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Introduction

I Aim: prove Kontsevich’s homological mirror symmetry
(HMS) conjecture.

I The following strategy for proving HMS is due to Seidel:
1. Prove it in the large volume/complex structure limit;
2. Extend to nearby points using a ‘versality theorem’.

I We prove a general versality theorem of this type.
I (with Ivan Smith) Applications include proofs of HMS for:

I All Greene–Plesser mirrors;
I Related examples, including Kuznetsov’s ‘K3 category of

the cubic fourfold’ and the (rigid) ‘Z-manifold’.



Homological mirror symmetry

I Let X and Y be mirror compact Calabi–Yaus.
I The mirror map is an isomorphism1

Ψ :MKäh(X )
∼−→Mcpx(Y ).

I HMS predicts

DbFuk(Xq) ' DbCoh(YΨ(q))

for all q ∈MKäh(X ).

1MKäh(X ) := Kähler moduli space of X , with TMKäh(X ) ∼= H1,1(X );
Mcpx(Y ) := complex moduli space of Y , with TMcpx(Y ) ∼= H1(TY ).



Versality
Suppose we know HMS at one point in the moduli space:

DbFuk(Xq) ' DbCoh(Yp).

Then we have:

Formal nbhd.
of q ∈MKäh(X )

Formal nbhd.
of p ∈Mcpx(Y )

Formal deformations
of DbFuk(Xq)

 oo ∼= //

Formal deformations
of DbCoh(Yp)


Versality: these are isos.
It follows that HMS holds at all nearby points.
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Versality
Suppose we know HMS at one point in the moduli space:

DbFuk(Xq) ' DbCoh(Yp).

Then we have:
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of q ∈MKäh(X )

Ψ
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of p ∈Mcpx(Y )

∼=
��Formal deformations

of DbFuk(Xq)

 oo ∼= //

Formal deformations
of DbCoh(Yp)


I Versality: these are isos.
I Implies that HMS holds at all nearby points.



Large complex structure limit (LCSL)
I CompactifyMcpx(Y ) ⊂ M̄cpx(Y ) by allowing some

degenerate varieties.
I pLCSL ∈ ∂M̄cpx(Y ) is a 0-stratum.
I YpLCSL is ‘maximally degenerate’.

pLCSL

quartics
in CP3

YpLCSL = {z1z2z3z4 = 0} ⊂ CP3.



Large volume limit (LVL)

I Choose D ⊂ X a normal-crossings divisor.
I CompactifyMKäh(X ) ⊂ M̄Käh(X )D by allowing [ω]→ +∞

along components of D.
I qLVL ∈ ∂M̄Käh(X )D is the 0-stratum: [ω] = +∞ along D.
I XqLVL corresponds to X \ D.

qLVL

Kähler forms
on X



Example: elliptic curves

YpLCSL is a nodal elliptic
curve.

X \ D is a punctured elliptic
curve.

Perf (YpLCSL) oo
∼ //

� _

��

DbFuk(X \ D)� _

��
DbCoh(YpLCSL) oo

∼ // DbWFuk(X \ D)
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Strategy (Seidel): use versality at LCSL/LVL to prove
HMS

I It is easier to compute DbFuk(X \ D) than DbFuk(X ):
I Finite number of computations;
I Seidel’s Lefschetz fibration techniques;
I Lagrangian skeleta techniques (Ganatra–Pardon–Shende);
I Behaves nicely under taking covers, products.

I Hence easier to prove HMS ‘at the limit’:

Perf (YpLCSL) ' DbFuk(X \ D).

I Hope a general versality result will allow us to conclude
HMS over a formal neighbourhood of the limit.

I Problem: extra component of deformation space!



LCSL deformation space

pLCSL

YpLCSL = {z1z2z3z4 = 0} ⊂ CP3.

Deform by cutting out {z4 = 0} and gluing it back in with a twist.
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LCSL deformation space

pLCSL

quartics
in CP3

regluings
YpLCSL = {z1z2z3z4 = 0} ⊂ CP3.

Deform by cutting out {z4 = 0} and gluing it back in with a twist.



LVL deformation space

qLVL



LVL deformation space

qLVL

Kähler forms
on X



LVL deformation space

qLVL

Kähler forms
on X

symplectic forms
       on X\D



Deformation theory via L∞ algebras

I Recall that an L∞ algebra (or ‘strong homotopy Lie
algebra’) is a pair g := (V , `j), where

`j : ∧jV → V [2− j] satisfy∑
σ

±`∗(`∗(vσ(1), . . .), vσ(i), . . . , vσ(j)) = 0.

I One defines the Maurer–Cartan space:

MC(g) :=

v ∈ V1 :
∑

j

1
j!
`j(v , . . . , v) = 0

 / ∼,

where ∼ denotes ‘gauge equivalence’.
I In many deformation problems, the space of deformations

up to equivalence is equal to the Maurer–Cartan space of
some L∞ algebra.



Deformation space of a category

I “Let CC∗(C) = Hochschild cochains on category C. Then

{Def. of C} /∼ ∼= MC(CC∗(C)).”

I There is an L∞ morphism

CO : SC∗(X ) 99K CC∗(DbFuk(X )),

in good situations a quasi-isomorphism⇒ same MC.
I Here SC∗(X ) is the Floer homology: Morse homology of

the free loop space of X w.r.t. the action functional.
1 See, e.g., Blanc–Katzarkov–Pandit: arXiv:1705.00655.



Deformations of DbFuk(Xq) (∼= MC(SC∗(Xq)))

I If X is compact, SC∗(Xq) ‘localizes at constant loops’:

SC∗(Xq) ' H∗(X ),

and the L∞ structure on the RHS is trivial.
I Therefore the space of deformations of DbFuk(Xq) is

locally isomorphic to H2(X ).
I If H2(X ) ∼= H1,1(X ), we have versality!



SC∗(X \ D)
I XqLVL ∼ X \ D is not compact: SC∗(X \ D) is the Floer

homology of the free loop space with respect to the action
functional which is deformed by a Hamiltonian H which
goes to +∞ near D (Floer–Hofer).

I 0→ C∗(X \ D)→ SC∗(X \ D)→ SC∗+(X \ D)→ 0.
I C∗(X \ D) comes from constant loops; SC∗+(X \ D) comes

from loops ‘at infinity’ (i.e., linking D).

const. orbits

H

orbits linking D



Deformations of DbFuk(X \ D) (∼= MC(SC∗(X \ D)))

. . .→ H2(X \ D)→ SH2(X \ D)→ SH2
+(X \ D)→ . . .

I Deforming X \ D by a symplectic form ω corresponds to
[ω] ∈ H2(X \ D).

I If X Calabi–Yau, D ‘large enough’, then

SH2
+(X \ D) ∼= H2(X ,X \ D)

(loop around Di corresponds to PD(Di)).
I Deforming X \ D by compactifying with Kähler form ω

corresponds to [ω] ∈ H2(X ,X \ D) ∼= SH2
+(X \ D).



Picture of MC(SC∗(X \ D))

What we want:

qLVL

Kähler forms
on X

What we have:

Kähler forms
on X

symplectic forms
       on X\D

Mixed?

qLVL

What we need: H2(X \ D) = 0.



Getting rid of the extra deformations

I Suppose G

�

(X ,D) and H2(X \ D)G = 0.
I The space of deformations that respect the action of G has

no extra deformations.
I Useful to allow G to act by anti-holomorphic involutions,

which act by dualities: DbFuk ∼−→ DbFukop.
I To apply to HMS, we need analogous group action on

mirror: a natural duality is

DbCoh(Y )
∼−→ DbCoh(Y )op

E 7→ E∨.



Fukaya category, Fuk(X , ω)

I (X , ω) a compact symplectic manifold.
I Coefficient field: Λ := C((tR)).
I Objects: Lagrangian submanifolds L ⊂ X .
I Morphisms: hom∗(L0,L1) := Λ〈L0 ∩ L1〉.
I Composition maps:

µs : hom∗(L0,L1)⊗ . . .⊗ hom∗(Ls−1,Ls)→ hom∗(L0,Ls)

count holomorphic discs u : D→ X weighted by tω(u) ∈ Λ:

µ3 =
∑

tω(u).u

L3

L2
L1

L0



Relative Fukaya category, Fuk(X ,D)

I Let D = ∪iDi ⊂ X be simple normal-crossings.
I Coefficient ring: let NE ⊂ H2(X ,X \ D) be the cone of all u

s.t. u · E ≥ 0 for any effective ample divisor E supported
on D. Define R := C[[NE ]].

I Objects: compact exact Lagrangians L ⊂ X \ D;
I Composition maps: count holomorphic discs u : D→ X

weighted by q[u] ∈ R.

µ3 =
∑

q [u].u

L3

L2

L1

L0



Relationship between Fuk(X , ω) and Fuk(X ,D)

I Think of Fuk(X ,D) as a family of categories over
M̄Käh(X )D := Spec(R).

I qLVL ∈ M̄Käh(X )D is maximal ideal corresponding to vertex
of NE ; we have

Fuk(X ,D)qLVL ' Fuk(X \ D).

I Kähler form ω with ω|X\D = dθ defines map

R → Λ

qu 7→ tω(u)−θ(∂u),

which we regard as a Λ-point qω ∈ M̄Käh(X )D.
I There is an embedding

Fuk(X ,D)qω ↪→ Fuk(X , ω).



Versality theorem

Theorem (S., 2017)
Suppose that:
I G acts on (X ,D) (anti-)holomorphically, and

H2(X \ D)G = 0;
I D ‘supports enough effective ample divisors’;
I X is Calabi–Yau, and the map

CO : SH2(X \ D)→ HH2(Fuk(X \ D))

is surjective.
Then for any other deformation B of Fuk(X \ D) over R with
same first-order behaviour, respecting G-action, there exists an
isomorphism Ψ∗ : R → R and an A∞ isomorphism
Fuk(X ,D) ' Ψ∗B.



Application: the cubic fourfold (joint with I. Smith)

I Let Y ⊂ P5 be a smooth cubic hypersurface.
I There is a semi-orthogonal decomposition

DbCoh(Y ) ' 〈AY ,O,O(1),O(2)〉.

I The Kuznetsov category AY can be regarded as a
noncommutative K3 surface.

Conjecture (Kuznetsov)
Y is rational if and only if

AY ' DbCoh(S)

for some K3 surface S.



Mirror to the cubic fourfold (Batyrev–Borisov)

I Z/3 � E (elliptic curve).
I p1, p2, p3 fixed points.
I X ′ := E × E/(x , y) ∼ (ζ · x , ζ−1 · y) has 9 A2 singularities.
I Resolve them to get X .



Divisors on X

{p } x E

E x {p }

i

j

Let {Dp}p∈P be the set of divisors: |P| = 24. JJJJJ Jjjjjjjjjjjjj
jjjjjjjjjjjjjj jjjjjjjjjjjjjjjjjj jjjjjj



Divisors on X

{p } x E

E x {p }

i

j

I Let {Dk}k∈K be the set of divisors: |K | = 24.JJJJJ Jjjjjjjjjjjjj
jjjjjjjjjjjjjj jjjjjjjjjjjjjjjjjj jjjjjj



Monomial–divisor correspondence

xi
3

yj
3

xi
2yj

xi
2yj

I Define cubic monomials (x , y)k ∈ Λ[x1, x2, x3, y1, y2, y3]
corresponding to each divisor Dk .



Homological mirror symmetry

Theorem (S.–Smith 2017)
If [ω] =

∑
k∈K λk · [Dk ] is an ‘ambient’ Kähler form on X, then

there exist
pk = tλk (1 +O(t)) ∈ Λ

such that the noncommutative K3 associated to

Yp :=

{
−x1x2x3 − y1y2y3 +

∑
k∈K

pk · (x , y)k = 0

}
⊂ P5

Λ

is mirror to (X , ω): i.e.,

DπFuk(X , ω) ' AYp .

Proof: first show DπFuk(X \ D) ' AY0 , then extend to a formal
neighbourhood by ‘versality’.


