sheaves, special lagrangians, spectral networks, ...
- Constructions depend on a central charge  ${\mathcal Z}$  (stability condition)
  - the central charge can be varied in a finite dimensional complex moduli space
  - BPS particle spectrum is locally constant but jumps across walls of real codimension one

What wall-crossing invariants exist and what are their properties?

#### BPS particles have been widely studied

- Many constructions as cohomology of moduli: monopoles, quiver representations, coherent sheaves, special lagrangians, spectral networks, ...
- Constructions depend on a central charge  $\mathcal Z$  (stability condition)
  - the central charge can be varied in a finite dimensional complex moduli space
  - BPS particle spectrum is locally constant but jumps across walls of real codimension one

What wall-crossing invariants exist and what are their properties?

This problem was essentially solved by [Kontsevich-Soibelman], (understood in physics by [Gaiotto-Moore-Neitzke]) who constructed an invariant  $\mathcal{O}(q)$  valued in a quantum torus algebra

Our result links these ideas to vertex operator algebras



#### Definition of the Index

Every  $\mathcal{N}=2$  theory has a local operator spectrum graded by  $SU(2)_R \times SU(2)_{J_1} \times SU(2)_{J_2}$ . Define the index as a weighted sum over operators

$$\mathcal{I}(q) = \sum_{\mathsf{local\ operators}} (-1)^F q^{R+J_1+J_2}$$

#### Definition of the Index

Every  $\mathcal{N}=2$  theory has a local operator spectrum graded by  $SU(2)_R\times SU(2)_{J_1}\times SU(2)_{J_2}$ . Define the index as a weighted sum over operators

$$\mathcal{I}(q) = \sum_{\mathsf{local\ operators}} (-1)^F q^{R+J_1+J_2}$$

#### Properties:

- $\mathcal{I}(q)$  receives contributions only from 1/4 BPS local operators
- For superconformal theories, it coincides with a limit of the superconformal index, the so-called Schur index
- Explicitly computable for Lagrangian field theories
- It uses only symmetries that are present on the Coulomb branch, making it possible to compute in the IR



## Indices and Chiral Algebras

A crucial result by [Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees] implies that  $\mathcal{I}(q)$  is vacuum character of a 2d chiral algebra

$$c_{2d} = -12c_{4d} < 0 , \qquad (< T_{4d}(x)T_{4d}(0) > \sim \frac{c_{4d}}{|x|^8})$$

## Indices and Chiral Algebras

A crucial result by [Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees] implies that  $\mathcal{I}(q)$  is vacuum character of a 2d chiral algebra

$$c_{2d} = -12c_{4d} < 0 \ , \qquad (< T_{4d}(x)T_{4d}(0) > \sim \frac{c_{4d}}{|x|^8})$$

• Free vector muliplet  $\leftrightarrow b, c$  ghosts

$$\mathcal{I}(q)=(q)_{\infty}^2$$

• Free hypermuliplet  $\leftrightarrow$  symplectic bosons (z = flavor fugacity)

$$\mathcal{I}(q,z) = rac{1}{\prod_{n=1}^{\infty} (1+zq^{n+1/2})} \equiv E_q(z)$$

• SU(2)  $N_f = 4 \leftrightarrow \widehat{SO(8)}_{-2}$ 

$$\mathcal{I}(q) = rac{1}{240q} \left( rac{E_4'(q)}{(q)_\infty^{10}} 
ight)$$



Coulomb branch:  $U(1)^r$  gauge theory + charged particles

Charges 
$$\gamma \in \Gamma$$
, Dirac pairing  $<,>: \Gamma x \Gamma \to \mathbb{Z}$ 

The BPS particles are encoded in a collection of positive integers

$$\Omega_{\it n}(\gamma)=\#$$
 of BPS particles of spin  $\it n$  and charge  $\gamma$ 

The invariants  $\Omega_n(\gamma)$  can jump as moduli are varied.



Coulomb branch:  $U(1)^r$  gauge theory + charged particles

Charges 
$$\gamma \in \Gamma$$
, Dirac pairing  $<,>: \Gamma x \Gamma \to \mathbb{Z}$ 

The BPS particles are encoded in a collection of positive integers

$$\Omega_{\it n}(\gamma)=\#$$
 of BPS particles of spin  $\it n$  and charge  $\gamma$ 

The invariants  $\Omega_n(\gamma)$  can jump as moduli are varied.

Invariants were constructed by [Kontsevich-Soibelman]. They make use of non-commutative variables  $X_{\gamma}$ 

$$X_{\gamma}X_{\gamma'}=q^{rac{1}{2}<\gamma,\gamma'>}X_{\gamma+\gamma'}=q^{<\gamma,\gamma'>}X_{\gamma'}X_{\gamma}$$

For each charge  $\gamma$  introduce a factor

$$K_{\gamma} = \prod_{n} E_{q}((-1)^{n}q^{n/2}X_{\gamma})^{(-1)^{n}\Omega_{n}(\gamma)}$$

Then consider the product, phase ordered by the central charge

$$\mathcal{O}(q) = \prod_{\gamma}^{\curvearrowright} \mathcal{K}_{\gamma}$$

The quantum torus valued  $\mathcal{O}(q)$  is wall crossing invariant.

For each charge  $\gamma$  introduce a factor

$$\mathcal{K}_{\gamma} = \prod_n \mathcal{E}_q((-1)^n q^{n/2} X_{\gamma})^{(-1)^n \Omega_n(\gamma)}$$

Then consider the product, phase ordered by the central charge

$$\mathcal{O}(q) = \prod_{\gamma}^{\curvearrowright} \mathcal{K}_{\gamma}$$

The quantum torus valued  $\mathcal{O}(q)$  is wall crossing invariant. We can obtain a simpler invariant q-series as

$$\operatorname{Tr}[\mathcal{O}(q)] \; , \qquad \quad \operatorname{Tr}[X_{\gamma}] = egin{cases} 1 & \gamma = 0 \\ 0 & \mathsf{else} \end{cases}$$

First constructed and explored by [Cecotti-Neitzke-Vafa]



Non-trivial example [Argyres-Douglas] CFT. Geometrically:

IIB on hypersurface 
$$uv = y^2 + x^3$$

The central charge is

$$c_{2d} = -22/5 = c((2,5)$$
 Virasoro minimal model)

Non-trivial example [Argyres-Douglas] CFT. Geometrically:

IIB on hypersurface 
$$uv = y^2 + x^3$$

The central charge is

$$c_{2d} = -22/5 = c((2.5) \text{ Virasoro minimal model})$$

On the Coulomb branch, there is a single U(1) ( $\Gamma \cong \mathbb{Z}^2$ ). BPS spectrum can be computed in a variety of ways

- special lagrangians on resolved hypersurface
- spectral network/WKB curves on pentagon
- representation theory of quiver

There are two or three BPS particles depending on the chamber

Test the idea! (2,5) Virasoro minimal model vacuum character is a Rogers-Ramanujan function

$$\mathcal{I}(q) = q^{-rac{27}{120}} rac{1}{(q)_{\infty}} \sum_{\ell \in \mathbb{Z}} \left( q^{rac{(20\ell - 3)^2}{40}} - q^{rac{(20\ell + 7)^2}{40}} 
ight)$$

Test the idea! (2,5) Virasoro minimal model vacuum character is a Rogers-Ramanujan function

$$\mathcal{I}(q) = q^{-rac{27}{120}} rac{1}{(q)_{\infty}} \sum_{\ell \in \mathbb{Z}} \left( q^{rac{(20\ell-3)^2}{40}} - q^{rac{(20\ell+7)^2}{40}} 
ight)$$

On the other hand the generating function of BPS particles is

$$(q)_{\infty}^2 {
m Tr}[{\cal O}(q)] = (q)_{\infty}^2 \sum_{\ell_1,\ell_2=0}^{\infty} rac{q^{\ell_1+\ell_2+\ell_1\ell_2}}{[(q)_{\ell_1}(q)_{\ell_2}]^2}$$

Test the idea! (2,5) Virasoro minimal model vacuum character is a Rogers-Ramanujan function

$$\mathcal{I}(q) = q^{-rac{27}{120}} rac{1}{(q)_{\infty}} \sum_{\ell \in \mathbb{Z}} \left( q^{rac{(20\ell-3)^2}{40}} - q^{rac{(20\ell+7)^2}{40}} 
ight)$$

$$1 + 0q + q^2 + q^3 + q^4 + q^5 + 2q^6 + 2q^7 + 3q^8 + 3q^9 + 4q^{10} + 4q^{11} + 6q^{12} + \cdots$$

On the other hand the generating function of BPS particles is

$$(q)_{\infty}^2 {
m Tr}[{\cal O}(q)] = (q)_{\infty}^2 \sum_{\ell_1,\ell_2=0}^{\infty} rac{q^{\ell_1+\ell_2+\ell_1\ell_2}}{[(q)_{\ell_1}(q)_{\ell_2}]^2}$$

Test the idea! (2,5) Virasoro minimal model vacuum character is a Rogers-Ramanujan function

$$\mathcal{I}(q) = q^{-rac{27}{120}} rac{1}{(q)_{\infty}} \sum_{\ell \in \mathbb{Z}} \left( q^{rac{(20\ell-3)^2}{40}} - q^{rac{(20\ell+7)^2}{40}} 
ight)$$

$$1 + 0q + q^2 + q^3 + q^4 + q^5 + 2q^6 + 2q^7 + 3q^8 + 3q^9 + 4q^{10} + 4q^{11} + 6q^{12} + \cdots$$

On the other hand the generating function of BPS particles is

$$(q)_{\infty}^2 {
m Tr}[{\cal O}(q)] = (q)_{\infty}^2 \sum_{\ell_1,\ell_2=0}^{\infty} rac{q^{\ell_1+\ell_2+\ell_1\ell_2}}{[(q)_{\ell_1}(q)_{\ell_2}]^2}$$

$$1 + 0q + q^2 + q^3 + q^4 + q^5 + 2q^6 + 2q^7 + 3q^8 + 3q^9 + 4q^{10} + 4q^{11} + 6q^{12} + \cdots$$

## **Smorgasbord**

A range of other examples have been explicitly investigated

•  $(A_{N-1}, A_{M-1})$  theory  $(N, M \text{ coprime}) \leftrightarrow (N, N+M)$   $W_N$  minimal model

IIB on hypersurface 
$$uv = y^N + x^M$$

- Other simple Argyres-Douglas theories give rise to Bershadsky-Polyakov algebras, and  $\widehat{SU(2)}$
- SU(2) gauge theory with fundamental matter. (Realized in IIA by canonical bundle over (blowups of)  $\mathbb{P}^1 \times \mathbb{P}^1$ )

## Smorgasbord

A range of other examples have been explicitly investigated

•  $(A_{N-1}, A_{M-1})$  theory  $(N, M \text{ coprime}) \leftrightarrow (N, N+M)$   $W_N$  minimal model

IIB on hypersurface 
$$uv = y^N + x^M$$

- Other simple Argyres-Douglas theories give rise to Bershadsky-Polyakov algebras, and  $\widehat{SU(2)}$
- SU(2) gauge theory with fundamental matter. (Realized in IIA by canonical bundle over (blowups of)  $\mathbb{P}^1 \times \mathbb{P}^1$ )

#### Important Point:

Conjecture is general. Applies to any  $\mathcal{N}=2$  quantum field theory, independent of how it is constructed



How do we understand the formula?

$$\underbrace{\mathcal{I}(q)}_{UV} = \underbrace{(q)_{\infty}^{2r} \ \mathrm{Tr} \left[\mathcal{O}(q)\right]}_{IR}$$

#### Idea:

Try to compute the index  $\mathcal{I}(q)$  in the IR treating the BPS particles as independent fields. In other words, compute in  $U(1)^r$  QED

How do we understand the formula?

$$\underbrace{\mathcal{I}(q)}_{UV} = \underbrace{(q)_{\infty}^{2r} \ \mathrm{Tr} \left[\mathcal{O}(q)\right]}_{IR}$$

#### Idea:

Try to compute the index  $\mathcal{I}(q)$  in the IR treating the BPS particles as independent fields. In other words, compute in  $U(1)^r$  QED

Since BPS particles are both electrically and magnetically charged there is no Lagrangian, however we can still use this idea to produce  $\mathcal{I}(q)$ . Similar to [Gopakumar-Vafa]

Begin with the index for free fields

$$\mathcal{I}_{U(1)}(q) = (q)_{\infty}^2$$
,  $\mathcal{I}_H(q,z) = E_q(z)$ 

Begin with the index for free fields

$$\mathcal{I}_{U(1)}(q) = (q)_{\infty}^2$$
,  $\mathcal{I}_H(q,z) = E_q(z)$ 

Can write a simple expression for U(1) QED

$$\mathcal{I}_{QED}(q) = (q)_{\infty}^2$$
  $\oint \frac{dz}{2\pi iz}$   $\underbrace{E_q(z)E_q(z^{-1})}_{\text{words in matter fields}}$ 

#### Goal:

Write a similar expression taking into account magnetic charges!

Let  $H_{\gamma}$  be a hypermultiplet field of charge  $\gamma$ . Need to consistently assign quantum numbers to composite operators

$$H_{\gamma}H_{\gamma'}$$
 
$$\begin{cases} \mathsf{charge} & \gamma + \gamma' \\ \mathsf{spin} & \frac{1}{2}\langle \gamma, \gamma' \rangle \end{cases}$$

The unexpected angular momentum takes into account Dirac angular momentum in the electromagnetic field

Let  $H_{\gamma}$  be a hypermultiplet field of charge  $\gamma$ . Need to consistently assign quantum numbers to composite operators

$$H_{\gamma}H_{\gamma'}$$
 
$$\begin{cases} \mathsf{charge} & \gamma + \gamma' \\ \mathsf{spin} & \frac{1}{2}\langle \gamma, \gamma' \rangle \end{cases}$$

The unexpected angular momentum takes into account Dirac angular momentum in the electromagnetic field

These charge assignments are taken into account in index calculations using the non-commutative quantum torus variables

$$X_{\gamma}X_{\gamma'}=q^{\frac{1}{2}\langle\gamma,\gamma'\rangle}X_{\gamma+\gamma'}$$

q counts angular momentum in the index

Assemble the pieces, to obtain an IR calculation of the index

$$\mathcal{I}(q) = (q)^{2r}_{\infty} \operatorname{Tr} \left[ \prod_{\gamma}^{\curvearrowright} E_q(X_{\gamma}) \right]$$

- $(q)^{2r}_{\infty}$  is the contribution of the  $U(1)^r$  vector multiplets
- $E_q(X_\gamma)$  factors account for hypermultiplets. (crucial phase ordering ansatz!)
- Trace projects onto gauge invariant combinations

This is the desired IR formula (simple generalization to spin)

 $\mathcal{N}=2$  theories admit a class of half-BPS line defects L

We build an index  $\mathcal{I}_L(q)$  that counts quasi-local operators that can end the defect. (this is like counting charged fields)

 $\mathcal{N}=2$  theories admit a class of half-BPS line defects L

We build an index  $\mathcal{I}_L(q)$  that counts quasi-local operators that can end the defect. (this is like counting charged fields)

Extend the UV-IR conjecture to lines [Córdova-Gaiotto-Shao]

$$\mathcal{I}_L(q) = (q)_{\infty}^{2r} \operatorname{Tr} \left[ \underbrace{F_L(X_{\gamma})}_{\text{contribution from } L} \mathcal{O}(q) \right]$$

 $F_L(X_\gamma)$  is a generating function of framed BPS states [Gaiotto-Moore-Neitzke]

- Ordinary BPS particles bound to the heavy line
- Related to framed quiver representations and DT invariants

#### The logic of the conjecture is identical

- Under RG flow, the line defect L flows to a sum of IR lines. These are dyons and can be thought of as the  $X_{\gamma}$
- The linear combination is controlled by the framed BPS states, and given by the generating function  $F_L(X_\gamma)$
- To compute the index in the IR, we compute a combination of IR dyonic indices and sum them. This is accomplished by inserting  $F_L(X_\gamma)$  into the trace

BPS line defects admit a topological OPE

$$L_i * L_j = \bigoplus_k c_{ij}^k(q) L_k$$

The OPE coefficients can be determined by multiplying the associated framed BPS generating functions  $F_{L_i}(X_{\gamma})$ 

BPS line defects admit a topological OPE

$$L_i * L_j = \bigoplus_k c_{ij}^k(q) L_k$$

The OPE coefficients can be determined by multiplying the associated framed BPS generating functions  $F_{L_i}(X_{\gamma})$ 

#### **Experimental Fact**

The OPE algebra of line defects reproduces the Verlinde algebra of the associated chiral algebra at the level of indices

$$\mathcal{I}_{L_i*L_j}(q) = \sum_k v_{ij}^k \mathcal{I}_{L_k}(q)$$

 $(v_{ij}^k \text{ Verlinde coefficients})$ 

Generalizes observations of [Cecotti-Neitzke-Vafa]



We can also extend to BPS surface defects. Our results intertwine with the [Cecotti-Vafa] formula for the elliptic genus of a (2,2) theory in terms of the BPS solitons after relevant deformations

We can also extend to BPS surface defects. Our results intertwine with the [Cecotti-Vafa] formula for the elliptic genus of a (2,2) theory in terms of the BPS solitons after relevant deformations

The 2d defect has K massive vacua. There are solitons (going from vacuum i to j) and particles (going from vacuum i to i). They can carry bulk electromagnetic charge. These are 2d-4d BPS states [Gaiotto-Moore-Neitzke]

We can also extend to BPS surface defects. Our results intertwine with the [Cecotti-Vafa] formula for the elliptic genus of a (2,2) theory in terms of the BPS solitons after relevant deformations

The 2d defect has K massive vacua. There are solitons (going from vacuum i to j) and particles (going from vacuum i to i). They can carry bulk electromagnetic charge. These are 2d-4d BPS states [Gaiotto-Moore-Neitzke]

We conjecture [Córdova-Gaiotto-Shao]

$$\mathcal{I}_{\mathcal{S}}(q) = (q)_{\infty}^{2r} \operatorname{Tr} \left[ \mathcal{O}_{2d-4d}(q) \right]$$

where now  $\mathcal{O}_{2d-4d}(q)$  is a  $K \times K$  matrix of wall-crossing operators

Conformal surface defects S interplay with the chiral algebra

- Local operators on S form a module for the chiral algebra, and the index  $\mathcal{I}_S(q)$  is a character (not usually the vacuum)
- Natural operations like spectral flow and Drinfeld-Sokolov reduction have interpretations in surface defects related to monodromy defects, and vortex surface defects

Conformal surface defects S interplay with the chiral algebra

- Local operators on S form a module for the chiral algebra, and the index  $\mathcal{I}_S(q)$  is a character (not usually the vacuum)
- Natural operations like spectral flow and Drinfeld-Sokolov reduction have interpretations in surface defects related to monodromy defects, and vortex surface defects

Simple example again consider  $A_2$  Argyres-Douglas (related to the (2,5) minimal model). Canonical surface defect yields

$$(q)_{\infty}^{2}\operatorname{Tr}\left[\mathcal{O}_{2d-4d}(q)\right]=(q)_{\infty}^{2}\sum_{\ell_{1},\ell_{2}=0}^{\infty}\frac{q^{\ell_{1}+\ell_{2}+\ell_{1}\ell_{2}}}{[(q)_{\ell_{1}}(q)_{\ell_{2}}]^{2}}(2-q^{\ell_{1}})=\chi_{\Phi}^{(2,5)}(q)$$

## Defectarama: Surfaces to Lines

We can use our understanding of indices to cut surfaces into lines (shown on  $S^3$ )



## Defectarama: Surfaces to Lines

We can use our understanding of indices to cut surfaces into lines (shown on  $S^3$ )



This implies a relationship

$$\mathsf{character} = \mathcal{I}_{\mathcal{S}}(q) = \sum_{i} \mathcal{I}_{\mathcal{L}_{i}}(q)$$



#### Defectarama: Boundaries

By exploring defects, we are interpreting more components of the quantum torus valued wall-crossing operator  $\mathcal{O}(q)$  as indices

Natural to ask if we can see all matrix elements of  $\mathcal{O}(q)$ . This is achieved through boundary conditions

#### Defectarama: Boundaries

By exploring defects, we are interpreting more components of the quantum torus valued wall-crossing operator  $\mathcal{O}(q)$  as indices

Natural to ask if we can see all matrix elements of  $\mathcal{O}(q)$ . This is achieved through boundary conditions

Let B be a UV BPS boundary condition that flows to Dirichlet boundary conditions for the U(1) gauge fields

- On the boundary we get flavor electric and magnetic charges
- Assemble the indices into a generating function. The result is the half-space wall-crossing operator  $(\mathcal{O} = \mathcal{SS}^{-T})$

$$\mathcal{I}_B(q) = (q)_{\infty}^r \mathcal{S}(q)$$

#### Defectarama: Boundaries

By exploring defects, we are interpreting more components of the quantum torus valued wall-crossing operator  $\mathcal{O}(q)$  as indices

Natural to ask if we can see all matrix elements of  $\mathcal{O}(q)$ . This is achieved through boundary conditions

Let B be a UV BPS boundary condition that flows to Dirichlet boundary conditions for the U(1) gauge fields

- On the boundary we get flavor electric and magnetic charges
- Assemble the indices into a generating function. The result is the half-space wall-crossing operator ( $\mathcal{O} = \mathcal{SS}^{-T}$ )

$$\mathcal{I}_B(q) = (q)_{\infty}^r \mathcal{S}(q)$$

This gives a completely new physical interpretation of the wall-crossing operator as an intrinsic quantity in the UV QFT



## Open Problems

#### Many questions remain:

- Prove the UV IR formula! (Promising work interpreting the index as a partition function [Dumitrescu-Festuccia-del Zotto])
- See the chiral algebras directly in geometry. (Related work by [Beem-Peelaers-Rastelli-van Rees], [Arakawa])
- Construct the full chiral algebra, not just characters, from BPS particles

## Open Problems

#### Many questions remain:

- Prove the UV IR formula! (Promising work interpreting the index as a partition function [Dumitrescu-Festuccia-del Zotto])
- See the chiral algebras directly in geometry. (Related work by [Beem-Peelaers-Rastelli-van Rees], [Arakawa])
- Construct the full chiral algebra, not just characters, from BPS particles

# Thanks for listening!