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4d N = 4 SYM

4d N = 4 SYM with gauge group G is conjectured to have an SL2Z
Montonen-Olive duality:

τ =
θ

2π
+ i

4π

g2
= τ1 + iτ2 , τ → aτ + b

cτ + d
.

Under S-duality: G maps to the Langlands dual group G∨.

For G = U(1):

SSYM =
1

4π

∫
(τ2 ∗ F ∧ F − iτ1F ∧ F + ∗dφ∧ dφ) +

i

2π

∫
λ̃/∂λ

Symmetry group: SO(1,3)L × SU(4)R

Aµ : (2,2; 1) φi : (1,1; 6) λ : (2,1; 4) λ̃ : (1,2; 4)

Supersymmetries:
Q : (2,1; 4̄)

Q̃ : (1,2; 4)



Standard setup: τ constant along the 4d spacetime.

What happens when we allow τ to vary in spacetime?

# Variation of τ has to be consistent with the duality

# τ →−1/τ type monodromies in spacetime along loci where τ is
singular

# Geometrize: τ identified with complex structure of an elliptic curve
⇒ F-theory



String Theory Embedding

# 4d N = 4 SYM is the theory on D3-branes in IIB 10d string theory.

# IIB strings also have a self-duality SL2Z, acting on the complexified
string coupling ”axio-dilaton”

τIIB = C0 + ie−φ

# This duality descends on D3-branes to Montonen-Olive duality

In IIB, the ”varying τIIB” version is F-theory. [Vafa][Morrison, Vafa]

⇒ consider D3-branes in F-theory with varying τ .

Two setups:

• D3-instantons: τ varies over full 4d spacetime M4 [Martucci][Assel, SSN]

• ”Strings”: M4 = C ×R1,1, τ varies over C [Lawrie, SSN, Weigand]



More Motivations: Wrapped D3-branes in F-theory

F-theory is IIB with varying τ = C0 + ie−φ.
On elliptically fibered Calabi-Yau Yn: minimal susy

Eτ ↪→ Yn

↓

Bn−1 ⊃ C ← τ varies over C .

D3-branes in 6d (CY3) and 2d (CY5) F-theory compactifications:

# 6d: Classification of 6d (1,0) SCFTs from F-theory on CY three-folds
[Heckman, Morrison, Vafa]

→ tensionless strings are diagnostic for superconformal invariance
[Haghighat, Klemm, Vafa, del Zotto, Lockhart, ....]

# 2d: (0,2) F-theory vacua [SSN, Weigand][Apruzzi, Heckman, Hassler, Melnikov]

→ D3s for tadpole cancellation [CD3] = 1
24c4(CY5)− 1

2G4 ∧G4



Cartoon of Setup:

B

C

Yd

Eτ

Yd is an elliptically fibered CY d-fold, with section

y2 = x3 + fx+ g ,

f, g sections of K−4
B and K−6

B , respectively.
D3-branes/N = 4 SYM on C ×R1,1.

Questions:

# How to characterize wrapped D3-branes in F-theory on C ×R1,1?

# What is the 2d SCFTs on R1,1?

# Compute central charges, elliptic genus, etc for these 2d SCFTs –
comparison with AdS dual.
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I. 4d N = 4 SYM and Topological Duality Twist



D3-branes in IIB vs. F-theory

D3-brane effective theory: N=4 SYM with τ = θ
2π + i 4π

g2 = τ1 + iτ2

Symmetry group of N=4 SYM:

SO(1,3)L × SU(4)R

Supercharges
Q : (2,1; 4̄)

Q̃ : (1,2; 4)

And field content:

Aµ : (2,2; 1) φi : (1,1; 6) λ : (2,1; 4) λ̃ : (1,2; 4)

Consider theory on curved manifold, e.g. a curve C. To preserve susy:
require topological twist.



Type IIB, const τ : D3s on R1,1 ×C ⊂CY [Bershadsky, Johanson, Sadov, Vafa]

# Decomposition of supercharges:

SO(1,3)L × SU(4)R → SO(1,1)L ×U(1)C × SO(4)T ×U(1)R

Q : (2,1; 4̄) → (1++ ⊕ 1−−)⊗ ((2,1)−1 ⊕ (1,2)1)

# Topological twist: Redefine U(1)C with U(1)R to get scalar
supercharges:

Ttwist =
1

2
(TC + TR)

Q ⊃ (2,1)−1,0 ⊕ (1,2)+1,0

Q̃ ⊃ (2,1)+1,0 ⊕ (1,2)−1,0

⇒ 2d (4,4) supersymmetry

Scalars become sections of KC .

# BPS equations:

Fzz̄ − i[φz̄, φ̄z] = 0 , Dzφ = Dz̄φ̄ = 0

⇒ 2d SCFT: Sigma-model into Hitchin moduli spaceMH



F-theory (varying τ ): E.g. elliptic CY3: Eτ ↪→ Y3 → B ⊃ C

# N = 4 SYM with varying coupling τ and τ → γτ = aτ+b
cτ+d monodromy

# Under SL2Z, Q and Q̃ carry a U(1)D charge [Intriligator][Kapustin, Witten]

Q → e−
i
2α(γ)Q

Q̃ → e+ i
2α(γ)Q̃

where eiα(γ) =
cτ + d

|cτ + d|
, γ =

(
a b

c d

)
∈ SL2Z

Fields of abelian N = 4 SYM transform as: φi invariant and

λ → e−
i
2α(γ)λ

λ̃ → e+ i
2α(γ)λ̃

F (±)
µν =

√
τ2
2

(F ± ?F ) → e∓iα(γ)F (±)
µν

# Topologial duality twist:
U(1)D and U(1)C twisted with U(1)R ⊂ SU(4)R [Martucci][Assel, SSN]

Fields transform as sections of LD = K−1
B |C , with connection

AD =
dτ1
2τ2



Duality Twist on R1,1 ×C

Under Gtotal = SO(1,3)L × SU(4)R ×U(1)D:
Q : (2,1, 4̄)+1 and Q̃ : (1,2,4)−1

Twist on C ⊂ B ⊂ CY3: as before

SO(1,3)L→ SO(1,1)L ×U(1)C SU(4)R → SO(4)T ×U(1)R

Duality Twist:

T twist
C =

1

2
(TC + TR) T twist

D =
1

2
(TD + TR) .

Gtotal → SO(4)T × SO(1,1)L ×U(1)twist
C ×U(1)twist

D

Q = (2,1,4)+1 → (2,1)1;0,0 ⊕ (2,1)−1;−1,0 ⊕ (1,2)1;1,1 ⊕ (1,2)−1;0,1

Q̃ = (1,2,4)−1 → (2,1)1;0,0 ⊕ (2,1)−1;1,0 ⊕ (1,2)1;−1,−1 ⊕ (1,2)−1;0,−1

⇒ (0,4) SUSY in 2d R1,1 (remaining 4 supercharges are broken by
transformations under U(1)D)



Duality twists for D3-branes in CYn

Amount of susy in 2d depends on specific duality twist, which in turn
depends on the geometry:

SU(4)R →


SU(4)R CY2 Duality twist: (0,8)

SO(4)T ×U(1)R CY3 Duality twist: (0,4)

SU(2)R × SO(2)T ×U(1)R CY4 Duality twist: (0,2)

SU(3)R ×U(1)R CY5 Duality twist: (0,2)

NB:
# All duality twisted 2d models are chiral
# K3 requires only one twist Ttwist = 1

2 (TC + TD)



Spectrum of 2d Strings

Decompose abelian 4d N = 4 matter with respect to the topological
duality twist: and identify fields as bundle-valued forms. E.g.
CY4-Duality Twist:

Gtotal → SU(2)R ×U(1)twist
C ×U(1)twist

D

φi : (1,6)0 → 10,0 ⊕ 10,0 ⊕ 2+1,+1 ⊕ 2−1,−1

Identify:

(qtwist
C , qtwist

D ) = (−1,0) section of KC

(qtwist
C , qtwist

D ) = (0,−1) section of LD = K−1
B |C

⇒ 2 1
2 ,

1
2

is a section of NC/B as KC = L−1
D ⊗Λ2NC/B



Spectrum of duality twisted D3 on C ⊂ CY3

(qtwist
C , qtwist

D ) Fermions Bosons (0,4) Multiplicity

(1,1) (2,1)1 ψ+ (1,1)0, (1,1)0 ā, φ̄
Hyper

h0(C,KC ⊗LD)

(−1,−1) (2,1)1 ψ̃+ (1,1)0, (1,1)0 a, φ = g− 1 + c1(B2) ·C

(0,0)
(1,2)1 µ+

(2,2)0 ϕ
Twisted

h0(C) = 1
(1,2)1 µ̃+ Hyper

(1,0) (1,2)−1 ρ̃−
Fermi h1(C) = g

(−1,0) (1,2)−1 ρ−

(0,1) (2,1)−1 λ− (1,1)2 v+
Vector h1(C,KC ⊗LD) = 0

(0,−1) (2,1)−1 λ̃− (1,1)−2 v−

Note: this is for the abelian N = 4 SYM.



Key omission so far: Singular Fibers

Geometrize: τ as complex structure of elliptic fibration Yd in F-theory

y2 = x3 + fx+ g

Elliptic fibration can becomes singular.

B

Δ C

Yd

# ∆ = 4f3 + 27g2 = discriminant locus (F-theory: ’7-branes’)

# τ undergoes SL2Z monodromy around ∆ = 0 loci.

# Duality Defects at C ∩∆ characterized by Kodaira singular fibers
[In F-theory: at intersections with 7-branes get 3-7 open strings]



BPS-equations and Hitchin moduli space

For τ constant, N = 4 SYM on C ×R1,1: 2d (4,4) susy sigma-model into
the Hitchin moduli space [Bershadsky, Johansen, Sadov, Vafa][Kapustin, Witten]

In duality-twisted theories the BPS equations along C are [Lawrie, SSN]

(∗)
FA − i[φ,φ] = 0

DAφ = DAφ = 0

Duality-twisted Hitchin equations, with

FA ≡
1

2
(DAa−DAa) , A =

dτ2
2τ1

where now
φ,a ∈ H0(KC ⊗LD ⊗O(δ))

including δ = ∆∩C defects. Note: LD = K−1
B |C , and φ: NC/B ⊗O(δ).

⇒
4d N = 4 SYM on C ×R2 is a sigma-model into the

duality twisted Hitchin moduli space for (∗)



Alternative Description?

S-duality acts on the Hitchin moduli space as T-duality/Mirror Symmetry
on the fibers of the Hitchin fibration ofMH : setup with defects at δ

C → MH = (T d→ BH)

where now the fiber undergoes T-duality/MS, as they encircle defects at
δ = C ∩∆: ”T-fold”

C
τ γτ

τ γ'τ 

W
γ

δ

W
γ'

γ, γ′ ∈ SL2Z
W γ are 1d walls, corresponding to the branch-cuts of τ .



Gauge theoretic description of walls and defects

Locally we can cut up C = ∪Ci and Wij 3d walls between these regions,
where τ has a branch-cut.

Define
FD = τ1F + iτ2 ? F

then the action of γ ∈ SL2Z monodromy on the gauge field is

(F
(j)
D , F (j))

∣∣∣
Wij

= γ(F
(i)
D , F (i))

∣∣∣
Wij

This maps the gauge part SF = − i
4π

∫
C×R1,1 F ∧ FD to itself, except for an

offset on the 3d wall (see also [Ganor])

SγWij
= − i

4π

∫
Wij

(
A(i) ∧ F (i)

D −A
(j) ∧ F (j)

D

)
E.g. γ = T k this is a level k CS term.



Theory on the Duality Defect

3-7 strings for general elliptic fibrations are poorly understood. E.g. the
naive expectation that the number of defect modes is C.[∆] = 12C · c1(B),
is wrong, as not all 7-branes are in the same SL2Z rep.

Other ways to access the spectrum of defects:

# 6d point of view:
M5-branes on elliptic surfaces⇒ 3-7 modes from dim redux

# Anomalies: Strings carry chiral modes⇒ Anomalies

# Holography: AdS dual to 2d SCFTs computes central charges



II. 6d Point of View and Duality Defects



6d Point of View

Unique 6d SCFT with ADE gauge group and (2,0) supersymmetry:

{6d (2,0) theory on Eτ ×R1,3} = {N = 4 SYM on R1,3 with coupling τ }

Generalization:

{6d (2,0) theory on elliptic fibration} = { 4d N = 4 SYM with varying τ}

B

M5 on C x R1,1

B

C

E

D3 on C x R1,1

M/F Duality

Ĉ = (Eτ → C) is obtained from restricting the elliptic fibration to C.

Standard Topological Twist on Kähler manifold Ĉ of the 6d (2,0) theory
= Topological duality twist of 4d N=4
Advantage: can be generalized to non-abelian theory, includes defect
modes [Assel, SSN]



The 6d (2,0) Theory

# Lorentz and R-symmetry:

SO(6)L × Sp(4)R ⊂ OSp(6|4)

# Tensor multiplet:

BMN : (15,1) with selfdualityH = dB = ∗6H

Φm̂n̂ : (1,5)

ρm̂ : (4̄,4)

# Abelian EOMs:

H− = dH = 0 , ∂2Φm̂n̂ = 0 , /∂ρm̂ = 0 .



6d (2,0) Theory on Elliptic Surface Ĉ

Symmetries: SO(1,5)L × Sp(4)R ⊂ OSp(6|4)

# Standard topological twist:

SO(1,5)L→ SO(1,1)L × SU(2)` ×U(1)` : 4→ 20,1 ⊕ 11,−1 ⊕ 1−1,−1

Sp(4)R → SU(2)R ×U(1)R : 4→ 21 ⊕ 2−1

# Twist on Kähler surface: N = (0,4), cf. [Maldacena, Strominger, Witten]

TU(1)twist = TU(1)` + TU(1)R

Specializing to an elliptic Kähler surface Ĉ, with base C. Fibration:

ωEτ =
dτ1
2τ2

= AD

Thus: TU(1)` = TU(1)C + TU(1)D and the top twist for the M5-brane on
Kähler surface becomes topological duality twist and can be generalized
to non-abelian case. [Assel, SSN]



Including Singular Fibers

B

Δ C

Yd

Singular fibers:
additional ωi(1,1) from rational curves in Kodaira fibers

H = dB =

k−1∑
i=1

(
∂zbidz ∧ ωi(1,1) + ∂z̄bidz̄ ∧ ωi(1,1)

)
!
= ∗H

⇒ chiral modes bi localized along C ∩∆ (and R1,1)
⇒ global (flavor) symmetry, induced by the type of codim 1 singular
fibers



Spectrum of 2d (0,4) from M5 on Ĉ ⊂ CY3

Zero-modes counted in terms of self-intersection of C in B2 and
intersection with c1(B2), where B2= base of the CY3 elliptic fibration

Multiplicity (0,4)Multiplet Complex scalars R-Weyl L-Weyl

h0,0(Ĉ) = 1 Hyper 2 2 −

h0,1(Ĉ) = 1
2
(C ·C − c1(B2) ·C) Fermi − − 2

h0,2(Ĉ) = 1
2
(C ·C + c1(B2) ·C) Hyper 2 2 −

h1,1(Ĉ)− 2h0,2(Ĉ)− 2 = 8 c1(B2) ·C half-Fermi − − 1



Central Charges

Direct computation from 6d (2,0) on the elliptic surface Ĉ = Eτ → C

times R1,1:
cR = 3C ·C + 3c1(B) ·C + 6

cL = 3C ·C + 9c1(B) ·C + 6

From spectrum of one M5 [MSW][Vafa][Minsian,Moore][Lawrie, SSN, Weigand]

Matches with duality twisted N = 4 SYM except for extra Fermi
multiplets, which precisely account for the defect modes

δcdefect
L = 8c1(B) ·C



Generalization: intersecting defects

In models where τ varies over the full 4d spacetime S, the duality defects
are curves, these chiral supersymmetric defects D intersect at points

Pαβ = Dα ∩Dβ = S ∩∆α ∩∆β

Geometrically: Kodaira fiber P1s become further reducible P1
i → C+ +C−

C
-

S

C
+

P

D'=S∩Δ'

D=S∩Δ

Duality defects form network
and at intersections:(∫

C+

+

∫
C−

)
B=

∫
P1
i

B → b+ + b− = bi

⇒ correspond to flavor symmetry enhancement
⇒ Description: resolved Tate model for elliptic fibration
incl codim 2 fibers [Katz, Morrison, SSN, Sully][Hayashi, Lawrie, Morrison, SSN]



Strings in 4d and 2d F-theory Compactifications

# CY4 Duality twist N = (0,2):

cR =3(g+ c1(B3) ·C + h0(C,NC/B3
))

cL =3(g+ h0(C,NC/B3
)) + c1(B3) ·C + 8c1(B) ·C

# CY5 Duality twist N = (0,2): No M5 picture, but M2

cL = 3(g+ h0(C,NC/B4
)− 1) + 9c1(B4) ·C

cR = 3(g+ c1(B4) ·C + h0(C,NC/B4
)− 1)

Application to 2d (0,2) vacua from CY5 compactifications of F-theory
[SSN, Weigand], [Apruzzi, Hassler, Heckman, Melnikov]. Tadpole cancellation
requires D3-branes wrapped on curves in the class (for G4 = 0)

C =
1

24
c4(Y5)|B4



Non-Abelian Generalization?

Lets take stock:

# For N=4 SYM with G = U(1) we have a complete description of the
spectrum, and central charges for duality twisted compactifications
to 2d⇒ new chiral 2d SCFTs

# BPS equations are duality twisted Hitchin equations

# 6d point of view: useful to get defect modes (from the geometry of
the singular fibers).

However: spectrum computations restricted to G = U(1)

Physicists:
SCFTs with U(N) gauge group, large N: description in terms of
”holographically dual” gravity solution.



III. AdS/CFT and Duality Twisted N=4 SYM

[Couzens, Lawrie, Martelli, SSN, Wong]



AdS/CFT in a Nutshell

A superconformal field theory in d dimensions is ”dual” to a gravity or
string theory in d+ 1 dimensional AdSd+1 space, where the spacetime of
the SCFT lives at the boundary of AdS:

N = 4 SYM G = U(N) ‘dual’ to IIB strings in AdS5 × S5.

What’s the point?

The gravity/string dual describes the SCFT in a particular limit, namely
at strong coupling:
λ = gYMN

2 is large in the gravity, small in the gauge theory descriptions.

For certain supersymmetrically protected (BPS) quantities, the two sides
can be computed in either description, and compared.



AdS3 in F-theory

Our setup:
2d SCFTs, which should have AdS3 duals in Type IIB supergravity.

Can we construct the dual AdS3 solution, and compute e.g. central
charges holographically?

⇒ Yes, but we need to extend the standard framework of AdS/CFT to
include varying τ (i.e. F-theory rather than IIB AdS solutions)



AdS3 dual to (0,4) in F-theory

In summary: the most general F-theory solution dual to (0,4) SCFTs in 2d
is

AdS3 × S3/Γ× (Eτ ↪→ Y3→ B2) , F (2) = JB

# τ = complex structure of Eτ
JB = Kähler form on B2, discrete Γ ⊂ SU(2)

# Physical type IIB compactification space is AdS3 × S3/Γ×B2

B2= Kähler surface

# B2 constrained by the existence of an elliptic fibration with
Weierstrass model, dPn, Fn, blowups thereof or Enriques [Grassi][Gross]

# For τ constant: reduces to well-known AdS3 × S3 ×CY2 solution



Properties of the Solution

AdS3 × S3 × (Eτ ↪→ Y3→ B2)

• Supersymmetry: Killing spinors transform as 2 of SU(2)r ⊂ SO(4)T

acting on S3

⇒ R-symmetry is SU(2)r of the (0,4) small SCA

• Can allow also for S3/Γ retaining (0,4) supersymmetry.

• Γ = ZM : additional M KK-monopoles
⇒ F-theory brane-setup in: Y3 × TNM ×R1,1.
⇒ Special case of F-theory on CY 5-folds



Holographic Central Charges in IIB/F

• Leading order in N : by classical gravity results of Brown-Henneaux

c
(2)
L = c

(2)
R = 3

RAdS3

2G
(3)
N

= 3N2 vol(S3)vol(B2)32π2

vol(S3)2
= 6N2vol(B2)

• N = 5-form flux quantum through S3 ×C, C ⊂ B2

• Computation of volume of B2:
# Fact: The metric on B2 is singular (cf. Stringy Cosmic Strings
[Greene, Shapere, Vafa, Yau]), as τ of the elliptic fibration can become
singular. The metric on Y3 is smooth.
# Compute in Y3: B2 is a divisor (section of the fibration) and its
volume is

vol(B2) =
1

2

∫
Y3

ω0 ∧ π∗JB ∧ π∗JB

where ω0 = (1,1) form dual to B2 and π : Y3→ B2.



• Algebro-geometrically: vol(B2) = 1
2

∫
B
JB ∧ JB = 1

2C ·B C, where
C = curve dual (in B) to JB

c
(2)
L = c

(2)
R = 3N2C ·C

• Subleading order: CS-coupling of 7-branes:

c
(1)
L − c

(1)
R = 6Nc1(B2) ·C .

and level of R-symmetry kR = cR/6 from gauging of the SO(4)T

isometry of the S3 (M = 1)

k
(1)
R =

1

2
Nc1(B) ·C

• Central Charge:

cAdSL = 3N2C ·C + 9Nc1(B) ·C

cAdSR = 3N2C ·C + 3Nc1(B) ·C .



• Comparison to spectrum of N = 4 SYM on R1,1×C with duality twist

cspecL = 3C ·C + 9c1(B) ·C + 6 , cspecR = 3C ·C + 3c1(B) ·C + 6 .

Spectrum computation includes center of mass mode (cL, cR) = (4,6),
which decouples in the IR:

cAdSL |N=1 = 3C ·C + 9c1(B) ·C + ...

cAdSR |N=1= 3C ·C + 3c1(B) ·C .

matches spectrum for N = 1 in first two leading orders. cR exact
result (see also match with self-dual string anomaly in 6d), but cL
gets corrections of O(1).

Cross-checks:
M5-brane anomaly polynomial: I4 =

∫
P
I8 using approach in [Freed, Harvey,

Minasian, Moore]. We find agreement with the above result.



Summary and Outlook

New chiral 2d SCFTs from dimensional reduction of N = 4 SYM with
varying τ .

# G = U(1): complete understanding of spectrum, defect modes, central
charges, using 6d point of view and geometry of singular fibers.

# Physics workaround: Use holographic duality to compute central
charges for general U(N) gauge groups.

# Nice upshot: New holographic framework of AdS/CFT within F-theory.

# General G: Duality-twisted Hitchin system, however, how are duality
defects characterized?

# Math question:
characterize the duality-twisted (generalized) Hitchin moduli space
including duality defects; possibly useful to utilizing T-duality/mirror
symmetry induced by S-duality action on τ .


