4d N = 4 SYM with Varying Coupling

Sakura Schäfer-Nameki

String-Math 2017, Hamburg, July 2017

Work in Collaboration with Benjamin Assel, Chris Couzens, Craig Lawrie Dario Martelli, Jin-Mann (Jenny) Wong, Timo Weigand

4d N = 4 SYM

4d N = 4 SYM with gauge group G is conjectured to have an $SL_2\mathbb{Z}$ Montonen-Olive duality:

$$\tau = \frac{\theta}{2\pi} + i\frac{4\pi}{g^2} = \tau_1 + i\tau_2, \qquad \tau \to \frac{a\tau + b}{c\tau + d}.$$

Under S-duality: *G* maps to the Langlands dual group G^{\vee} . For G = U(1):

$$S_{SYM} = \frac{1}{4\pi} \int \left(\tau_2 * F \wedge F - i\tau_1 F \wedge F + *d\phi \wedge d\phi \right) + \frac{i}{2\pi} \int \tilde{\lambda} \partial \!\!\!/ \lambda$$

Symmetry group: $SO(1,3)_L \times SU(4)_R$

 A_{μ} : (2,2;1) ϕ_i : (1,1;6) λ : (2,1;4) $\tilde{\lambda}$: (1,2;4)

Supersymmetries:

$$Q:~({f 2},{f 1};{f 4})$$

 $\widetilde{Q}:~({f 1},{f 2};{f 4})$

Standard setup: τ constant along the 4d spacetime.

What happens when we allow τ to vary in spacetime?

- # Variation of τ has to be consistent with the duality
- # $\tau \rightarrow -1/\tau$ type monodromies in spacetime along loci where τ is singular
- # Geometrize: τ identified with complex structure of an elliptic curve \Rightarrow F-theory

String Theory Embedding

- # 4d N = 4 SYM is the theory on D3-branes in IIB 10d string theory.
- # IIB strings also have a self-duality $SL_2\mathbb{Z}$, acting on the complexified string coupling "axio-dilaton"

$$\tau_{IIB} = C_0 + ie^{-\phi}$$

This duality descends on D3-branes to Montonen-Olive duality In IIB, the "varying τ_{IIB} " version is F-theory. [Vafa][Morrison, Vafa] \Rightarrow consider D3-branes in F-theory with varying τ .

Two setups:

- D3-instantons: τ varies over full 4d spacetime M_4 [Martucci][Assel, SSN]
- "Strings": $M_4 = C \times \mathbb{R}^{1,1}$, τ varies over C

[Lawrie, SSN, Weigand]

More Motivations: Wrapped D3-branes in F-theory

F-theory is IIB with varying $\tau = C_0 + ie^{-\phi}$. On elliptically fibered Calabi-Yau Y_n : minimal susy

$$\mathbb{E}_{\tau} \hookrightarrow Y_n$$

$$\downarrow$$

$$B_{n-1} \supset C \leftarrow \tau \text{ varies over } C.$$

D3-branes in 6d (CY3) and 2d (CY5) F-theory compactifications:

6d: Classification of 6d (1,0) SCFTs from F-theory on CY three-folds [Heckman, Morrison, Vafa]

→ tensionless strings are diagnostic for superconformal invariance [Haghighat, Klemm, Vafa, del Zotto, Lockhart,]

2d: (0,2) F-theory vacua [SSN, Weigand][Apruzzi, Heckman, Hassler, Melnikov] \rightarrow D3s for tadpole cancellation $[C_{D3}] = \frac{1}{24}c_4(CY_5) - \frac{1}{2}G_4 \wedge G_4$ Cartoon of Setup:

 Y_d is an elliptically fibered CY *d*-fold, with section

$$y^2 = x^3 + fx + g \,,$$

f, g sections of K_B^{-4} and K_B^{-6} , respectively. D3-branes/N = 4 SYM on $C \times \mathbb{R}^{1,1}$.

Questions:

- # How to characterize wrapped D3-branes in F-theory on $C \times \mathbb{R}^{1,1}$?
- # What is the 2d SCFTs on $\mathbb{R}^{1,1}$?
- # Compute central charges, elliptic genus, etc for these 2d SCFTs comparison with AdS dual.

Plan

- I. 4d N = 4 SYM and Duality Twist
- II. 6d point of view and Duality Defects
- III. New chiral 2d (0,2) SCFTs and AdS duals

I. 4d N = 4 SYM and Topological Duality Twist

D3-branes in IIB vs. F-theory

D3-brane effective theory: N=4 SYM with $\tau = \frac{\theta}{2\pi} + i\frac{4\pi}{g^2} = \tau_1 + i\tau_2$ Symmetry group of N=4 SYM:

 $SO(1,3)_L \times SU(4)_R$

Supercharges

$$Q: (2,1;\bar{4})$$

 $\widetilde{Q}: (1,2;4)$

And field content:

 A_{μ} : (2,2;1) ϕ_i : (1,1;6) λ : (2,1;4) $\tilde{\lambda}$: (1,2; $\overline{4}$)

Consider theory on curved manifold, e.g. a curve *C*. To preserve susy: require topological twist.

Type IIB, const τ : D3s on $\mathbb{R}^{1,1} \times C \subset CY$ [Bershadsky, Johanson, Sadov, Vafa]

Decomposition of supercharges:

 $SO(1,3)_L \times SU(4)_R \rightarrow SO(1,1)_L \times U(1)_C \times SO(4)_T \times U(1)_R$ $Q: \qquad (\mathbf{2},\mathbf{1};\bar{\mathbf{4}}) \rightarrow (\mathbf{1}_{++} \oplus \mathbf{1}_{--}) \otimes ((\mathbf{2},\mathbf{1})_{-1} \oplus (\mathbf{1},\mathbf{2})_1)$

Topological twist: Redefine $U(1)_C$ with $U(1)_R$ to get scalar supercharges:

$$T_{\text{twist}} = \frac{1}{2} (T_C + T_R)$$
$$Q \supset (\mathbf{2}, \mathbf{1})_{-1,0} \oplus (\mathbf{1}, \mathbf{2})_{+1,0}$$
$$\Rightarrow 2d (4, 4) \text{ supersymmetry}$$

Scalars become sections of K_C .

BPS equations:

$$F_{z\bar{z}} - i[\phi_{\bar{z}}, \bar{\phi}_z] = 0, \qquad D_z \phi = D_{\bar{z}} \bar{\phi} = 0$$

 \Rightarrow 2d SCFT: Sigma-model into Hitchin moduli space \mathcal{M}_H

F-theory (varying τ): E.g. elliptic CY3: $\mathbb{E}_{\tau} \hookrightarrow Y_3 \to B \supset C$

- # N = 4 SYM with varying coupling τ and $\tau \rightarrow \gamma \tau = \frac{a\tau + b}{c\tau + d}$ monodromy
- # Under $SL_2\mathbb{Z}$, Q and \tilde{Q} carry a $U(1)_D$ charge [Intriligator][Kapustin, Witten]

$$\begin{array}{l} Q \to e^{-\frac{i}{2}\alpha(\gamma)}Q\\ \widetilde{Q} \to e^{+\frac{i}{2}\alpha(\gamma)}\widetilde{Q} \end{array} \quad \text{where} \quad e^{i\alpha(\gamma)} = \frac{c\tau + d}{|c\tau + d|}, \quad \gamma = \begin{pmatrix} a \ b \\ c \ d \end{pmatrix} \in SL_2\mathbb{Z} \end{array}$$

Fields of abelian N = 4 SYM transform as: ϕ^i invariant and

$$\lambda \to e^{-\frac{i}{2}\alpha(\gamma)}\lambda$$
$$\tilde{\lambda} \to e^{+\frac{i}{2}\alpha(\gamma)}\tilde{\lambda}$$
$$F_{\mu\nu}^{(\pm)} = \frac{\sqrt{\tau_2}}{2}(F \pm \star F) \to e^{\mp i\alpha(\gamma)}F_{\mu\nu}^{(\pm)}$$

Topologial duality twist:

 $U(1)_D$ and $U(1)_C$ twisted with $U(1)_R \subset SU(4)_R$ [Martucci][Assel, SSN] Fields transform as sections of $\mathcal{L}_D = K_B^{-1}|_C$, with connection

$$\mathcal{A}_D = \frac{d\tau_1}{2\tau_2}$$

Duality Twist on $\mathbb{R}^{1,1} \times C$

Under $G_{\text{total}} = SO(1,3)_L \times SU(4)_R \times U(1)_D$: $Q : (\mathbf{2},\mathbf{1},\bar{\mathbf{4}})_{+1} \text{ and } \tilde{Q} : (\mathbf{1},\mathbf{2},\mathbf{4})_{-1}$ Twist on $C \subset B \subset CY_3$: as before

 $SO(1,3)_L \to SO(1,1)_L \times U(1)_C \qquad SU(4)_R \to SO(4)_T \times U(1)_R$

Duality Twist:

$$\begin{split} T_C^{\text{twist}} &= \frac{1}{2} (T_C + T_R) \qquad T_D^{\text{twist}} = \frac{1}{2} (T_D + T_R) \,. \\ G_{\text{total}} &\to SO(4)_T \times SO(1,1)_L \times U(1)_C^{\text{twist}} \times U(1)_D^{\text{twist}} \\ Q &= (\mathbf{2}, \mathbf{1}, \overline{\mathbf{4}})_{+1} \quad \to \quad \underbrace{(\mathbf{2}, \mathbf{1})_{1;\mathbf{0},\mathbf{0}} \oplus (\mathbf{2}, \mathbf{1})_{-1;-1,\mathbf{0}} \oplus (\mathbf{1}, \mathbf{2})_{1;1,1} \oplus (\mathbf{1}, \mathbf{2})_{-1;0,1}}_{\mathbf{Q} = (\mathbf{1}, \mathbf{2}, \mathbf{4})_{-1} \quad \to \quad \underbrace{(\mathbf{2}, \mathbf{1})_{1;\mathbf{0},\mathbf{0}} \oplus (\mathbf{2}, \mathbf{1})_{-1;1,0} \oplus (\mathbf{1}, \mathbf{2})_{1;-1,-1} \oplus (\mathbf{1}, \mathbf{2})_{-1;0,-1}}_{\mathbf{Q} = (\mathbf{0}, \mathbf{4}) \, \text{SUSY} \text{ in } 2d \, \mathbb{R}^{1,1} \text{ (remaining 4 supercharges are broken by transformations under } U(1)_D) \end{split}$$

Duality twists for D3-branes in CY_n

Amount of susy in 2d depends on specific duality twist, which in turn depends on the geometry:

$$SU(4)_R \rightarrow \begin{cases} SU(4)_R & \operatorname{CY}_2 \text{ Duality twist: } (0,8) \\ SO(4)_T \times \underline{U(1)_R} & \operatorname{CY}_3 \text{ Duality twist: } (0,4) \\ SU(2)_R \times SO(2)_T \times \underline{U(1)_R} & \operatorname{CY}_4 \text{ Duality twist: } (0,2) \\ SU(3)_R \times \underline{U(1)_R} & \operatorname{CY}_5 \text{ Duality twist: } (0,2) \end{cases}$$

NB:

All duality twisted 2d models are chiral # K3 requires only one twist $T_{\text{twist}} = \frac{1}{2}(T_C + T_D)$

Spectrum of 2d Strings

Decompose abelian 4d N = 4 matter with respect to the topological duality twist: and identify fields as bundle-valued forms. E.g. CY4-Duality Twist:

$$G_{\text{total}} \rightarrow SU(2)_R \times U(1)_C^{\text{twist}} \times U(1)_D^{\text{twist}}$$
$$\phi^i : (\mathbf{1}, \mathbf{6})_0 \rightarrow \mathbf{1}_{0,0} \oplus \mathbf{1}_{0,0} \oplus \mathbf{2}_{+1,+1} \oplus \mathbf{2}_{-1,-1}$$

Identify:

$$(q_C^{\text{twist}}, q_D^{\text{twist}}) = (-1, 0) \text{ section of } K_C$$
$$(q_C^{\text{twist}}, q_D^{\text{twist}}) = (0, -1) \text{ section of } \mathcal{L}_D = K_B^{-1}|_C$$
$$\Rightarrow \mathbf{2}_{\frac{1}{2}, \frac{1}{2}} \text{ is a section of } N_{C/B} \text{ as } K_C = \mathcal{L}_D^{-1} \otimes \Lambda^2 N_{C/B}$$

$(q_C^{\text{twist}}, q_D^{\text{twist}})$	Fermions		Bosons		(0, 4)	Multiplicity	
(1,1)	$(2,1)_1$	ψ_+	$(1,1)_{0},(1,1)_{0}$	$\bar{a}, \bar{\phi}$	Hypor	$h^0(C, K_C \otimes \mathcal{L}_D)$	
(-1, -1)	$(2,1)_1$	$\tilde{\psi}_+$	$({f 1},{f 1})_0$, $({f 1},{f 1})_0$	a, ϕ	rryper	$= g - 1 + c_1(B_2) \cdot C$	
(0,0)	$(1,2)_1$	μ_+	$(2, 2)_0$	arphi	Twisted	$h^0(C) - 1$	
	$(1,2)_1$	$\tilde{\mu}_+$			Hyper	n(C) - 1	
(1,0)	$(1,2)_{-1}$	$\tilde{ ho}_{-}$			Formi	$h^1(C) = a$	
(-1,0)	$(1,2)_{-1}$	ρ_{-}			1 011111	n(C) - g	
(0,1)	$(2,1)_{-1}$	λ_{-}	$({\bf 1},{\bf 1})_2$	v_+	Vector	$b^1(C, K_{\alpha} \otimes C_{\alpha}) = 0$	
(0, -1)	$(2,1)_{-1}$	$ \tilde{\lambda}_{-}$	$(1,1)_{-2}$	v_{-}		$n(\mathbf{C},\mathbf{R}_{C}\otimes\boldsymbol{L}_{D})=0$	

Spectrum of duality twisted D3 on $C \subset CY3$

Note: this is for the abelian N = 4 SYM.

Key omission so far: Singular Fibers

Geometrize: τ as complex structure of elliptic fibration Y_d in F-theory

 $y^2 = x^3 + fx + g$

Elliptic fibration can becomes singular.

$\Delta = 4f^3 + 27g^2$ = discriminant locus (F-theory: '7-branes')

- # τ undergoes $SL_2\mathbb{Z}$ monodromy around $\Delta = 0$ loci.
- # Duality Defects at $C \cap \Delta$ characterized by Kodaira singular fibers [In F-theory: at intersections with 7-branes get 3-7 open strings]

BPS-equations and Hitchin moduli space

For τ constant, N = 4 SYM on $C \times \mathbb{R}^{1,1}$: 2d (4,4) susy sigma-model into the Hitchin moduli space [Bershadsky, Johansen, Sadov, Vafa][Kapustin, Witten] In duality-twisted theories the BPS equations along *C* are [Lawrie, SSN]

*)
$$\mathcal{F}_{\mathcal{A}} - i[\overline{\phi}, \phi] = 0$$
$$D_{\mathcal{A}}\overline{\phi} = \overline{D}_{\mathcal{A}}\phi = 0$$

Duality-twisted Hitchin equations, with

$$\mathcal{F}_{\mathcal{A}} \equiv \frac{1}{2} (\overline{D}_{\mathcal{A}} a - D_{\mathcal{A}} \overline{a}), \qquad \mathcal{A} = \frac{d\tau_2}{2\tau_1}$$

where now

$$\phi, a \in H^0(K_C \otimes \mathcal{L}_D \otimes \mathcal{O}(\delta))$$

including $\delta = \Delta \cap C$ defects. Note: $\mathcal{L}_D = K_B^{-1}|_C$, and ϕ : $N_{C/B} \otimes \mathcal{O}(\delta)$.

4d N = 4 SYM on $C \times \mathbb{R}^2$ is a sigma-model into the duality twisted Hitchin moduli space for (*)

 \Rightarrow

Alternative Description?

S-duality acts on the Hitchin moduli space as T-duality/Mirror Symmetry on the fibers of the Hitchin fibration of \mathcal{M}_H : setup with defects at δ

$$C \to \mathcal{M}_H = (T^d \to B_H)$$

where now the fiber undergoes T-duality/MS, as they encircle defects at $\delta = C \cap \Delta$: "T-fold"

 $\gamma, \gamma' \in SL_2\mathbb{Z}$

 W^{γ} are 1d walls, corresponding to the branch-cuts of τ .

Gauge theoretic description of walls and defects

Locally we can cut up $C = \bigcup C_i$ and W_{ij} 3d walls between these regions, where τ has a branch-cut.

Define

$$F_D = \tau_1 F + i\tau_2 \star F$$

then the action of $\gamma \in SL_2\mathbb{Z}$ monodromy on the gauge field is

$$(F_D^{(j)}, F^{(j)})\Big|_{W_{ij}} = \gamma(F_D^{(i)}, F^{(i)})\Big|_{W_{ij}}$$

This maps the gauge part $S_F = -\frac{i}{4\pi} \int_{C \times \mathbb{R}^{1,1}} F \wedge F_D$ to itself, except for an offset on the 3d wall (see also [Ganor])

$$S_{W_{ij}}^{\gamma} = -\frac{i}{4\pi} \int_{W_{ij}} \left(A^{(i)} \wedge F_D^{(i)} - A^{(j)} \wedge F_D^{(j)} \right)$$

E.g. $\gamma = T^k$ this is a level k CS term.

Theory on the Duality Defect

3-7 strings for general elliptic fibrations are poorly understood. E.g. the naive expectation that the number of defect modes is $C.[\Delta] = 12C \cdot c_1(B)$, is wrong, as not all 7-branes are in the same $SL_2\mathbb{Z}$ rep.

Other ways to access the spectrum of defects:

6d point of view:

M5-branes on elliptic surfaces \Rightarrow 3-7 modes from dim redux

- # Anomalies: Strings carry chiral modes \Rightarrow Anomalies
- # Holography: AdS dual to 2d SCFTs computes central charges

II. 6d Point of View and Duality Defects

6d Point of View

Unique 6d SCFT with ADE gauge group and (2,0) supersymmetry:

{6d (2,0) theory on $\mathbb{E}_{\tau} \times \mathbb{R}^{1,3}$ } = {N = 4 SYM on $\mathbb{R}^{1,3}$ with coupling τ } Generalization:

{6d (2,0) theory on elliptic fibration} = { 4d N = 4 SYM with varying τ }

 $\widehat{C} = (\mathbb{E}_{\tau} \to C)$ is obtained from restricting the elliptic fibration to C.

Standard Topological Twist on Kähler manifold \hat{C} of the 6d (2,0) theory = Topological duality twist of 4d N=4

Advantage: can be generalized to non-abelian theory, includes defect modes [Assel, SSN]

The 6d (2,0) Theory

Lorentz and R-symmetry:

$$SO(6)_L \times Sp(4)_R \subset OSp(6|4)$$

Tensor multiplet:

 $\begin{array}{ll} \mathcal{B}_{MN}: & (\mathbf{15},\mathbf{1}) & \text{with selfduality } \mathcal{H} = d\mathcal{B} = \ast_{6} \mathcal{H} \\ \\ \Phi^{\widehat{m}\widehat{n}}: & (\mathbf{1},\mathbf{5}) \\ \\ \rho^{\widehat{m}}: & (\bar{\mathbf{4}},\mathbf{4}) \end{array}$

Abelian EOMs:

$$\mathcal{H}^{-} = d\mathcal{H} = 0, \qquad \partial^{2} \Phi^{\widehat{m}\widehat{n}} = 0, \qquad \not \partial \rho^{\widehat{m}} = 0.$$

6d (2,0) Theory on Elliptic Surface \widehat{C}

Symmetries: $SO(1,5)_L \times Sp(4)_R \subset OSp(6|4)$

Standard topological twist:

$$SO(1,5)_L \to SO(1,1)_L \times SU(2)_\ell \times U(1)_\ell : \qquad \mathbf{4} \to \mathbf{2}_{0,1} \oplus \mathbf{1}_{1,-1} \oplus \mathbf{1}_{-1,-1}$$
$$Sp(4)_R \to SU(2)_R \times U(1)_R : \qquad \mathbf{4} \to \mathbf{2}_1 \oplus \mathbf{2}_{-1}$$

Twist on Kähler surface: N = (0, 4), cf. [Maldacena, Strominger, Witten]

$$T_{U(1)_{\text{twist}}} = T_{U(1)_{\ell}} + T_{U(1)_{R}}$$

Specializing to an elliptic Kähler surface \widehat{C} , with base *C*. Fibration:

$$\omega^{\mathbb{E}_{\tau}} = \frac{d\tau_1}{2\tau_2} = \mathcal{A}_D$$

Thus: $T_{U(1)_{\ell}} = T_{U(1)_{C}} + T_{U(1)_{D}}$ and the top twist for the M5-brane on Kähler surface becomes topological duality twist and can be generalized to non-abelian case. [Assel, SSN]

Including Singular Fibers

Singular fibers:

additional $\omega^i_{(1,1)}$ from rational curves in Kodaira fibers

$$\mathcal{H} = d\mathcal{B} = \sum_{i=1}^{k-1} \left(\partial_z b_i dz \wedge \omega^i_{(1,1)} + \partial_{\bar{z}} b_i d\bar{z} \wedge \omega^i_{(1,1)} \right) \stackrel{!}{=} *\mathcal{H}$$

⇒ chiral modes b_i localized along $C \cap \Delta$ (and $\mathbb{R}^{1,1}$) ⇒ global (flavor) symmetry, induced by the type of codim 1 singular fibers

Spectrum of 2d (0, 4) from M5 on $\widehat{C} \subset CY_3$

Zero-modes counted in terms of self-intersection of C in B_2 and intersection with $c_1(B_2)$, where B_2 = base of the CY₃ elliptic fibration

Multiplicity	(0,4) Multiplet	Complex scalars	R-Weyl	L-Weyl
$h^{0,0}(\widehat{C}) = 1$	Hyper	2	2	_
$h^{0,1}(\widehat{C}) = \frac{1}{2}(C \cdot C - c_1(B_2) \cdot C)$	Fermi	—	_	2
$h^{0,2}(\widehat{C}) = \frac{1}{2}(C \cdot C + c_1(B_2) \cdot C)$	Hyper	2	2	_
$h^{1,1}(\widehat{C}) - 2h^{0,2}(\widehat{C}) - 2 = 8c_1(B_2) \cdot C$	half-Fermi	—	_	1

Central Charges

Direct computation from 6d (2,0) on the elliptic surface $\widehat{C} = \mathbb{E}_{\tau} \to C$ times $\mathbb{R}^{1,1}$:

$$c_R = 3C \cdot C + 3c_1(B) \cdot C + 6$$
$$c_L = 3C \cdot C + 9c_1(B) \cdot C + 6$$

From spectrum of one M5 [MSW][Vafa][Minsian,Moore][Lawrie, SSN, Weigand]

Matches with duality twisted N = 4 SYM except for extra Fermi multiplets, which precisely account for the defect modes

$$\delta c_L^{\text{defect}} = 8c_1(B) \cdot C$$

Generalization: intersecting defects

In models where τ varies over the full 4d spacetime *S*, the duality defects are curves, these chiral supersymmetric defects D intersect at points

$$P_{\alpha\beta} = \mathcal{D}_{\alpha} \cap \mathcal{D}_{\beta} = S \cap \Delta_{\alpha} \cap \Delta_{\beta}$$

Geometrically: Kodaira fiber \mathbb{P}^1 s become further reducible $\mathbb{P}^1_i \to C_+ + C_-$

Duality defects form network and at intersections:

$$\left(\int_{C^+} + \int_{C^-}\right) \mathcal{B} = \int_{\mathbb{P}^1_i} \mathcal{B} \quad \to \quad b_+ + b_- = b_i$$

 \Rightarrow correspond to flavor symmetry enhancement

 \Rightarrow Description: resolved Tate model for elliptic fibration

incl codim 2 fibers [Katz, Morrison, SSN, Sully][Hayashi, Lawrie, Morrison, SSN]

Strings in 4d and 2d F-theory Compactifications

CY_4 Duality twist N = (0, 2):

$$c_R = 3(g + c_1(B_3) \cdot C + h^0(C, N_{C/B_3}))$$

$$c_L = 3(g + h^0(C, N_{C/B_3})) + c_1(B_3) \cdot C + 8c_1(B) \cdot C$$

CY_5 Duality twist N = (0, 2): No M5 picture, but M2

$$c_L = 3(g + h^0(C, N_{C/B_4}) - 1) + 9c_1(B_4) \cdot C$$
$$c_R = 3(g + c_1(B_4) \cdot C + h^0(C, N_{C/B_4}) - 1)$$

Application to 2d (0,2) vacua from CY_5 compactifications of F-theory [SSN, Weigand], [Apruzzi, Hassler, Heckman, Melnikov]. Tadpole cancellation requires D3-branes wrapped on curves in the class (for $G_4 = 0$)

$$C = \frac{1}{24}c_4(Y_5)|_{B_4}$$

Non-Abelian Generalization?

Lets take stock:

- # For N=4 SYM with G = U(1) we have a complete description of the spectrum, and central charges for duality twisted compactifications to 2d \Rightarrow new chiral 2d SCFTs
- # BPS equations are duality twisted Hitchin equations
- # 6d point of view: useful to get defect modes (from the geometry of the singular fibers).

However: spectrum computations restricted to G = U(1)

Physicists:

SCFTs with U(N) gauge group, large N: description in terms of "holographically dual" gravity solution.

III. AdS/CFT and Duality Twisted N=4 SYM

[Couzens, Lawrie, Martelli, SSN, Wong]

AdS/CFT in a Nutshell

A superconformal field theory in *d* dimensions is "dual" to a gravity or string theory in d + 1 dimensional AdS_{d+1} space, where the spacetime of the SCFT lives at the boundary of AdS:

N = 4 SYM G = U(N) 'dual' to IIB strings in $AdS_5 \times S^5$.

What's the point?

The gravity/string dual describes the SCFT in a particular limit, namely at strong coupling:

 $\lambda = g_{YM}N^2$ is large in the gravity, small in the gauge theory descriptions.

For certain supersymmetrically protected (BPS) quantities, the two sides can be computed in either description, and compared.

AdS₃ in F-theory

Our setup:

2d SCFTs, which should have AdS_3 duals in Type IIB supergravity.

Can we construct the dual AdS_3 solution, and compute e.g. central charges holographically?

 \Rightarrow Yes, but we need to extend the standard framework of AdS/CFT to include varying τ (i.e. F-theory rather than IIB AdS solutions)

AdS_3 dual to (0,4) in F-theory

In summary: the most general F-theory solution dual to (0, 4) SCFTs in 2d is

 $\operatorname{AdS}_3 \times S^3 / \Gamma \times (\mathbb{E}_\tau \hookrightarrow Y_3 \to B_2), \qquad F^{(2)} = J_B$

- # τ = complex structure of \mathbb{E}_{τ} J_B = Kähler form on B_2 , discrete $\Gamma \subset SU(2)$
- # Physical type IIB compactification space is $AdS_3 \times S^3/\Gamma \times B_2$ B_2 = Kähler surface
- # B_2 constrained by the existence of an elliptic fibration with Weierstrass model, dP_n , F_n , blowups thereof or Enriques [Grassi][Gross]
- # For τ constant: reduces to well-known $AdS_3 \times S^3 \times CY_2$ solution

Properties of the Solution

$$\mathrm{AdS}_3 \times S^3 \times (\mathbb{E}_\tau \hookrightarrow Y_3 \to B_2)$$

- Supersymmetry: Killing spinors transform as 2 of SU(2)_r ⊂ SO(4)_T acting on S³
 ⇒ R-symmetry is SU(2)_r of the (0,4) small SCA
- Can allow also for S^3/Γ retaining (0,4) supersymmetry.
- $\Gamma = \mathbb{Z}_M$: additional *M* KK-monopoles
 - \Rightarrow F-theory brane-setup in: $Y_3 \times TN_M \times \mathbb{R}^{1,1}$.
 - \Rightarrow Special case of F-theory on CY 5-folds

Holographic Central Charges in IIB/F

• Leading order in *N*: by classical gravity results of Brown-Henneaux

$$c_L^{(2)} = c_R^{(2)} = 3 \frac{R_{\text{AdS}_3}}{2G_N^{(3)}}$$
$$= 3N^2 \frac{\text{vol}(S^3) \text{vol}(B_2) 32\pi^2}{\text{vol}(S^3)^2} = 6N^2 \text{vol}(B_2)$$

- N = 5-form flux quantum through $S^3 \times C$, $C \subset B_2$
- Computation of volume of *B*₂:

Fact: The metric on B_2 is singular (cf. Stringy Cosmic Strings [Greene, Shapere, Vafa, Yau]), as τ of the elliptic fibration can become singular. The metric on Y_3 is smooth.

Compute in Y_3 : B_2 is a divisor (section of the fibration) and its volume is

$$\operatorname{vol}(B_2) = \frac{1}{2} \int_{Y_3} \omega_0 \wedge \pi^* J_B \wedge \pi^* J_B$$

where $\omega_0 = (1, 1)$ form dual to B_2 and $\pi : Y_3 \to B_2$.

• Algebro-geometrically: $\operatorname{vol}(B_2) = \frac{1}{2} \int_B J_B \wedge J_B = \frac{1}{2} C \cdot_B C$, where $C = \operatorname{curve} \operatorname{dual} (\operatorname{in} B)$ to J_B

$$c_L^{(2)} = c_R^{(2)} = 3N^2 C \cdot C$$

• Subleading order: CS-coupling of 7-branes:

$$c_L^{(1)} - c_R^{(1)} = 6Nc_1(B_2) \cdot C$$
.

and level of R-symmetry $k_R = c_R/6$ from gauging of the $SO(4)_T$ isometry of the S^3 (M = 1)

$$k_R^{(1)} = \frac{1}{2} N c_1(B) \cdot C$$

• Central Charge:

$$c_L^{AdS} = 3N^2C \cdot C + 9Nc_1(B) \cdot C$$
$$c_R^{AdS} = 3N^2C \cdot C + 3Nc_1(B) \cdot C.$$

• Comparison to spectrum of N = 4 SYM on $\mathbb{R}^{1,1} \times C$ with duality twist

$$c_L^{spec} = 3C \cdot C + 9c_1(B) \cdot C + 6, \qquad c_R^{spec} = 3C \cdot C + 3c_1(B) \cdot C + 6.$$

Spectrum computation includes center of mass mode $(c_L, c_R) = (4, 6)$, which decouples in the IR:

$$c_L^{AdS}|_{N=1} = 3C \cdot C + 9c_1(B) \cdot C + \dots$$

 $c_R^{AdS}|_{N=1} = 3C \cdot C + 3c_1(B) \cdot C$.

matches spectrum for N = 1 in first two leading orders. c_R exact result (see also match with self-dual string anomaly in 6d), but c_L gets corrections of O(1).

Cross-checks:

M5-brane anomaly polynomial: $I_4 = \int_P I_8$ using approach in [Freed, Harvey, Minasian, Moore]. We find agreement with the above result.

Summary and Outlook

New chiral 2d SCFTs from dimensional reduction of N = 4 SYM with varying τ .

#G = U(1): complete understanding of spectrum, defect modes, central charges, using 6d point of view and geometry of singular fibers.

Physics work around: Use holographic duality to compute central charges for general U(N) gauge groups.

Nice upshot: New holographic framework of AdS/CFT within F-theory.

General *G*: Duality-twisted Hitchin system, however, how are duality defects characterized?

Math question:

characterize the duality-twisted (generalized) Hitchin moduli space including duality defects; possibly useful to utilizing T-duality/mirror symmetry induced by S-duality action on τ .