GW Theory, FJRW Theory, and MSP Fields

Chiu-Chu Melissa Liu
Columbia University
(based on joint work with
Huai-Liang Chang, Jun LI, and Wei-Ping Li)

String Math 2017 Universität Hamburg, Hamburg, Germany 24-28 July 2017

▶ Fermat quintic polynomial: $W(x_1,...,x_5) = x_1^5 + \cdots + x_5^5$

- Fermat quintic polynomial: $W(x_1, ..., x_5) = x_1^5 + \cdots + x_5^5$
- Quintic Calabi-Yau 3-fold: $Q = \{W(x_1, \dots, x_5) = 0\} \subset \mathbb{P}^4$

- Fermat quintic polynomial: $W(x_1, ..., x_5) = x_1^5 + \cdots + x_5^5$
- ▶ Quintic Calabi-Yau 3-fold: $Q = \{W(x_1, ..., x_5) = 0\} \subset \mathbb{P}^4$ (or more generally, any smooth degree 5 hypersurface in \mathbb{P}^4)

- Fermat quintic polynomial: $W(x_1, ..., x_5) = x_1^5 + \cdots + x_5^5$
- ▶ Quintic Calabi-Yau 3-fold: $Q = \{W(x_1, ..., x_5) = 0\} \subset \mathbb{P}^4$ (or more generally, any smooth degree 5 hypersurface in \mathbb{P}^4) $h^{1,1}(Q) = 1$, $h^{2,1}(Q) = 101$

- Fermat quintic polynomial: $W(x_1, ..., x_5) = x_1^5 + \cdots + x_5^5$
- ▶ Quintic Calabi-Yau 3-fold: $Q = \{W(x_1, ..., x_5) = 0\} \subset \mathbb{P}^4$ (or more generally, any smooth degree 5 hypersurface in \mathbb{P}^4) $h^{1,1}(Q) = 1$, $h^{2,1}(Q) = 101$
- $\mu_5=$ group of 5-th roots of unity, $\zeta:=e^{\frac{2\pi\sqrt{-1}}{5}}$

- Fermat quintic polynomial: $W(x_1, ..., x_5) = x_1^5 + \cdots + x_5^5$
- ▶ Quintic Calabi-Yau 3-fold: $Q = \{W(x_1, ..., x_5) = 0\} \subset \mathbb{P}^4$ (or more generally, any smooth degree 5 hypersurface in \mathbb{P}^4) $h^{1,1}(Q) = 1$, $h^{2,1}(Q) = 101$
- $\mu_5=$ group of 5-th roots of unity, $\zeta:=e^{\frac{2\pi\sqrt{-1}}{5}}$
- lacktriangle Mirror family \check{Q}_{ψ} : crepant resolution of

$$\{y_1^5 + \dots + y_5^5 - 5\psi y_1 \dots y_5 = 0\} \subset \mathbb{P}^4/G$$

$$G = \{(a_1, \dots, a_5) \in (\mu_5)^5 : a_1 \dots a_5 = 1\} / \{(a, \dots, a) : a \in \mu_5\} \cong (\mu_5)^3$$

- Fermat quintic polynomial: $W(x_1, ..., x_5) = x_1^5 + \cdots + x_5^5$
- ▶ Quintic Calabi-Yau 3-fold: $Q = \{W(x_1, ..., x_5) = 0\} \subset \mathbb{P}^4$ (or more generally, any smooth degree 5 hypersurface in \mathbb{P}^4) $h^{1,1}(Q) = 1$, $h^{2,1}(Q) = 101$
- $\mu_5=$ group of 5-th roots of unity, $\zeta:=e^{\frac{2\pi\sqrt{-1}}{5}}$
- lacktriangle Mirror family \check{Q}_{ψ} : crepant resolution of

$$\begin{aligned} \{y_1^5 + \dots + y_5^5 - 5\psi y_1 \dots y_5 &= 0\} \subset \mathbb{P}^4/G \\ G &= \{(a_1, \dots, a_5) \in (\mu_5)^5 : a_1 \dots a_5 &= 1\} / \{(a, \dots, a) : a \in \mu_5\} \cong (\mu_5)^3 \\ h^{1,1}(\check{Q}_{\psi}) &= 101, \ h^{2,1}(\check{Q}_{\psi}) &= 1 \end{aligned}$$

B-model: Complex Moduli

The (compactified) complex moduli of \check{Q}_{ψ} is $M=\mathbb{P}[5,1]$, obtained by gluing \mathbb{C}_z and $[\mathbb{C}_{\psi}/\mu_5]$ along \mathbb{C}^* by the transition function $z=(5\psi)^{-5}$.

B-model: Complex Moduli

The (compactified) complex moduli of \check{Q}_{ψ} is $M=\mathbb{P}[5,1]$, obtained by gluing \mathbb{C}_z and $[\mathbb{C}_{\psi}/\mu_5]$ along \mathbb{C}^* by the transition function $z=(5\psi)^{-5}$.

- $\psi=\infty$ (z=0): MUM (maximally unipotent monodromy) point
- $\psi = 1 \ (z = 5^{-5})$: conifold point
- $\psi = 0$ ($z = \infty$): orbifold point

B-model: Complex Moduli

The (compactified) complex moduli of \check{Q}_{ψ} is $M=\mathbb{P}[5,1]$, obtained by gluing \mathbb{C}_z and $[\mathbb{C}_{\psi}/\mu_5]$ along \mathbb{C}^* by the transition function $z=(5\psi)^{-5}$.

- $\psi=\infty$ (z=0): MUM (maximally unipotent monodromy) point
- $\psi = 1$ ($z = 5^{-5}$): conifold point
- $\psi = 0$ ($z = \infty$): orbifold point

Hodge line bundle

$$\begin{array}{ccc} H^0(\check{Q}_{\psi},\Omega^3_{\check{Q}_{\psi}}) & \subset & \mathbb{H} \\ \downarrow & & \downarrow \\ \psi & \in & M \end{array}$$

Motivation: Mirror Symmetry

Motivation: Mirror Symmetry and LG/CY Correspondence

Motivation and Overview

Gromov-Witten theory: GW(Q)

The genus g, degree d GW invariants of the quintic 3-fold Q is

$$N_{g,d}:=\int_{[\overline{\mathcal{M}}_{g,0}(Q,d)]^{\mathrm{vir}}}1\in\mathbb{Q} \quad ext{ where } (g,d)
eq (0,0),(1,0)$$

Gromov-Witten theory: GW(Q)

The genus g, degree d GW invariants of the quintic 3-fold Q is

$$extstyle extstyle N_{g,d} := \int_{[\overline{\mathcal{M}}_{g,0}(Q,d)]^{\mathrm{vir}}} 1 \in \mathbb{Q} \quad ext{ where } (g,d)
eq (0,0), (1,0)$$

$$F_g^Q(q) = egin{cases} rac{5}{6} (\log q)^3 + \sum_{d=1}^{\infty} N_{0,d} q^d, & g = 0; \ -rac{25}{12} \log q + \sum_{d=1}^{\infty} N_{1,d} q^d, & g = 1; \ \sum_{d=0}^{\infty} N_{g,d} q^d, & g \geq 2. \end{cases}$$

Gromov-Witten theory: GW(Q)

The genus g, degree d GW invariants of the quintic 3-fold Q is

$$extstyle extstyle N_{g,d} := \int_{[\overline{\mathcal{M}}_{g,0}(Q,d)]^{\mathrm{vir}}} 1 \in \mathbb{Q} \quad ext{ where } (g,d)
eq (0,0), (1,0)$$

$$F_g^Q(q) = \begin{cases} \frac{5}{6} (\log q)^3 + \sum_{d=1}^{\infty} N_{0,d} q^d, & g = 0; \\ -\frac{25}{12} \log q + \sum_{d=1}^{\infty} N_{1,d} q^d, & g = 1; . \\ \sum_{d=0}^{\infty} N_{g,d} q^d, & g \ge 2. \end{cases}$$

Maulik-Pandharipande (2006): algorithm of evaluating $N_{g,d}$ based on degeneration (LI)

Mathematical theory of LG($K_{\mathbb{P}^4}$, $\widetilde{W} = p(x_1^5 + \cdots + x_5^5)$) Genus zero: Guffin-Sharpe-Witten (GSW)

Mathematical theory of LG($\mathcal{K}_{\mathbb{P}^4}$, $\widetilde{W}=p(x_1^5+\cdots+x_5^5)$) Genus zero: Guffin-Sharpe-Witten (GSW)

$$\overline{\mathcal{M}}_{g,n}(\mathbb{P}^4, d)^{\rho}
:= \{ \xi = [u, C, \vec{z} = (z_1, \dots, z_n), \rho] :
[u, C, \vec{z}] \in \overline{\mathcal{M}}_{g,n}(\mathbb{P}^4, d), \ \rho \in H^0(C, u^*\mathcal{O}_{\mathbb{P}^4}(-5) \otimes \omega_C) \}$$

Mathematical theory of LG($\mathcal{K}_{\mathbb{P}^4}$, $\widetilde{W}=p(x_1^5+\cdots+x_5^5)$) Genus zero: Guffin-Sharpe-Witten (GSW)

$$\overline{\mathcal{M}}_{g,n}(\mathbb{P}^4,d)^p$$
:= $\{\xi = [u,C,\vec{z} = (z_1,\ldots,z_n),\rho] :$

$$[u,C,\vec{z}] \in \overline{\mathcal{M}}_{g,n}(\mathbb{P}^4,d), \ \rho \in H^0(C,u^*\mathcal{O}_{\mathbb{P}^4}(-5)\otimes\omega_C)\}$$
= $\{\xi = (C,\vec{z},L,\varphi,\rho) : (C,\vec{z}) \text{ genus } g, n\text{-pointed prestable curve,}$

$$L \in Pic_d(C), \varphi = (\varphi_1,\ldots,\varphi_5) \in H^0(C,L^{\oplus 5}) \text{ nowhere zero}$$

$$\rho \in H^0(C,L^{-5}\otimes\omega_C), \operatorname{Aut}(\xi) \text{ finite}\} / \sim$$

Mathematical theory of LG($\mathcal{K}_{\mathbb{P}^4}$, $\widetilde{W}=p(x_1^5+\cdots+x_5^5)$) Genus zero: Guffin-Sharpe-Witten (GSW)

$$\begin{split} \overline{\mathcal{M}}_{g,n}(\mathbb{P}^4,d)^p \\ &:= \quad \{\xi = [u,C,\vec{z} = (z_1,\ldots,z_n),\rho] : \\ &\quad [u,C,\vec{z}] \in \overline{\mathcal{M}}_{g,n}(\mathbb{P}^4,d), \ \rho \in H^0(C,u^*\mathcal{O}_{\mathbb{P}^4}(-5)\otimes\omega_C) \\ &= \quad \{\xi = (C,\vec{z},L,\varphi,\rho) : (C,\vec{z}) \ \text{genus } g, \ n\text{-pointed prestable curve}, \\ &\quad L \in Pic_d(C), \varphi = (\varphi_1,\ldots,\varphi_5) \in H^0(C,L^{\oplus 5}) \ \text{nowhere zero} \\ &\quad \rho \in H^0(C,L^{-5}\otimes\omega_C), \operatorname{Aut}(\xi) \ \text{finite} \} / \sim \end{split}$$

 $(\varphi_1,\ldots,\varphi_5,\rho)$ quantum version of (x_1,\ldots,x_5,p)

The **superpotential**

$$\widetilde{W}: \mathcal{K}_{\mathbb{P}^4} \longrightarrow \mathbb{C}, \quad [x_1, \dots, x_5, \rho] \mapsto p(x_1^5 + \dots + x_5^5).$$

The superpotential

$$\widetilde{W}: \mathcal{K}_{\mathbb{P}^4} \longrightarrow \mathbb{C}, \quad [x_1, \dots, x_5, p] \mapsto p(x_1^5 + \dots + x_5^5).$$

$$\mathsf{Crit}(W) = \{\sum_{i=1}^5 x_i^5 = 0 = p\} = Q \subset \mathcal{K}_{\mathbb{P}^4}$$

The **superpotential**

$$\widetilde{W}: \mathcal{K}_{\mathbb{P}^4} \longrightarrow \mathbb{C}, \quad [x_1, \dots, x_5, p] \mapsto p(x_1^5 + \dots + x_5^5).$$

$$\operatorname{Crit}(W) = \{ \sum_{i=1}^{5} x_i^5 = 0 = p \} = Q \subset K_{\mathbb{P}^4}$$

The superpotential W determines a **cosection** $\sigma: \mathcal{O}b \to \mathcal{O}_{\mathcal{P}}$, where $\mathcal{O}b$ is the obstruction sheaf over $\mathcal{P} = \overline{\mathcal{M}}_{g,n}(\mathbb{P}^4,d)^p$.

The **superpotential**

$$\widetilde{W}: \mathcal{K}_{\mathbb{P}^4} \longrightarrow \mathbb{C}, \quad [x_1, \dots, x_5, p] \mapsto p(x_1^5 + \dots + x_5^5).$$

$$\mathsf{Crit}(W) = \{\sum_{i=1}^5 x_i^5 = 0 = p\} = Q \subset \mathcal{K}_{\mathbb{P}^4}$$

The superpotential W determines a **cosection** $\sigma: \mathcal{O}b \to \mathcal{O}_{\mathcal{P}}$, where $\mathcal{O}b$ is the obstruction sheaf over $\mathcal{P} = \overline{\mathcal{M}}_{g,n}(\mathbb{P}^4,d)^p$. The degeneracy locus of σ is

$$\begin{array}{lcl} \mathcal{P}(\sigma) & = & \{\xi \in \mathcal{P} : \sigma(\xi) : \mathcal{O}b_{\xi} \to \mathbb{C} \text{ is zero} \} \\ & = & \{\sum_{i} \varphi_{i}^{5} = 0 = \rho\} = \overline{\mathcal{M}}_{g,0}(Q,d) \subset \mathcal{P} \end{array}$$

The **superpotential**

$$\widetilde{W}: \mathcal{K}_{\mathbb{P}^4} \longrightarrow \mathbb{C}, \quad [x_1, \ldots, x_5, p] \mapsto p(x_1^5 + \cdots + x_5^5).$$

$$\operatorname{Crit}(W) = \{\sum_{i=1}^5 x_i^5 = 0 = p\} = Q \subset K_{\mathbb{P}^4}$$

The superpotential W determines a **cosection** $\sigma: \mathcal{O}b \to \mathcal{O}_{\mathcal{P}}$, where $\mathcal{O}b$ is the obstruction sheaf over $\mathcal{P} = \overline{\mathcal{M}}_{g,n}(\mathbb{P}^4,d)^p$. The degeneracy locus of σ is

$$\begin{array}{lcl} \mathcal{P}(\sigma) & = & \{\xi \in \mathcal{P} : \sigma(\xi) : \mathcal{O}b_{\xi} \to \mathbb{C} \text{ is zero} \} \\ & = & \{\sum_{i} \varphi_{i}^{5} = 0 = \rho\} = \overline{\mathcal{M}}_{g,0}(Q,d) \subset \mathcal{P} \end{array}$$

 $\mathcal{P}(\sigma) = \overline{\mathcal{M}}_{g,n}(Q,d) \quad \text{is the quantum version of} \quad \widetilde{W}$ $\mathcal{P}(\sigma) = \overline{\mathcal{M}}_{g,n}(Q,d) \quad \text{is the quantum version of} \quad \operatorname{Crit}(\widetilde{W}) = Q$

Cosection Localized Virtual Cycle

Applying Kiem-LI construction of cosection localized virtual cycle, Chang-LI obtain

$$[\overline{\mathcal{M}}_{g,n}(\mathbb{P}^4,d)]^{\mathrm{vir}}_{\sigma} \in A_n(\overline{\mathcal{M}}_{g,n}(Q,d);\mathbb{Q}) H_{2n}$$

Cosection Localized Virtual Cycle

Applying Kiem-LI construction of cosection localized virtual cycle, Chang-LI obtain

$$[\overline{\mathcal{M}}_{g,n}(\mathbb{P}^4,d)]^{\mathrm{vir}}_{\sigma} \in A_n(\overline{\mathcal{M}}_{g,n}(Q,d);\mathbb{Q}) \\ H_{2n}$$

and proved

Theorem (Chang-LI)

$$[\overline{\mathcal{M}}_{g,n}(\mathbb{P}^4,d)^p]_{\sigma}^{\mathrm{vir}} = (-1)^{5d+1-g} [\overline{\mathcal{M}}_{g,n}(Q,d)]^{\mathrm{vir}}$$

Cosection Localized Virtual Cycle

Applying Kiem-LI construction of cosection localized virtual cycle, Chang-LI obtain

$$[\overline{\mathcal{M}}_{g,n}(\mathbb{P}^4,d)]^{\mathrm{vir}}_{\sigma} \in A_n(\overline{\mathcal{M}}_{g,n}(Q,d);\mathbb{Q}) \\ H_{2n}$$

and proved

Theorem (Chang-LI)

$$[\overline{\mathcal{M}}_{g,n}(\mathbb{P}^4,d)^p]^{\mathrm{vir}}_{\sigma} = (-1)^{5d+1-g}[\overline{\mathcal{M}}_{g,n}(Q,d)]^{\mathrm{vir}}$$

$$\mathsf{LG}(\mathcal{K}_{\mathbb{P}^4},\widetilde{\mathcal{W}}) = \mathsf{GW}(Q)$$

Let $\gamma = (\gamma_1, \dots, \gamma_\ell)$, where $\gamma_i = \zeta^{m_i}$, $m_i \in \{1, 2, 3, 4\}$.

Let $\gamma = (\gamma_1, \dots, \gamma_\ell)$, where $\gamma_i = \zeta^{m_i}$, $m_i \in \{1, 2, 3, 4\}$. The moduli of genus g, γ -marked 5-spin curve is

$$\overline{\mathcal{M}}_{g,\gamma}^{1/5} = \{(C, \vec{z} = (z_1, \dots, z_\ell), L, \rho) : \\ (C, \vec{z}) \text{ twisted genus } g, \ell\text{-pointed prestable curve}, \\ L \text{ representable line bundle on } C,$$

$$\rho: L^{\otimes 5} \stackrel{\cong}{\longrightarrow} \omega_C^{\log} := \omega_C(\sum_{j=1}^{\ell} z_j),$$

monodromy of L around z_j is $\gamma_j \in \mu_5 \} / \sim$

Let $\gamma = (\gamma_1, \dots, \gamma_\ell)$, where $\gamma_i = \zeta^{m_i}$, $m_i \in \{1, 2, 3, 4\}$. The moduli of genus g, γ -marked 5-spin curve is

$$\overline{\mathcal{M}}_{g,\gamma}^{1/5} = \{(C, \vec{z} = (z_1, \dots, z_\ell), L, \rho) : \\ (C, \vec{z}) \text{ twisted genus } g, \ell\text{-pointed prestable curve}, \\ L \text{ representable line bundle on } C,$$

$$\rho: L^{\otimes 5} \stackrel{\cong}{\longrightarrow} \omega_C^{\log} := \omega_C(\sum_{j=1}^{\ell} z_j),$$

monodromy of L around z_j is $\gamma_j \in \mu_5$ $/ \sim$

$$\overline{\mathcal{M}}_{g,\gamma}^{1/5}$$
 is nonempty $\Rightarrow 2g-2+\sum_{i=1}^\ell (1-m_i)\equiv 0 \mod 5.$

Let $\gamma = (\gamma_1, \dots, \gamma_\ell)$, where $\gamma_i = \zeta^{m_i}$, $m_i \in \{1, 2, 3, 4\}$. The moduli of genus g, γ -marked 5-spin curve is

$$\overline{\mathcal{M}}_{g,\gamma}^{1/5} = \{(C, \vec{z} = (z_1, \dots, z_\ell), L, \rho) : \\ (C, \vec{z}) \text{ twisted genus } g, \ell\text{-pointed prestable curve}, \\ L \text{ representable line bundle on } C,$$

$$\rho: L^{\otimes 5} \stackrel{\cong}{\longrightarrow} \omega_C^{\log} := \omega_C(\sum_{j=1}^{\ell} z_j),$$

monodromy of L around z_j is $\gamma_j \in \mu_5$ $/ \sim$

$$\overline{\mathcal{M}}_{g,\gamma}^{1/5}$$
 is nonempty $\Rightarrow 2g-2+\sum_{i=1}^\ell (1-m_i)\equiv 0 \mod 5.$

compact complex orbifold of dimension $3g - 3 + \ell$

Moduli of 5-spin Curves with Fields (Chang-LI-li)

$$\overline{\mathcal{M}}_{g,\gamma}^{1/5,5\varphi} = \left\{ [C, \vec{z}, L, \varphi, \rho] : [C, \vec{z}, L, \rho] \in \overline{\mathcal{M}}_{g,\gamma}^{1/5}, \\ \varphi = (\varphi_1, \dots, \varphi_5) \in H^0(C, L^{\oplus 5}) \right\}$$

Moduli of 5-spin Curves with Fields (Chang-LI-li)

$$\overline{\mathcal{M}}_{g,\gamma}^{1/5,5\varphi} = \left\{ [C, \vec{z}, L, \varphi, \rho] : [C, \vec{z}, L, \rho] \in \overline{\mathcal{M}}_{g,\gamma}^{1/5}, \\
\varphi = (\varphi_1, \dots, \varphi_5) \in H^0(C, L^{\oplus 5}) \right\}$$

Recall that $\rho: L^{\otimes 5} \xrightarrow{\cong} \omega_C^{\log}$, or equivalently, $\rho \in H^0(C, L^{-5} \otimes \omega_C^{\log})$ nowhere vanishing

Moduli of 5-spin Curves with Fields (Chang-LI-li)

$$\overline{\mathcal{M}}_{g,\gamma}^{1/5,5\varphi} = \left\{ [C, \vec{z}, L, \varphi, \rho] : [C, \vec{z}, L, \rho] \in \overline{\mathcal{M}}_{g,\gamma}^{1/5}, \right.$$

$$\varphi = (\varphi_1, \dots, \varphi_5) \in H^0(C, L^{\oplus 5}) \right\}$$

Recall that $\rho: L^{\otimes 5} \xrightarrow{\cong} \omega_C^{\log}$, or equivalently, $\rho \in H^0(C, L^{-5} \otimes \omega_C^{\log})$ nowhere vanishing

The **superpotential**

$$W: \mathbb{C}^5/\mu_5 \to \mathbb{C}, \quad [x_1, \dots, x_5] \mapsto x_1^5 + \dots + x_5^5$$

determines a cosection $\sigma: \mathcal{O}b \to \mathcal{O}_{\mathcal{X}}$, where $\mathcal{X} = \overline{\mathcal{M}}_{g,\gamma}^{1/5,5\varphi}$

Moduli of 5-spin Curves with Fields (Chang-LI-li)

$$\overline{\mathcal{M}}_{g,\gamma}^{1/5,5\varphi} = \left\{ [C, \vec{z}, L, \varphi, \rho] : [C, \vec{z}, L, \rho] \in \overline{\mathcal{M}}_{g,\gamma}^{1/5}, \right.$$

$$\varphi = (\varphi_1, \dots, \varphi_5) \in H^0(C, L^{\oplus 5}) \right\}$$

Recall that $\rho: L^{\otimes 5} \xrightarrow{\cong} \omega_C^{\log}$, or equivalently, $\rho \in H^0(C, L^{-5} \otimes \omega_C^{\log})$ nowhere vanishing

The superpotential

$$W: \mathbb{C}^5/\mu_5 \to \mathbb{C}, \quad [x_1, \dots, x_5] \mapsto x_1^5 + \dots + x_5^5$$

determines a cosection $\sigma: \mathcal{O}b \to \mathcal{O}_{\mathcal{X}}$, where $\mathcal{X} = \overline{\mathcal{M}}_{g,\gamma}^{1/5,5\varphi}$

$$\mathcal{X}(\sigma) = \{(\varphi_i)^4 = 0\} \subset \mathcal{X}.$$

$$\mathcal{X}(\sigma)_{\text{red}} = \{\varphi = 0\} = \overline{\mathcal{M}}_{g,\gamma}^{1/5} \subset \mathcal{X}.$$

Applying Kiem-Ll's construction of cosection localized virtual cycles, Chang-Ll-Li obtain the Witten's top Chern class

$$[\overline{\mathcal{M}}_{g,\gamma}^{1/5,5\varphi}]_{\sigma}^{\mathrm{vir}} \in A_{d_{\gamma}}(\overline{\mathcal{M}}_{g,\gamma}^{1/5};\mathbb{Q})$$

$$H_{2d_{\gamma}}$$

where
$$d_{\gamma} = \sum_{i=1}^{\ell} (2-m_i)$$
 if $\gamma = (\zeta^{m_1}, \dots, \zeta^{m_\ell})$.

Applying Kiem-Ll's construction of cosection localized virtual cycles, Chang-Ll-Li obtain the Witten's top Chern class

$$[\overline{\mathcal{M}}_{g,\gamma}^{1/5,5\varphi}]_{\sigma}^{\mathrm{vir}} \in A_{d_{\gamma}}(\overline{\mathcal{M}}_{g,\gamma}^{1/5};\mathbb{Q})$$

$$H_{2d_{\gamma}}$$

where
$$d_{\gamma} = \sum_{i=1}^{\ell} (2-m_i)$$
 if $\gamma = (\zeta^{m_1}, \dots, \zeta^{m_{\ell}})$.
In particular, $d_{\gamma} = 0$ if $m_1 = \dots = m_{\ell} = 2$.

Applying Kiem-Ll's construction of cosection localized virtual cycles, Chang-Ll-Li obtain the Witten's top Chern class

$$[\overline{\mathcal{M}}_{g,\gamma}^{1/5,5\varphi}]_{\sigma}^{\mathrm{vir}} \in A_{d_{\gamma}}(\overline{\mathcal{M}}_{g,\gamma}^{1/5};\mathbb{Q})$$

$$H_{2d_{\gamma}}$$

where
$$d_{\gamma} = \sum_{i=1}^{\ell} (2 - m_i)$$
 if $\gamma = (\zeta^{m_1}, \dots, \zeta^{m_{\ell}})$.
In particular, $d_{\gamma} = 0$ if $m_1 = \dots = m_{\ell} = 2$.

In particular, $d_{\gamma} = 0$ if $m_1 = \cdots = m_{\ell} = 2$. Define genus g *FJRW* invariants of (W, μ_5) :

$$heta_{oldsymbol{g},\ell} := \int_{[\overline{\mathcal{M}}_{oldsymbol{g},\gamma}^{1/5,5arphi}]_{\sigma}^{ ext{vir}}} 1 \in \mathbb{Q}$$

where $\gamma = (\underbrace{\zeta^2, \dots, \zeta^2}_{\ell})$, $2g - 2 + \ell > 0$, $\ell \equiv 2g - 2 \mod 5$.

Applying Kiem-Ll's construction of cosection localized virtual cycles, Chang-Ll-Li obtain the Witten's top Chern class

$$[\overline{\mathcal{M}}_{g,\gamma}^{1/5,5\varphi}]_{\sigma}^{\mathrm{vir}} \in A_{d_{\gamma}}(\overline{\mathcal{M}}_{g,\gamma}^{1/5};\mathbb{Q})$$

$$H_{2d_{\gamma}}$$

where
$$d_{\gamma} = \sum_{i=1}^{\ell} (2-m_i)$$
 if $\gamma = (\zeta^{m_1}, \dots, \zeta^{m_\ell})$.
In particular, $d_{\gamma} = 0$ if $m_1 = \dots = m_\ell = 2$.

In particular, $d_{\gamma} = 0$ if $m_1 = \cdots = m_{\ell} = 2$. Define genus g *FJRW* invariants of (W, μ_5) :

$$heta_{oldsymbol{g},\ell} := \int_{[\overline{\mathcal{M}}_{oldsymbol{g},\gamma}^{1/5,5arphi}]_{\sigma}^{ ext{vir}}} 1 \in \mathbb{Q}$$

where $\gamma = (\underbrace{\zeta^2, \dots, \zeta^2}_{\ell})$, $2g - 2 + \ell > 0$, $\ell \equiv 2g - 2 \mod 5$.

$$F_g^W(t) := \sum_{\ell > 0} \qquad heta_{g,\ell} t^\ell \qquad (heta_{1,0} := 0)$$

The Master Space

Let
$$s \in \mathbb{C}^*$$
 at on $\mathbb{C}^6 \times \mathbb{P}^1$ by
$$s \cdot (\vec{x}, p, [u_1, u_2]) = (s\vec{x}, s^{-5}p, [su_1, u_2])$$
$$= (s\vec{x}, s^{-5}p, [u_1, s^{-1}u_2])$$
 where $\vec{x} = (x_1, \dots, x_5)$

The master space

$$M := (\mathbb{C}^6 \times \mathbb{P}^1) / / \mathbb{C}^* = (\mathbb{C}^6 \times \mathbb{P}^1 - Z) / \mathbb{C}^*$$

where $Z = \{\vec{x} = 0 = u_1\} \cup \{p = 0 = u_2\}$

The Master Space

Let
$$s \in \mathbb{C}^*$$
 at on $\mathbb{C}^6 \times \mathbb{P}^1$ by $s \cdot (\vec{x}, p, [u_1, u_2]) = (s\vec{x}, s^{-5}p, [su_1, u_2])$ $= (s\vec{x}, s^{-5}p, [u_1, s^{-1}u_2])$ where $\vec{x} = (x_1, \dots, x_5)$

The master space

$$M := (\mathbb{C}^6 \times \mathbb{P}^1) / / \mathbb{C}^* = (\mathbb{C}^6 \times \mathbb{P}^1 - Z) / \mathbb{C}^*$$

where $Z = \{\vec{x} = 0 = u_1\} \cup \{p = 0 = u_2\}$

$$p(x_1^5+\cdots+x_5^5)$$
 descends to a superpotential $\widetilde{W}:M\to\mathbb{C}$

The Master Space

Let
$$s \in \mathbb{C}^*$$
 at on $\mathbb{C}^6 \times \mathbb{P}^1$ by $s \cdot (\vec{x}, p, [u_1, u_2]) = (s\vec{x}, s^{-5}p, [su_1, u_2])$ $= (s\vec{x}, s^{-5}p, [u_1, s^{-1}u_2])$ where $\vec{x} = (x_1, \dots, x_5)$

The master space

$$M := (\mathbb{C}^6 \times \mathbb{P}^1) / / \mathbb{C}^* = (\mathbb{C}^6 \times \mathbb{P}^1 - Z) / \mathbb{C}^*$$

where $Z = \{\vec{x} = 0 = u_1\} \cup \{p = 0 = u_2\}$

$$p(x_1^5 + \dots + x_5^5)$$
 descends to a superpotential $\widetilde{W}: M \to \mathbb{C}$
 $Crit(\widetilde{W}) = \{p = \sum_{i=1}^5 x_i^5 = 0\} \cup \{\vec{x} = 0\} = C(Q) \cup \mathbb{P}[5, 1]$

Torus action

Consider the action of $T(\cong \mathbb{C}^*)$ on M by

$$t \cdot [x_1, \ldots, x_5, p, [u_1, u_2]] = [x_1, \ldots, x_5, p, [tu_1, u_2]].$$

The
$$T$$
 fixed locus
$$M^T = \mathcal{K}_{\mathbb{P}^4} \cup \mathbf{o} \cup (\mathbb{C}^5/\mu_5)$$

$$\mathsf{Crit}(\widetilde{W})^T = Q \cup \mathbf{o} \cup (\{0\}/\mu_5)$$
 $\cdot \mathbf{o}$

$$\mathcal{W}_{g,\gamma,d_0,d_\infty} = \{ \xi = (C,\vec{z},L,N,\varphi,\rho,\nu_1,\nu_2) :$$

$$\mathcal{W}_{g,\gamma,d_0,d_\infty} = \{ \xi = (C, \vec{z}, L, N, \varphi, \rho, \nu_1, \nu_2) : (C, \vec{z}) \text{ genus } g, \ell\text{-pointed twisted prestable curve } L, N \text{ representable line bundles on } L,$$

$$\mathcal{W}_{g,\gamma,d_0,d_\infty} = \{\xi = (C,\vec{z},L,N,\varphi,\rho,\nu_1,\nu_2) : (C,\vec{z}) \text{ genus } g, \ell\text{-pointed twisted prestable curve}$$

 $L,N \text{ representable line bundles on } L, \deg(L\otimes N) = d_0, \deg N = d_\infty,$ monodromy of L around z_i is γ_i ,

$$\mathcal{W}_{g,\gamma,d_0,d_\infty} = \{\xi = (C,\vec{z},L,N,\varphi,\rho,\nu_1,\nu_2) : (C,\vec{z}) \text{ genus } g, \ \ell\text{-pointed twisted prestable curve}$$
 L,N representable line bundles on $L,\deg(L\otimes N)=d_0,\deg N=d_\infty,$ monodromy of L around z_j is $\gamma_j,$

$$\varphi\in H^0(C,L^{\oplus 5}), \rho\in H^0(C,L^{-5}\otimes\omega_C^{\log}),$$

$$\nu_1\in H^0(C,L\otimes N), \nu_2\in H^0(C,N),$$

$$(\varphi,\nu_1),(\rho,\nu_2),(\nu_1,\nu_2) \text{ nowhere vanishing,}$$

$$\mathcal{W}_{g,\gamma,d_0,d_\infty} = \{\xi = (C,\vec{z},L,N,\varphi,\rho,\nu_1,\nu_2) : \\ (C,\vec{z}) \text{ genus } g, \ \ell\text{-pointed twisted prestable curve} \\ L,N \text{ representable line bundles on } L, \deg(L\otimes N) = d_0, \deg N = d_\infty, \\ \text{monodromy of } L \text{ around } z_j \text{ is } \gamma_j, \\ \varphi \in H^0(C,L^{\oplus 5}), \rho \in H^0(C,L^{-5}\otimes\omega_C^{\log}), \\ \nu_1 \in H^0(C,L\otimes N), \nu_2 \in H^0(C,N), \\ (\varphi,\nu_1), (\rho,\nu_2), (\nu_1,\nu_2) \text{ nowhere vanishing, } \operatorname{Aut}(\xi) \text{ is finite} \}/\sim$$

$$\mathcal{W}_{g,\gamma,d_0,d_\infty} = \{\xi = (C,\vec{z},L,N,\varphi,\rho,\nu_1,\nu_2): \ (C,\vec{z}) \text{ genus } g, \ \ell\text{-pointed twisted prestable curve} \ L, N \text{ representable line bundles on } L, \deg(L\otimes N) = d_0, \deg N = d_\infty, \ \text{monodromy of } L \text{ around } z_j \text{ is } \gamma_j, \ \varphi \in H^0(C,L^{\oplus 5}), \rho \in H^0(C,L^{-5}\otimes\omega_C^{\log}), \ \nu_1 \in H^0(C,L\otimes N), \nu_2 \in H^0(C,N), \ (\varphi,\nu_1),(\rho,\nu_2),(\nu_1,\nu_2) \text{ nowhere vanishing, } \operatorname{Aut}(\xi) \text{ is finite} \}/\sim (\varphi,\rho,\nu_1,\nu_2) \text{ quantum version of } (\vec{x},p,u_1,u_2)$$

Mathematical Theory of LG($M, \widetilde{W} = p(x_1^5 + \cdots + x_5^5)$). "Quantum Master Space"

$$\mathcal{W}_{g,\gamma,d_0,d_\infty}=\{\xi=(C,\vec{z},L,N,\varphi,\rho,\nu_1,\nu_2):\ (C,\vec{z}) \text{ genus } g,\ \ell\text{-pointed twisted prestable curve} \ L,N \text{ representable line bundles on } L,\deg(L\otimes N)=d_0,\deg N=d_\infty, \ \mathrm{monodromy\ of}\ L \text{ around } z_j \text{ is } \gamma_j, \ \varphi\in H^0(C,L^{\oplus 5}), \rho\in H^0(C,L^{-5}\otimes\omega_C^{\log}), \ \nu_1\in H^0(C,L\otimes N), \nu_2\in H^0(C,N), \ (\varphi,\nu_1),(\rho,\nu_2),(\nu_1,\nu_2) \text{ nowhere vanishing, } \mathrm{Aut}(\xi) \text{ is finite}\}/\sim (\varphi,\rho,\nu_1,\nu_2) \text{ quantum version of } (\vec{x},p,u_1,u_2)$$

The superpotential W determines a cosection $\sigma: \mathcal{O}b \to \mathcal{O}_{\mathcal{W}}$, where $\mathcal{O}b$ is the obstruction sheaf on $\mathcal{W} = \mathcal{W}_{g,\gamma,d_0,d_\infty}$, with degeneracy locus \mathcal{W}^- .

Cosection Localized Virtual Cycle

 $T=\mathbb{C}^*$ acts on \mathcal{W} by scaling ν_1 . Everything is T-equivariant.

Cosection Localized Virtual Cycle

 $T=\mathbb{C}^*$ acts on \mathcal{W} by scaling ν_1 . Everything is T-equivariant.

Theorem (Chang-LI-Li-L)

 $\mathcal{W}(\sigma)$ is closed, proper, and of finite type.

We obtain the cosection localized virtual cycle (Kiem-Li)

$$[\mathcal{W}_{g,\gamma,d_0,d_\infty}]_{\sigma}^{\mathrm{vir}} \in A_{d^{\mathrm{vir}}}^T(\mathcal{W}_{g,\gamma,d_0,d_\infty}^-;\mathbb{Q}).$$

where

$$d^{\mathrm{vir}} = d_0 + d_{\infty} + 1 - g + \ell - \frac{4}{5} \sum_{i=1}^{\ell} m_i \text{ if } \gamma_i = \zeta^{m_i}.$$

$$\mathcal{W}^{T} = \bigcup_{\Gamma} \mathcal{W}_{\Gamma} \qquad \quad (\Gamma \text{ labelled graph})$$

$$\mathcal{W}^T = \bigcup_{\Gamma} \mathcal{W}_{\Gamma}$$
 (Γ labelled graph)

$$\mathcal{W}^{T} = \bigcup_{\Gamma} \mathcal{W}_{\Gamma} \qquad [\mathcal{W}]^{\mathrm{vir}}_{\sigma} = \sum_{\Gamma} (i_{\Gamma})_{*} \frac{[\mathcal{W}_{\Gamma}]^{\mathrm{vir}}_{\sigma_{\Gamma}}}{e_{T}(N^{\mathrm{vir}}_{\Gamma})}$$

$$\mathcal{W}^T = \bigcup_{\Gamma} \mathcal{W}_{\Gamma}$$
 (Γ labelled graph)

$$\mathcal{W}^{T} = \bigcup_{\Gamma} \mathcal{W}_{\Gamma} \qquad [\mathcal{W}]^{\mathrm{vir}}_{\sigma} = \sum_{\Gamma} (i_{\Gamma})_{*} \frac{[\mathcal{W}_{\Gamma}]^{\mathrm{vir}}_{\sigma_{\Gamma}}}{e_{T}(N^{\mathrm{vir}}_{\Gamma})}$$

$$[\mathcal{W}_{\Gamma}]_{\sigma}^{\mathrm{vir}} \sim \prod_{\nu \in \mathcal{V}(\Gamma)} [\mathcal{W}_{\nu}]^{\mathrm{vir}},$$

$$\mathcal{W}^T = \bigcup_{\Gamma} \mathcal{W}_{\Gamma}$$
 (Γ labelled graph)

$$\mathcal{W}^{\mathcal{T}} = \bigcup_{\Gamma} \mathcal{W}_{\Gamma} \qquad [\mathcal{W}]^{\mathrm{vir}}_{\sigma} = \sum_{\Gamma} (i_{\Gamma})_{*} \frac{[\mathcal{W}_{\Gamma}]^{\mathrm{vir}}_{\sigma_{\Gamma}}}{e_{\mathcal{T}}(N^{\mathrm{vir}}_{\Gamma})}$$

$$[\mathcal{W}_{\Gamma}]_{\sigma}^{\mathrm{vir}} \sim \prod_{v \in V(\Gamma)} [\mathcal{W}_{v}]^{\mathrm{vir}}, \text{ where } [\mathcal{W}_{v}]_{\sigma_{v}}^{\mathrm{vir}} = \begin{cases} [\overline{\mathcal{M}}_{g_{v}, n_{v}}(\mathbb{P}^{4}, d_{v})^{p}]_{\sigma}^{\mathrm{vir}}, \\ [\overline{\mathcal{M}}_{g_{v}, n_{v}}], \\ [\overline{\mathcal{M}}_{g_{v}, \gamma_{v}}^{1/5, 5\varphi}]_{\sigma}^{\mathrm{vir}} \end{cases}$$

$$\mathcal{W}^T = \bigcup_{\Gamma} \mathcal{W}_{\Gamma}$$
 (Γ labelled graph)

$$\mathcal{W}^{T} = \bigcup_{\Gamma} \mathcal{W}_{\Gamma} \qquad [\mathcal{W}]^{\mathrm{vir}}_{\sigma} = \sum_{\Gamma} (i_{\Gamma})_{*} \frac{[\mathcal{W}_{\Gamma}]^{\mathrm{vir}}_{\sigma_{\Gamma}}}{e_{T}(N^{\mathrm{vir}}_{\Gamma})}$$

$$[\mathcal{W}_{\Gamma}]_{\sigma}^{\mathrm{vir}} \sim \prod_{v \in V(\Gamma)} [\mathcal{W}_{v}]^{\mathrm{vir}}, \text{ where } [\mathcal{W}_{v}]_{\sigma_{v}}^{\mathrm{vir}} = \begin{cases} [\overline{\mathcal{M}}_{g_{v},n_{v}}(\mathbb{P}^{4},d_{v})^{p}]_{\sigma}^{\mathrm{vir}}, \\ [\overline{\mathcal{M}}_{g_{v},n_{v}}], \\ [\overline{\mathcal{M}}_{g_{v},\gamma_{v}}^{1/5,5\varphi}]_{\sigma}^{\mathrm{vir}} \end{cases}$$

- \Longrightarrow T-equivariant MSP theory can be reduced to
 - $\blacktriangleright \mathsf{LG}(K_{\mathbb{P}^4},\widetilde{W}) = \mathsf{GW}(Q)$
 - ► GW theory of a point (known)
 - ▶ $LG(\mathbb{C}^5/\mu_5, W) = FJRW(W, \mu_5)$

When
$$d^{\mathrm{vir}} > 0$$
,

$$\int_{[\mathcal{W}_g,\gamma,d_0,d_\infty]^{\mathrm{vir}}_\sigma} 1 = 0 \quad (*)$$

When
$$d^{\mathrm{vir}} > 0$$
,

$$\int_{[\mathcal{W}_{g,\gamma,d_0,d_\infty}]_{\sigma}^{\text{vir}}} 1 = 0 \quad (*)$$

 γ is empty \Rightarrow $d^{\mathrm{vir}} = d_0 + d_{\infty} + 1 - g$.

Theorem (Chang-LI-Li-L)

1. When γ is empty, $d_0=0$ and $d_\infty \geq g$, the relations (*) determine $\Theta_{g,\ell}$ in terms of $\Theta_{g',\ell'}$ such that $g' \leq g$ and $0 \leq \ell' < 7g - 2$.

When $d^{\mathrm{vir}} > 0$,

$$\int_{[\mathcal{W}_{g,\gamma,d_0,d_\infty}]_{\sigma}^{\mathrm{vir}}} 1 = 0 \quad (*)$$

 γ is empty $\Rightarrow d^{\mathrm{vir}} = d_0 + d_\infty + 1 - g$.

Theorem (Chang-LI-Li-L)

- 1. When γ is empty, $d_0=0$ and $d_\infty \geq g$, the relations (*) determine $\Theta_{g,\ell}$ in terms of $\Theta_{g',\ell'}$ such that $g' \leq g$ and $0 \leq \ell' < 7g 2$.
- 2. When γ is empty and $d_{\infty}=0$, the relations (*) determine $N_{g,d}$ in terms of
 - ▶ $N_{g',d'}$ such that g' < g and d' < d
 - ▶ $N_{g,d'}$ such that d' < g
 - ▶ $\Theta_{g',\ell}$ for g' < g and $\ell \le 2g 4$
 - ▶ $\Theta_{g,\ell}$ for $\ell \leq 2g-2$.

Corollary

- 1. F_g^W is determined by
 - $\{F_{\sigma'}^W : g' < g\}$
 - $\{\theta_{g,\ell'}^{\circ}: 0 \leq \ell' < 7g 2\}$, $\ell \equiv 2g 2 \mod 5$

Corollary

- 1. F_g^W is determined by
 - $\{F_{g'}^W : g' < g\}$
 - $\{\theta_{g,\ell'}^{\circ}: 0 \leq \ell' < 7g 2\}, \ \ell \equiv 2g 2 \mod 5$
- 2. F_g^Q is determined by
 - $\blacktriangleright \{F_{g'}^W: g' \leq g\}$
 - $\{F_{g'}^Q : g' < g\}$
 - $N_{g,0}, \ldots, N_{g,g-1}$. ($N_{g,0}$ is known.)

Corollary

- 1. F_g^W is determined by
 - ► $\{F_{g'}^W : g' < g\}$ ► $\{\theta_{g,\ell'} : 0 \le \ell' < 7g - 2\}, \ \ell \equiv 2g - 2 \mod 5$
- 2. F_g^Q is determined by
 - $\blacktriangleright \{F_{g'_{1}}^{W}: g' \leq g\}$
 - $\{F_{g'}^Q : g' < g\}$
 - $N_{g,0}, \dots, N_{g,g-1}$. ($N_{g,0}$ is known.)

Guo-Ross (2016): mirror formula of F_1^W

