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RG Flow and Protected Observables

4d N = 2 quantum field theory is at the center of a rich and
enduring interplay between physics and mathematics

Many results flow from the combination of two principles

• Renormalization Group: QFTs are organized by scale

Short Distance (UV ) −→ Long Distance (IR)

This flow simplifies the physics. e.g. non-abelian gauge theory
in the UV can flow to an abelian gauge theory in the IR

• Supersymmetry Invariance: certain supersymmetric
observables are protected (i.e. invariant) under the flow

If we compute a protected observable in the UV and IR we often
obtain very different expressions for the same quantity

• Example: Donaldson Theory −→ Seiberg-Witten Theory
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Ingredients

In this talk we present a new conjectural UV −→ IR relationship
for an index I(q) (a q series) that can be associated to any N = 2
quantum field theory. (I(q) ≡ Schur index)

• I(q) can be expressed as a sum over local operators (UV
data) in the QFT

• If the UV theory is conformal, I(q) is the a character of a
chiral algebra (modular properties!)

The IR formulation involves BPS particles (generalized and refined
DT invariants). It has the following ingredients:

• rank r of the Coulomb branch (number of U(1)’s in IR )

• generating function of BPS particles Tr [O(q)] built from the
Kontsevich and Soibelman wall-crossing technology
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Conjecture

Our main conjecture is a formula [Córdova-Shao]:

I(q)︸︷︷︸
UV

= (q)2r
∞ Tr [O(q)]︸ ︷︷ ︸

IR

((q)∞ =
∏∞

n=1(1− qn))

Applied to CFT we find that generating functions of BPS states
(DT invariants) are equal to characters of chiral algebras

Related ideas: [Cecotti-Neitzke-Vafa] and [Iqbal-Vafa]
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Physics Motivations

Why is this result interesting? A generic renormalization group
flow starts in the UV at an asymptotically free or conformal theory
and ends in a gapped or IR free theory.

• UV: characterized by the spectrum of local operators, and
their operator product algebra

• IR: characterized by the spectrum of one-particle states

What is the relation between these concepts?

Our conjecture is an explicit formula relating supersymmetric local
operators and BPS particles
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Rough Intuition: Form Factors

One can get an intuition about why there should be a relation
between particles and operators as follows

• Along the RG flow we still have the UV local operators, but
vacuum changed to |0〉IR

• Let Φ(x) be a local operator and consider the state

|Ψ〉 = Φ(0)|0〉IR

If the operator Φ is supersymmetric, so is the above state |Ψ〉

|Ψ〉 is a multiparticle state which we
can think of as a jet of BPS particles

(This idea can be made precise for
2d QFTs. Interesting direction to
explore in higher dimensions )
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Mathematics Motivations

BPS particles have been widely studied

• Many constructions as cohomology of moduli: monopoles,
quiver representations, coherent sheaves, special lagrangians,
spectral networks, ...

• Constructions depend on a central charge Z (stability
condition)

• the central charge can be varied in a finite dimensional
complex moduli space

• BPS particle spectrum is locally constant but jumps across
walls of real codimension one

What wall-crossing invariants exist and what are their properties?

This problem was essentially solved by [Kontsevich-Soibelman],
(understood in physics by [Gaiotto-Moore-Neitzke]) who
constructed an invariant O(q) valued in a quantum torus algebra

Our result links these ideas to vertex operator algebras
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Definition of the Index

Every N = 2 theory has a local operator spectrum graded by
SU(2)R × SU(2)J1 × SU(2)J2 . Define the index as a weighted sum
over operators

I(q) =
∑

local operators

(−1)FqR+J1+J2

Properties:

• I(q) receives contributions only from 1/4 BPS local operators

• For superconformal theories, it coincides with a limit of the
superconformal index, the so-called Schur index

• Explicitly computable for Lagrangian field theories

• It uses only symmetries that are present on the Coulomb
branch, making it possible to compute in the IR
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Indices and Chiral Algebras

A crucial result by [Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees]
implies that I(q) is vacuum character of a 2d chiral algebra

c2d = −12c4d < 0 , (< T4d(x)T4d(0) >∼ c4d

|x |8 )

• Free vector muliplet ↔ b, c ghosts

I(q) = (q)2
∞

• Free hypermuliplet ↔ symplectic bosons (z = flavor fugacity)

I(q, z) =
1∏∞

n=1(1 + zqn+1/2)
≡ Eq(z)

• SU(2) Nf = 4↔ ŜO(8)−2

I(q) =
1

240q

(
E
′
4(q)

(q)10
∞

)
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BPS Particles and Wall-Crossing Invariants

Coulomb branch: U(1)r gauge theory + charged particles

Charges γ ∈ Γ , Dirac pairing <,>: ΓxΓ→ Z

The BPS particles are encoded in a collection of positive integers

Ωn(γ) = # of BPS particles of spin n and charge γ

The invariants Ωn(γ) can jump as moduli are varied.

Invariants were constructed by [Kontsevich-Soibelman]. They make
use of non-commutative variables Xγ

XγXγ′ = q
1
2
<γ,γ′>Xγ+γ′ = q<γ,γ

′>Xγ′Xγ
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BPS Particles and Wall-Crossing Invariants

For each charge γ introduce a factor

Kγ =
∏

n

Eq((−1)nqn/2Xγ)(−1)nΩn(γ)

Then consider the product, phase ordered by the central charge

O(q) =
y∏

γ

Kγ

The quantum torus valued O(q) is wall crossing invariant.

We can
obtain a simpler invariant q-series as

Tr[O(q)] , Tr[Xγ ] =

{
1 γ = 0

0 else

First constructed and explored by [Cecotti-Neitzke-Vafa]
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A2 Argyres-Douglas Theory and a Virasoro Minimal Model

Non-trivial example [Argyres-Douglas] CFT. Geometrically:

IIB on hypersurface uv = y2 + x3

The central charge is

c2d = −22/5 = c((2,5) Virasoro minimal model)

On the Coulomb branch, there is a single U(1) (Γ ∼= Z2). BPS
spectrum can be computed in a variety of ways

• special lagrangians on resolved hypersurface

• spectral network/WKB curves on pentagon

• representation theory of quiver //

There are two or three BPS particles depending on the chamber
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A2 Argyres-Douglas Theory and a Virasoro Minimal Model

Test the idea! (2,5) Virasoro minimal model vacuum character is a
Rogers-Ramanujan function

I(q) = q−
27

120
1

(q)∞

∑

`∈Z

(
q

(20`−3)2

40 − q
(20`+7)2

40

)

On the other hand the generating function of BPS particles is

(q)2
∞Tr[O(q)] = (q)2

∞

∞∑

`1,`2=0

q`1+`2+`1`2

[(q)`1(q)`2 ]2
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Smorgasbord

A range of other examples have been explicitly investigated

• (AN−1,AM−1) theory (N,M coprime)↔ (N,N + M) WN

minimal model

IIB on hypersurface uv = yN + xM

• Other simple Argyres-Douglas theories give rise to

Bershadsky-Polyakov algebras, and ŜU(2)

• SU(2) gauge theory with fundamental matter. (Realized in
IIA by canonical bundle over (blowups of) P1 × P1)

Important Point:

Conjecture is general. Applies to any N = 2 quantum field theory,
independent of how it is constructed



Smorgasbord

A range of other examples have been explicitly investigated

• (AN−1,AM−1) theory (N,M coprime)↔ (N,N + M) WN

minimal model

IIB on hypersurface uv = yN + xM

• Other simple Argyres-Douglas theories give rise to

Bershadsky-Polyakov algebras, and ŜU(2)
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An Intuitive Physical Argument

How do we understand the formula?

I(q)︸︷︷︸
UV

= (q)2r
∞ Tr [O(q)]︸ ︷︷ ︸

IR

Idea:
Try to compute the index I(q) in the IR treating the BPS particles
as independent fields. In other words, compute in U(1)r QED

Since BPS particles are both electrically and magnetically charged
there is no Lagrangian, however we can still use this idea to
produce I(q). Similar to [Gopakumar-Vafa]
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An Intuitive Physical Argument

Begin with the index for free fields

IU(1)(q) = (q)2
∞ , IH(q, z) = Eq(z)

Can write a simple expression for U(1) QED

IQED(q) = (q)2
∞

∮
dz

2πiz︸ ︷︷ ︸
selects gauge invariants

Eq(z)Eq(z−1)︸ ︷︷ ︸
words in matter fields

Goal:
Write a similar expression taking into account magnetic charges!
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An Intuitive Physical Argument

Let Hγ be a hypermultiplet field of charge γ. Need to consistently
assign quantum numbers to composite operators

HγHγ′

{
charge γ + γ′

spin 1
2〈γ, γ′〉

The unexpected angular momentum takes into account Dirac
angular momentum in the electromagnetic field

These charge assignments are taken into account in index
calculations using the non-commutative quantum torus variables

XγXγ′ = q
1
2
〈γ,γ′〉Xγ+γ′

q counts angular momentum in the index
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An Intuitive Physical Argument

Assemble the pieces, to obtain an IR calculation of the index

I(q) = (q)2r
∞ Tr

[ y∏

γ

Eq(Xγ)

]

• (q)2r
∞ is the contribution of the U(1)r vector multiplets

• Eq(Xγ) factors account for hypermultiplets. (crucial phase
ordering ansatz!)

• Trace projects onto gauge invariant combinations

This is the desired IR formula (simple generalization to spin)



Defectarama: Lines

N = 2 theories admit a class of half-BPS line defects L

We build an index IL(q) that counts quasi-local operators that can
end the defect. (this is like counting charged fields)

Extend the UV-IR conjecture to lines [Córdova-Gaiotto-Shao]

IL(q) = (q)2r
∞ Tr


 FL(Xγ)︸ ︷︷ ︸

contribution from L

O(q)




FL(Xγ) is a generating function of framed BPS states
[Gaiotto-Moore-Neitzke]

• Ordinary BPS particles bound to the heavy line

• Related to framed quiver representations and DT invariants



Defectarama: Lines

N = 2 theories admit a class of half-BPS line defects L

We build an index IL(q) that counts quasi-local operators that can
end the defect. (this is like counting charged fields)

Extend the UV-IR conjecture to lines [Córdova-Gaiotto-Shao]

IL(q) = (q)2r
∞ Tr


 FL(Xγ)︸ ︷︷ ︸

contribution from L

O(q)




FL(Xγ) is a generating function of framed BPS states
[Gaiotto-Moore-Neitzke]

• Ordinary BPS particles bound to the heavy line

• Related to framed quiver representations and DT invariants



Defectarama: Lines

The logic of the conjecture is identical

• Under RG flow, the line defect L flows to a sum of IR lines.
These are dyons and can be thought of as the Xγ

• The linear combination is controlled by the framed BPS
states, and given by the generating function FL(Xγ)

• To compute the index in the IR, we compute a combination of
IR dyonic indices and sum them. This is accomplished by
inserting FL(Xγ) into the trace



Defectarama: Lines
BPS line defects admit a topological OPE

Li ∗ Lj =
⊕

k

ckij (q)Lk

The OPE coefficients can be determined by multiplying the
associated framed BPS generating functions FLi (Xγ)

Experimental Fact

The OPE algebra of line defects reproduces the Verlinde algebra of
the associated chiral algebra at the level of indices

ILi∗Lj (q) =
∑

k

vkij ILk (q)

(vkij Verlinde coefficients)

Generalizes observations of [Cecotti-Neitzke-Vafa]
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Defectarama: Surfaces

We can also extend to BPS surface defects. Our results intertwine
with the [Cecotti-Vafa] formula for the elliptic genus of a (2,2)
theory in terms of the BPS solitons after relevant deformations

The 2d defect has K massive vacua. There are solitons (going
from vacuum i to j) and particles (going from vacuum i to i).
They can carry bulk electromagnetic charge. These are 2d-4d BPS
states [Gaiotto-Moore-Neitzke]

We conjecture [Córdova-Gaiotto-Shao]

IS(q) = (q)2r
∞ Tr [O2d−4d(q)]

where now O2d−4d(q) is a K ×K matrix of wall-crossing operators
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Defectarama: Surfaces

Conformal surface defects S interplay with the chiral algebra

• Local operators on S form a module for the chiral algebra,
and the index IS(q) is a character (not usually the vacuum)

• Natural operations like spectral flow and Drinfeld-Sokolov
reduction have interpretations in surface defects related to
monodromy defects, and vortex surface defects

Simple example again consider A2 Argyres-Douglas (related to the
(2,5) minimal model). Canonical surface defect yields

(q)2
∞ Tr [O2d−4d(q)] = (q)2

∞

∞∑

`1,`2=0

q`1+`2+`1`2

[(q)`1(q)`2 ]2
(2−q`1) = χ

(2,5)
Φ (q)
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Defectarama: Surfaces to Lines
We can use our understanding of indices to cut surfaces into lines
(shown on S3)

S

→

S

Bα

Bα

↓

∑
i Li

←
R2πBα

Bα

This implies a relationship

character = IS(q) =
∑

i

ILi (q)



Defectarama: Surfaces to Lines
We can use our understanding of indices to cut surfaces into lines
(shown on S3)

S

→

S

Bα

Bα

↓

∑
i Li

←
R2πBα

Bα

This implies a relationship

character = IS(q) =
∑

i

ILi (q)



Defectarama: Boundaries

By exploring defects, we are interpreting more components of the
quantum torus valued wall-crossing operator O(q) as indices

Natural to ask if we can see all matrix elements of O(q). This is
achieved through boundary conditions

Let B be a UV BPS boundary condition that flows to Dirichlet
boundary conditions for the U(1) gauge fields

• On the boundary we get flavor electric and magnetic charges

• Assemble the indices into a generating function. The result is
the half-space wall-crossing operator (O = SS−T )

IB(q) = (q)r∞S(q)

This gives a completely new physical interpretation of the
wall-crossing operator as an intrinsic quantity in the UV QFT
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Open Problems

Many questions remain:

• Prove the UV − IR formula! (Promising work interpreting the
index as a partition function [Dumitrescu-Festuccia-del Zotto])

• See the chiral algebras directly in geometry. (Related work by
[Beem-Peelaers-Rastelli-van Rees], [Arakawa])

• Construct the full chiral algebra, not just characters, from
BPS particles

Thanks for listening!
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