▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outlook

Supersymmetric indices, partition functions and the A-twist

Cyril Closset

CERN

String Math 2017, Universität Hamburg

Based on: 1605.06531 with H. Kim 1701.03171 and 1707.05774 with H. Kim and B. Willett

Disclaimers

This talk will be about QFTs with four Poincaré supercharges.

The relevant supersymmetry algebras in dimensions d = 2, 3 and 4 are called:

$$2d \ \mathcal{N} = (2,2) \quad \stackrel{S^1}{\longleftarrow} \quad 3d \ \mathcal{N} = 2 \quad \stackrel{S^1}{\longleftarrow} \quad 4d \ \mathcal{N} = 1$$

We restrict ourselves to theories with a $U(1)_R$ symmetry:

$$[R,\mathcal{Q}] = -\mathcal{Q} , \qquad [R,\bar{\mathcal{Q}}] = \bar{\mathcal{Q}} ,$$

Including but not limited to: SCFTs.

The twisted chiral ring

Consider the 2d case:

2d
$$\mathcal{N} = (2,2)$$
 : $\{\mathcal{Q}_{-}, \bar{\mathcal{Q}}_{-}\} = P_z$, $\{\mathcal{Q}_{+}, \bar{\mathcal{Q}}_{+}\} = -P_{\bar{z}}$,
 $\{\mathcal{Q}_{-}, \bar{\mathcal{Q}}_{+}\} = iZ$, $\{\mathcal{Q}_{+}, \bar{\mathcal{Q}}_{-}\} = i\bar{Z}$,

with Z a complex central charge that commutes with R.

 $\mathcal{N}=(2,2)$ theories contain interesting subsectors of protected local operators.

We are interested in the twisted chiral ring:

 $\omega \quad : \quad [\mathcal{Q}_-,\omega]=0 \ , \quad [\bar{\mathcal{Q}}_+,\omega] \qquad (\ \mathrm{mod} \ \mathcal{Q} \ \mathrm{or} \ \bar{\mathcal{Q}}\text{-exact} \)$

It is conveniently singled out by the topological *A*-twist.

[Witten, 1988]

Twisted chiral ring for d = 3 and 4

In dimension d > 2, the twisted-chiral condition breaks so(d) covariance down to so(2).

Twisted chiral operators are extended operators of codimension 2:

d = 3: half-BPS line operators in 3d $\mathcal{N} = 2$ theories, \mathscr{L} . (For instance, supersymmetric Wilson loop operators.)

d = 4: half-BPS surface operators in 4d $\mathcal{N} = 1$ theories, \mathcal{S} .

Outlook

Fusion algebras

Parallel twisted chiral operators have non-singular OPE.

They satisfy a fusion algebra. We must have:

$$\mathscr{L}_i \cdot \mathscr{L}_j = \mathcal{N}_{ij}{}^k \, \mathscr{L}_k$$

for half-BPS line operators $\mathscr L$ in 3d, and similarly for $\mathcal S$ in 4d.

These algebras have been discussed *e.g.* by:

[Kapustin, Willett, 2013; Cecotti, Gaiotto, Vafa, 2013]

A-models

Our setup will be:

- 3d $\mathcal{N}=2$ theory on $\mathbb{R}^2 \times S^1$
- 4d $\mathcal{N} = 1$ theory on $\mathbb{R}^2 \times T^2$

with line operators on S^1 , or surface operators on T^2 .

 \mathbb{R}^2 can be compactified to Σ_g with the *A*-twist. We define the "A-model" of the 3d or 4d theory as the **2d TFT on** Σ_g obtained by going to the cohomology of Q_- and \overline{Q}_+ .

A-model observables:

 $\langle \mathscr{L}_i \mathscr{L}_j \cdots \rangle_{\Sigma_g \times S^1}$, $\langle \mathscr{S}_i \mathscr{S}_j \cdots \rangle_{\Sigma_g \times T^2}$

They capture the quantum ring structure constants $\mathcal{N}_{ij}{}^k$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outlook

Another disclaimer

This talk will be exclusively concerned with ultraviolet (UV)-complete gauge theories with a UV Lagrangian: ¹

$$\langle \mathcal{O} \rangle = \int [D\mathcal{V} D\Phi] e^{-\int d^3x \sqrt{g} \mathcal{L}(\mathcal{V}, \Phi)} \mathcal{O}(\mathcal{V}, \Phi)$$

For instance:

- 3d $\mathcal{N} = 2$ SQED
- 3d $\mathcal{N} = 2^*$ quivers
- 4d $\mathcal{N} = 1 \ SU(N_c) \ SQCD$

• • • •

¹My apologies.

Outlook

Supersymmetric indices and partition functions

In the last 10 years, there has been a lot of interest in computing supersymmetric partition functions and indices:

$$Z_{\mathcal{M}_3}[\mathcal{T}_{3d\,\mathcal{N}=2}] , \qquad \qquad Z_{\mathcal{M}_3\times S^1}[\mathcal{T}_{4d\,\mathcal{N}=1}] = I_{\mathcal{M}_3}$$

This can be done using supersymmetric localization in many examples. [Pestun, 2007; Kapustin, Willett, Yaakov, 2010; Jafferis, 2010; Hama, Hosomichi, Lee, 2010; Benini, Eager, Hori, Tachikawa, 2013; Hori, Kim, Yi, 2014; Assel, Cassani, Martelli, 2014; ...]

For $\mathcal{M}_3 \cong \Sigma_g \times S^1$, it is a A-model observable:

$$Z_{\Sigma_g \times S^1} = \langle 1 \rangle_{\Sigma_g \times S^1}$$

Computed in [Nekrasov, Shatashvili, 2014; Benini, Zaffaroni, 2014, 2015; CC, Kim, 2015]

Can we understand more general partition functions as A-model observables?

Outlook

Supersymmetric indices and partition functions

One of the best-known example is the three-sphere index: [Romelsberger, 2005]

$$I_{S^3} = \text{Tr}_{S^3} \left[(-1)^F \mathbf{p}^{J_3 + J_3' + \frac{1}{2}R} \mathbf{q}^{J_3 - J_3' + \frac{1}{2}R} \prod_F y_F^{Q_F} \right]$$

In 3d, this reduce to the ("squashed") S_b^3 partition function. In this talk: $\mathbf{p} = \mathbf{q} \equiv q$, \leftrightarrow b = 1

The index can be computed in terms of an elliptic hypergeometric integral:

$$I_{S^3} = q^{E_{S^3}} \frac{(q;q)_{\infty}^{2\mathrm{rk}(\mathbf{G})}}{|W_{\mathbf{G}}|} \oint \prod_{a=1}^{\mathrm{rk}(\mathbf{G})} \frac{dx_a}{2\pi i x_a} \frac{\prod_{\rho,\omega} \Gamma_0(x^{\rho} y^{\omega} q^{r_{\omega}-1};q)}{\prod_{\alpha} \Gamma_0(x^{\alpha} q^{-1};q)} ,$$

[Romelsberger, 2005; Dolan, Osborn, 2008]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Supersymmetric indices and partition functions

Localization computations can be very subtle.

In this talk, I'll explain a different method to compute:

 $Z_{\mathcal{M}_3}$, $Z_{\mathcal{M}_3 \times S^1}$,

for 3d and 4d gauge theories, for a relatively simple family of \mathcal{M}_3 backgrounds allowed by supersymmetry.

This will teach us some interesting lessons about these objects, and will allow us to compute a few new interesting observables in theories with 4 supercharges.

Previous works: [Ohta, Yoshida, 2012; Nishioka, Yaakov, 2014]

3d $\mathcal{N}=2$ theories

4d $\mathcal{N} = 1$ theories

Applications

Outlook

Outline

 $\operatorname{3d} \mathcal{N} = 2$ theories

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q @

3d $\mathcal{N}=2$ theories

4d $\mathcal{N} = 1$ theories

Applications

Outlook

Outline

$\operatorname{3d} \mathcal{N} = 2$ theories

4d $\mathcal{N} = 1$ theories

3d $\mathcal{N}=2$ theories

4d $\mathcal{N} = 1$ theories

Applications

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Outlook

Outline

$\operatorname{3d}\, \mathcal{N}=2 \, \operatorname{theories}$

4d $\mathcal{N}=1$ theories

Applications

3d $\mathcal{N} = 2$ theories

4d $\mathcal{N} = 1$ theories

Applications

Outlook

3d $\mathcal{N} = 2$ theories

 $3d \mathcal{N} = 2$ gauge theory

Consider 3d $\mathcal{N}=2$ supersymmetric Yang-Mills-Chern-Simons-matter theories, with:

- Vector multiplet $\mathcal V$ for a gauge group $\mathbf G$, with $\operatorname{Lie}(\mathbf G) = \mathfrak g$.
- Chiral multiplets Φ_i in representations \Re_i of \mathfrak{g} .
- *R*-symmetry-preserving superpotential $W(\Phi)$.
- A choice of CS interactions for $\mathbf{G} \times \mathbf{G}_F$:

$$S_{\rm CS} = \frac{k}{4\pi} \int_{\mathcal{M}_3} d^3x \sqrt{g} (i\epsilon^{\mu\nu\rho} \left(a_\mu \partial_\nu a_\rho - \frac{2i}{3} a_\mu a_\nu a_\rho \right) - 2\sigma D + 2i\tilde{\lambda}\lambda)$$

We have the CS level $k \in \mathbb{Z}$, and \mathcal{M}_3 must be a spin manifold.

・ロト・四ト・モート ヨー うへの

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outlook

Circle compactification

Consider the theory on $\mathbb{R}^2 \times S^1$, with S^1 a circle of radius β . Using the Kaluza-Klein (KK) expansion:

$$\phi = \sum_{n \in \mathbb{Z}} \phi_n(z, \bar{z}) e^{in\psi} ,$$

we can consider the 3d theory as a 2d theory with an infinite number of fields, in 2d $\mathcal{N}=(2,2)$ supermultiplets.

In particular, we have a 2d vector multiplet that includes a complex scalar:

$$u = i\beta\sigma - a^{(0)}$$
, $a^{(0)} = \frac{1}{2\pi}\int_{S^1} a_\mu dx^\mu$

with σ the real scalar in ${\mathcal V}$ in 3d. We take u dimensionless.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Circle compactification

Consider giving an expectation values to the scalar u in the 2dvector multiplet. This corresponds to the classical Coulomb branchof the 3d theory:[Aganagic, Hori, Karch, Tong, 2001]

 $u = \operatorname{diag}(u_a)$, $a = 1, \cdots, \operatorname{rk}(\mathbf{G})$

Due to large gauge transformations along S^1 , we have:

 $u_a \sim u_a + 1$, $\mathfrak{M} \cong (\mathbb{C}^*)^{\mathrm{rk}(\mathbf{G})} / W_{\mathbf{G}}$

We will also use the variables:

$$x_a \equiv e^{2\pi i u_a}$$

Circle compactification

At a generic point on ${\mathfrak M},$ the 3d gauge group is Higgsed to:

$$\mathbf{G} \to \mathbf{H} \cong \prod_{a=1}^{\mathrm{rk}(\mathbf{G})} U(1)_a$$

We can also think in terms of *diagonalization* of the 2d vector multiplet. In the path integral language, we should still sum over topological sectors, using a functional Weyl integral formula. [Blau, Thompson, 1992, 1993].

We integrate out all massive fields and write down an effective field theory for the low-energy modes u_a and its superpartners, in twisted chiral multiplets U_a . That is our "A-model."

Mass parameters: background G_F vector multiplets

We are considering the theory in the presence of arbitrary supersymmetry-preserving background fields for the flavor symmetry G_F with maximal torus:

$$\mathbf{H}_F = \prod_{\alpha} U(1)_{\alpha} \subset \mathbf{G}_F$$

We have the flavor parameters:

$$\nu_{\alpha} = i\beta m_{\alpha}^F - a_{\alpha}^{(0)F} , \qquad \qquad y_{\alpha} \equiv e^{2\pi i \nu_{\alpha}}$$

One may call ν and y the "chemical potentials" and "fugacities", respectively.

A-model Lagrangian

Consider the A-twisted theory. This is equivalent to "curved-space" supersymmetry" [Festuccia, Seiberg, 2012] on $\Sigma_a \times S^1$.

Up to Q-exact terms, the Lagrangian of the effective field theory on \mathfrak{M} reads:

$$S_{\text{TQFT}} = \int_{\Sigma_g} \left(-if_a \frac{\partial \mathcal{W}(u,\nu)}{\partial u_a} + \tilde{\Lambda}^a \Lambda^b \frac{\partial^2 \mathcal{W}(u,\nu)}{\partial u_a \partial u_b} \right) \\ + \frac{i}{2} \int_{\Sigma_g} d^2 x \sqrt{g} \,\Omega(u,\nu) R$$

with f_a the abelian field strength of a^a_{μ} and R the Ricci scalar.

[Witten, 1993; Nekrasov, Shatashvili, 2014]

Effective twisted superpotential and effective dilaton

The A-model is fully determined by the two holomorphic potentials:

 $\mathcal{W}(u,\nu)$, $\Omega(u,\nu)$

The effective twisted superpotential takes the schematic form:

$$\mathcal{W} = \frac{k}{2}u(u+1) + \frac{k^F}{2}\nu(\nu+1) + \frac{k_g}{24} + \frac{1}{(2\pi i)^2}\sum_{(\rho,\omega)\in(\mathfrak{R},\mathfrak{R}_F)}\operatorname{Li}_2(x^{\rho}y^{\omega})$$

The classical contribution is from CS terms, including background CS terms.

The dilog is a one-loop correction from integrating out the matter fields. This result is for the so-called $U(1)_{-\frac{1}{2}}$ quantization of a 3d Dirac fermion, which preserves gauge invariance but breaks parity. [CC, Kim, Willett, 2017]

Effective twisted superpotential and effective dilaton

Similarly, the effective dilaton takes the form:

$$\begin{split} \Omega &= k^{aR} u_a + k^{\alpha R} \nu_{\alpha} + \frac{1}{2} k^{RR} \\ &- \frac{1}{2\pi i} \sum_{(\rho,\omega) \in (\mathfrak{R},\mathfrak{R}_F)} (r_{\omega} - 1) \log(1 - x^{\rho} y^{\omega}) \\ &- \frac{1}{2\pi i} \sum_{\alpha \in \mathfrak{g}} \log(1 - x^{\alpha}) \end{split}$$

The CS contributions are supersymmetric CS terms involving the $U(1)_R$ background gauge field [CC, Dumitrescu, Festuccia, Komargodski, Seiberg, 2012].

Note the contribution from the W-bosons.

Effective twisted superpotential and effective dilaton

The twisted superpotential is only defined modulo the ambiguity:

$$\mathcal{W} \sim \mathcal{W} + n^a u_a + n^\alpha \nu_\alpha + n^0$$
, $n^a, n^\alpha, n^0 \in \mathbb{Z}$,

due to the sum over topological sectors. Similarly, we have:

$$\Omega \sim \Omega + n , \qquad n \in \mathbb{Z}$$

This corresponds to branch cut ambiguities in the variables u, ν . One the other hand, well-defined *A*-model operators will be holomorphic in u, ν .

Outlook

The Bethe equations

Let us define the so-called Bethe equations:

$$\Pi_a(u,\nu) \equiv \exp\left(2\pi i \frac{\partial \mathcal{W}}{\partial u_a}\right) = 1 \ ,$$

[Nekrasov, Shatashvili, 2009]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The vacua of the *A*-model are two-dimensional vacua, the Bethe vacua:

$$\mathcal{S}_{BE} = \left\{ \left. \hat{u}_a \right| \Pi_a(\hat{u}, \nu) = 1 , \ \forall a , \quad w \cdot \hat{u} \neq \hat{u}, \ \forall w \in W_G \right\} / W_{\mathbf{G}}$$

Importantly, we must exclude would-be "non-abelian vacua"—solutions of $\Pi_a=1$ not acted on freely by the Weyl group—by hand.

Outlook

A-model defect operators

Given \mathcal{W} , Ω , we can define a number of "canonical" defect operators, which are local on Σ_g .

These operators probably have an explicit construction in the three-dimensional UV theory, but we will only focus on their A-model "low energy" description.

The flavor flux operators

In the presence of flavor symmetries $U(1)_{\alpha} \subset \mathbf{G}_{F}$, we can turn on generic background vector multiplets \mathcal{V}_{α}^{F} , as long as we preserve the *A*-twist supercharges.

In particular, we have chemical potentials and background fluxes

$$\nu_{\alpha} , \qquad \qquad \frac{1}{2\pi} \int_{\Sigma_g} f_{\alpha} = \mathbf{n}_{\alpha} \in \mathbb{Z}$$

This adds a piece to the A-model action:

$$S_{\rm flux} = \int_{\Sigma_g} \left(-i f_\alpha \frac{\partial \mathcal{W}(u,\nu)}{\partial \nu_\alpha} \right)$$

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Outlook

The flavor flux operators

The background field f_{α} can have arbitrary profile over Σ_g :

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Outlook

The flavor flux operators

The background field f_{α} can have arbitrary profile over Σ_g :

・ロト ・ 同ト ・ ヨト ・ ヨト

э

The flavor flux operators

The background field f_{α} can have arbitrary profile over Σ_g :

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

The flavor flux operators

The background field f_{α} can have arbitrary profile over Σ_g :

Outlook

The flavor flux operators

In particular, if we take

$$f_{\alpha} = 2\pi \,\mathfrak{n}_{\alpha} \,\delta^2(x - x_0) \;,$$

turning on background flux is equivalent to the insertion of a local operator:

 $\Pi_{\alpha}(u,\nu)^{\mathfrak{n}_{\alpha}}$

in the path integral, with

$$\Pi_{\alpha}(u,\nu) = \exp\left(2\pi i \frac{\partial \mathcal{W}(u,\nu)}{\partial \nu_{\alpha}}\right)$$

We call Π_{α} the flux operator for the flavor symmetry $U(1)_{\alpha}$.

うせん 同一人用 人用 人用 人口 マ

Outlook

The handle-gluing operator

Any 2d TQFT has a "handle-gluing operator" \mathcal{H} :

The explicit form of \mathcal{H} for simple LG models is given by [Vafa, 1990]. The generalization to 2d *gauge* theories was investigated more recently. [Melnikov, Plesser, 2005; Nekrasov, Shatashvili, 2014]

Outlook

The handle-gluing operator

Any 2d TQFT has a "handle-gluing operator" \mathcal{H} :

The explicit form of \mathcal{H} for simple LG models is given by [Vafa, 1990]. The generalization to 2d *gauge* theories was investigated more recently. [Melnikov, Plesser, 2005; Nekrasov, Shatashvili, 2014]

Outlook

The handle-gluing operator

Any 2d TQFT has a "handle-gluing operator" \mathcal{H} :

The explicit form of \mathcal{H} for simple LG models is given by [Vafa, 1990]. The generalization to 2d *gauge* theories was investigated more recently. [Melnikov, Plesser, 2005; Nekrasov, Shatashvili, 2014]

The handle-gluing operator

In the A-twisted gauge theory, the handle-gluing operator can be seen as a "flux operator for $U(1)_R$ ".

It is given explicitly by: [Nekrasov, Shatashvili, 2014]

$$\mathcal{H}(u,\nu) = e^{2\pi i \Omega(u,\nu)} \det_{ab} \left(\frac{\partial^2 \mathcal{W}(u,\nu)}{\partial u_a \partial u_b} \right)$$

The appearance of the Hessian determinant of ${\cal W}$ is due to the presence of fermionic zero modes from the gauginos.

Outlook

$\Sigma_g \times S^1$ correlators and the 3d twisted index In any 2d TQFT, we have:

$$\langle \mathcal{O} \rangle_{\Sigma_g} = \langle \mathcal{OH}^g \rangle_{\mathbb{C}P^1} = \operatorname{Tr}_V \left(\mathcal{H}^{g-1} \mathcal{O} \right)$$

where V is the TQFT Hilbert space. For us, $V \cong S_{BE}$.

For the 3d *A*-model, we then find:

[Nekrasov, Shatashvili, 2014]

$$\left\langle \mathscr{L} \right\rangle_{\Sigma_g \times S^1} = \sum_{\hat{x} \in \mathcal{S}_{\mathrm{BE}}} \mathscr{L}(\hat{x}) \, \mathcal{H}(\hat{x}, y)^{g-1} \, \Pi_{\alpha}(\hat{x}, y)^{\mathfrak{n}_{\alpha}}$$

for any line operator \mathscr{L} on $\Sigma_g \times S^1$, in the presence of background fluxes \mathfrak{n}_{α} for the flavor symmetry. This can also be computed by supersymmetric localization in the UV [Benini, Zaffaroni, 2015, 2016; CC, Kim, 2016]

Note: The operators Π_{α} and \mathcal{H} are rational functions of x and y.

The fibering operator

There exists another "canonical" A-model operator one can build from \mathcal{W} .

From the 2d point of view, the full flavor symmetry is:

$$\mathbf{G}_F^{\mathrm{2d}} = \mathbf{G}_F \times U(1)_{KK}$$

We have distinguished symmetry $U(1)_{KK}$, whose conserved charge is the circle momentum. There exists a 2d background vector multiplet that couples to the KK momentum. In particular, we have the 2d twisted mass:

$$m_{KK} = \frac{1}{\beta}$$

The fibering operator

Definition: the fibering operator is the flux operator for $U(1)_{KK}$. Reinstating dimensions, we find:

$$\mathcal{F}(u,\nu) \equiv \exp\left(2\pi i \frac{\partial}{\partial m_{KK}} \left(m_{KK} \mathcal{W}(u,\nu)\right)\right)$$

This leads to the explicit expression:

$$\mathcal{F}(u,\nu) = \exp\left(2\pi i \left(\mathcal{W} - u_a \partial_{u_a} \mathcal{W} - \nu_\alpha \partial_{\nu_\alpha} \mathcal{W}\right)\right)$$

in terms of the twisted superpotential $\mathcal{W}(u, \nu)$.

Outlook

The fibering operators

Inserting \mathcal{F}^p , $p \in \mathbb{Z}$, in the *A*-model, we realize a principal circle bundle over Σ_q :

$$S^1 \longrightarrow \mathcal{M}_{g,p} \xrightarrow{\pi} \Sigma_g$$
.

$$p = \frac{1}{2\pi} \int_{\Sigma_g} da_{KK}$$

This $\mathcal{M}_{q,p}$ is the simplest example of a Seifert manifold.

Supersymmetry is preserved by a pull-back of the A-twist on \sum_{g} .

The fibering operator

Importantly, the fibering operator is not fully gauge invariant under $\mathbf{G} \times \mathbf{G}_F$. Instead, we have the difference equations:

$$\mathcal{F}(u_a+1,\nu) = \mathcal{F}(u,\nu) \,\Pi_a(u,\nu)^{-1}$$

$$\mathcal{F}(u,\nu_{\alpha}+1) = \mathcal{F}(u,\nu) \,\Pi_{\alpha}(u,\nu)^{-1}$$

It is, however, gauge invariant (under G) on the Bethe vacua, where $\Pi_a(\hat{u}) = 1$.

All observables are fully $\mathbf{G} \times \mathbf{G}_F$ invariant.

The fibering operator

Explicitly, in the YM-CS-matter theory:

$$\mathcal{F}(u,\nu) = e^{-\pi i k \, u^2 - \pi i k^F \nu^2 + \frac{\pi i}{12} k_g} \prod_{(\rho,\omega) \in (\mathfrak{R},\mathfrak{R}_F)} \mathcal{F}^{\Phi}(\rho(u) + \omega(\nu))$$

in terms of the simple function:

$$\mathcal{F}^{\Phi}(u) = \exp\left(\frac{1}{2\pi i}\operatorname{Li}_{2}\left(e^{2\pi i u}\right) + u\log\left(1 - e^{2\pi i u}\right)\right)$$

This is a meromorphic function of u with poles at $u = -1, -2, \cdots$ and zeros at $z = 1, 2, \cdots$. Note the identity:

$$\mathcal{F}_{\Phi}(u)\mathcal{F}_{\Phi}(-u) = e^{\pi i u^2 - \frac{\pi i}{6}}$$

うしん 同一人用 人用 人口 マ

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The $\mathcal{M}_{g,p}$ partition function

We then directly find the $\mathcal{M}_{g,p}$ supersymmetric partition function:

$$Z_{\mathcal{M}_{g,p}}(\nu;\mathfrak{n}) = \sum_{\hat{u}\in\mathcal{S}_{\mathrm{BE}}} \mathcal{F}(\hat{u},\nu)^p \,\mathcal{H}(\hat{u},\nu)^{g-1} \,\Pi_{\alpha}(\hat{u},\nu)^{\mathfrak{n}_{\alpha}}$$

We can view this as an expectation value for a defect line operator ${\mathcal F}$ at a point on $\Sigma_g:$

$$Z_{\mathcal{M}_{g,p}}(\nu) = \langle \mathcal{F}^p \rangle_{\Sigma_g \times S^1}$$

In this sense, the $\mathcal{M}_{g,p}$ partition functions is just another A-model observable.

The S^3 partition function Special case q = 0, p = 1: The S^3 partition function.

$$Z_{S^3}(\nu) = \sum_{\hat{u} \in \mathcal{S}_{BE}} \mathcal{F}(\hat{u}, \nu) \,\mathcal{H}(\hat{u}, \nu)^{-1} = \langle \mathcal{F} \rangle_{S^2 \times S^1}$$

Here, $\langle 1 \rangle_{S^2 \times S^1} = Z_{S^2 \times S^1}$ is also known as "twisted 3d index". [Benini, Zaffaroni, 2015]

So far, we chose all R-charges $r_i \in \mathbb{Z}$ for the chiral multiplets Φ_i . This is necessary for the A-twist point of view.

On S^3 , there is a canonical analytic continuation

$$Z_{S^3}(\nu) \to Z_{S^3}(\nu + (R-1))$$

to any $r_i \in \mathbb{R}$. [CC, Dumitrescu, Festuccia, Komargodski, 2014]

In particular, this gives a nice way to compute $F_{S^3} = -\log Z_{S^3}$ for a 3d $\mathcal{N}=2$ SCFT. [Jafferis, 2012]

3d $\mathcal{N}=2$ theories

Outlook

4d $\mathcal{N} = 1$ theories

4d $\mathcal{N} = 1$ gauge theories

Consider an $\mathcal{N} = 1$ gauge theory. For simplicity, we take G semi-simple and simply connected, and asymptotically-free theories.

We play the same game as before by compactifying on a T^2 with modular parameter τ . Now, the $\mathbf{G} \times \mathbf{G}_F$ parameters u, ν are themselves valued in a torus:

$$u \sim u + 1 \sim u + \tau,$$
 $\nu \sim \nu + 1 \sim \nu + \tau$

Let us introduce the convenient notation:

$$\mathbf{u}_{\mathbf{a}} = (u_a, \nu_{\alpha}) , \qquad \mathbf{a} = (a, \alpha)$$

4d $\mathcal{N} = 1$ gauge theories

The twisted superpotential is given by:

$$\mathcal{W}(\mathbf{u};\tau) = -\frac{\mathcal{A}^{\mathbf{abc}}\mathbf{u}_{\mathbf{a}}\mathbf{u}_{\mathbf{b}}\mathbf{u}_{\mathbf{c}}}{6\tau} + \sum_{\boldsymbol{\rho} \in (\mathfrak{R},\mathfrak{R}_F)} \boldsymbol{\psi}\big(\boldsymbol{\rho}(\mathbf{u});\tau\big)$$

It is a purely quantum (one-loop) effect. We defined the "elliptic dilog":

$$\psi(u;\tau) \equiv -\frac{1}{2\pi i} \int_0^u dv \log \theta(v;\tau)$$

in terms of the $\theta\text{-function }\theta(u;\tau)=\theta_1(u;\tau)/i\eta(\tau)$:

$$\theta(u;\tau) \equiv e^{-\pi i u} q^{\frac{1}{12}} \prod_{k=0}^{\infty} (1-xq^k)(1-x^{-1}q^{k+1}) , \quad x \equiv e^{2\pi i u} , q \equiv e^{2\pi i \tau}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Anomalies

In 4d, symmetries of ${\cal L}$ can be anomalous. The perturbative anomaly coefficients are:

 $\mathcal{A}^{\mathbf{abc}} = \sum_{\rho} \rho^{\mathbf{a}} \rho^{\mathbf{b}} \rho^{\mathbf{c}} \qquad \propto \operatorname{Tr}_{(\mathfrak{R},\mathfrak{R}_{F})}(T^{\mathbf{a}}\{T^{\mathbf{b}}T^{\mathbf{c}}\})$ $\mathcal{A}^{\mathbf{a}} = \sum_{\rho} \rho^{\mathbf{a}} \qquad \propto \operatorname{Tr}_{(\mathfrak{R},\mathfrak{R}_{F})}(T^{\mathbf{a}})$

We must impose the anomaly-free condition:

$$\mathcal{A}^{abc} = \mathcal{A}^a = 0 , \qquad \qquad \mathcal{A}^{ab\gamma} = \mathcal{A}^{a\beta\gamma} = 0$$

On the other-hand, we still have non-vanishing 't Hooft anomalies for \mathbf{G}_F :

$$\mathcal{A}^{lphaeta\gamma}, \mathcal{A}^{lpha} \neq 0$$

Outlook

't Hooft anomalies and modular transformations

Classically, we have the symmetries under the "elliptic" transformations:

 $u \sim u + 1 \sim u + \tau,$ $\nu \sim \nu + 1 \sim \nu + \tau$

and the full modular group $SL(2,\mathbb{Z})$ acting on T^2 :

$$S : \mathbf{u_a} \to \frac{\mathbf{u_a}}{\tau} , \ \tau \to -\frac{1}{\tau} , \qquad T : \mathbf{u_a} \to \mathbf{u_a} , \ \tau \to \tau + 1$$

The anomaly-free condition ensures that $\mathcal W$ is fully G-invariant.

The other (non-gauged) symmetries can be violated. For instance:

$$S : \mathcal{W}\left(\frac{\mathbf{u}}{\tau}, -\frac{1}{\tau}\right) = \frac{1}{\tau} \mathcal{W}(\mathbf{u}, \tau) + \frac{1}{6\tau^2} \mathcal{A}^{\mathbf{abc}} \mathbf{u}_{\mathbf{a}} \mathbf{u}_{\mathbf{b}} \mathbf{u}_{\mathbf{c}} + \frac{1}{4\tau} \mathcal{A}^{\mathbf{a}} \mathbf{u}_{\mathbf{a}}$$

Flux operators and the 4d Bethe equations

One can similarly compute $\Omega(\mathbf{u};\tau).$ As in 3d, we may define:

$$\Pi_a(u,\nu;\tau)$$
, $\Pi_\alpha(u,\nu;\tau)$, $\mathcal{H}(u,\nu;\tau)$

The Bethe equations are $\Pi_a = 1$ as before. Explicitly:

$$\prod_{(\rho,\omega)\in(\mathfrak{R},\mathfrak{R}_F)}\theta(\rho(u)+\omega(\nu);\tau)^{-\rho^a}=1 , \ \forall a ,$$

and excluding any solution left invariant by (part of) the Weyl group.

For an anomaly-free theory, the LHS is modular and elliptic in all parameters, so the equations are well-defined.

Fibering operators

The 4d A-model is defined on $T^2 \cong S^1_{\beta_1} \times S^1_{\beta_2}$ with $\operatorname{Im}(\tau) = \frac{\beta_2}{\beta_1}$.

In 2d, we have an $U(1)^2_{KK}$ symmetry, with mass parameters:

$$m_{\mathrm{KK}_1} = \frac{\tau}{\beta_2}$$
, $m_{\mathrm{KK}_2} = \frac{1}{\beta_2}$

The corresponding fibering operators are:

$$\mathcal{F}_1(u,\nu;\tau) = \exp\left(2\pi i \frac{\partial \mathcal{W}}{\partial \tau}\right)$$

and

$$\mathcal{F}_2(u,\nu;\tau) = \exp\left(2\pi i \left(\mathcal{W} - u_a \frac{\partial \mathcal{W}}{\partial u_a} - \nu_\alpha \frac{\partial \mathcal{W}}{\partial \nu_\alpha} - \tau \frac{\partial \mathcal{W}}{\partial \tau}\right)\right)$$

・ロト・日本・日本・日本・日本・日本

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Fibering operators

The apparent difference between the \mathcal{F}_1 and \mathcal{F}_2 is due to an implicit choice of modular frame. One can show that they are related by an S transformation:

$$\mathcal{F}_2\left(\frac{\mathbf{u}}{\tau};-\frac{1}{\tau}\right) = e^{-\frac{\pi i}{3\tau^2}\mathcal{A}^{\mathbf{abc}}\mathbf{u}_{\mathbf{a}}\mathbf{u}_{\mathbf{b}}\mathbf{u}_{\mathbf{c}}} \mathcal{F}_1(\mathbf{u};\tau) ,$$

The insertion of $\mathcal{F}_1^{p_1}\mathcal{F}_2^{p_2}$ $(p_1, p_2 \in \mathbb{Z})$ in the A-model is equivalent to considering the theory on:

$$T^2 \longrightarrow \mathcal{M}_{g,p} \times S^1 \longrightarrow \Sigma_g , \qquad p = \gcd(p_1, p_2)$$

This is perfectly consistent with the known classification of $\mathcal{N}=1$ supersymmetric backgrounds. [Dumitrescu, Festuccia, Seiberg, 2012]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outlook

Fibering operators

Thus we can just choose $(p_1, p_2) = (p, 0)$ and insert \mathcal{F}_1^p .

More explicitly, the fibering operator \mathcal{F}_1 is given by:

$$\mathcal{F}_1(u,\nu;\tau) = \prod_{(\rho,\omega)\in(\mathfrak{R},\mathfrak{R}_F)} \Gamma_0(\rho(u) + \omega(\nu);\tau)$$

in terms of a "reduced" elliptic $\Gamma\text{-function:}$

$$\Gamma_0(u;\tau) = \Gamma_e(qx;q,q) = \prod_{k=0}^{\infty} \left(\frac{1-x^{-1}q^{k+1}}{1-xq^{k+1}}\right)^{k+1}$$

The $\mathcal{M}_{g,p}$ supersymmetric index

We can directly compute the $\mathcal{M}_{g,p} \times S^1$ partition function:

$$Z_{\mathcal{M}_{g,p}\times S^{1}}(\nu;\tau) = \sum_{\hat{u}\in\mathcal{S}_{BE}} \mathcal{F}_{1}(\hat{u},\nu;\tau)^{p} \mathcal{H}(\hat{u},\nu;\tau)^{g-1} \prod_{\alpha} (\hat{u},\nu;\tau)^{\mathfrak{n}_{\alpha}}$$

This computes explicitly the $\mathcal{M}_{g,p}$ index:

$$Z_{\mathcal{M}_{g,p}\times S^1} = I_{\mathcal{M}_{g,p}} = \operatorname{Tr}_{\mathcal{M}_{g,p}} \left[(-1)^F q^{2J_3 + R} y_{\alpha}^{Q_{\alpha}} \right]$$

In particular (after analytic continuation in the R-charges), this gives a new evaluation formula for the $\mathcal{N} = 1$ superconformal index in the "round" limit $\mathbf{q} = \mathbf{p} = q$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Outlook

Modular properties

The $SL(2,\mathbb{Z})$ generators:

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} , \qquad \qquad \tilde{T} = S^3 T S = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$

act on the A-model operators as:

$$\begin{split} S[\mathcal{F}_1] &= e^{\frac{\pi i}{3\tau} \mathcal{A}^{\mathbf{abc}} \mathbf{u}_{\mathbf{a}} \mathbf{u}_{\mathbf{b}} \mathbf{u}_{\mathbf{c}}} \mathcal{F}_2^{-1} , \qquad & \tilde{T}[\mathcal{F}_1] &= \mathcal{F}_1 \mathcal{F}_2 , \\ S[\mathcal{F}_2] &= e^{-\frac{\pi i}{3\tau^2} \mathcal{A}^{\mathbf{abc}} \mathbf{u}_{\mathbf{a}} \mathbf{u}_{\mathbf{b}} \mathbf{u}_{\mathbf{c}}} \mathcal{F}_1 , \qquad & \tilde{T}[\mathcal{F}_2] &= \mathcal{F}_2 , \\ S[\Pi_\mathbf{a}] &= e^{\frac{\pi i}{2} \mathcal{A}^\mathbf{a}} e^{\frac{\pi i}{\tau} \mathcal{A}^{\mathbf{abc}} \mathbf{u}_{\mathbf{b}} \mathbf{u}_{\mathbf{c}}} \Pi_\mathbf{a} , \qquad & \tilde{T}[\Pi_\mathbf{a}] &= e^{-\frac{\pi i}{6} \mathcal{A}^\mathbf{a}} \Pi_\mathbf{a} , \\ S[\mathcal{H}] &= e^{\frac{\pi i}{2} \mathcal{A}^R} e^{\frac{\pi i}{\tau} \mathcal{A}^{Rbc} \mathbf{u}_{\mathbf{b}} \mathbf{u}_{\mathbf{c}}} \mathcal{H} , \qquad & \tilde{T}[\mathcal{H}] &= e^{-\frac{\pi i}{6} \mathcal{A}^R} \mathcal{H} \end{split}$$

It all follows from the properties of \mathcal{W} and Ω .

Modular properties

For $p \neq 0$, the $\mathcal{M}_{g,p} \times S^1$ background breaks $SL(2,\mathbb{Z})$ explicitly. Some hitherto mysterious modular action on the S^3 index (*e.g.* in [Spiridonov, Vartanov, 2012]) are simply explained.

For p = 0, the $\Sigma_g \times T^2$ partition function transforms simply:

$$\begin{split} S[Z_{\Sigma_g \times T^2}] &= e^{\frac{\pi i}{2} \left(\mathfrak{n}_{\alpha} \mathcal{A}^{\alpha} + (g-1) \mathcal{A}^R \right)} e^{\frac{\pi i}{\tau} \left(\mathfrak{n}_{\alpha} \mathcal{A}^{\alpha\beta\gamma} + (g-1) \mathcal{A}^{R\beta\gamma} \right) \nu_{\beta} \nu_{\gamma}} Z_{\Sigma_g \times T^2} \\ \tilde{T}[Z_{\Sigma_g \times T^2}] &= e^{-\frac{\pi i}{6} \left(\mathfrak{n}_{\alpha} \mathcal{A}^{\alpha} + (g-1) \mathcal{A}^R \right)} Z_{\Sigma_g \times T^2} \end{split}$$

Note that it transforms as an $\mathcal{N} = (0, 2)$ elliptic genus. Indeed, there is (formally) a 2d $\mathcal{N} = (0, 2)$ theory on T^2 obtained by dimensional reduction on Σ_q .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Some consistency checks

This sum-over-Bethe-vacua formula reproduces (and generalizes) a number of previous results obtained by different methods. In particular:

- The limit $\beta \to 0$ on the S^1 factor is governed by the trace anomalies—"Cardy-like formula." [di Pietro, Komargodski, 2014]
- The β → ∞ limit is governed by a so-called "supersymmetric Casimir energy." [Assel, Cassani, Martelli, 2014; Assel, Cassani, di Pietro, Komargodski, Lorenzen, Martelli, 2015; Bobev, Bullimore, Kim, 2015]
- We relate the $S^3 \times S^1$ partition function [Romelsberger, 2007; Assel, Cassani, Martelli, 2014] to the $S^2 \times T^2$ partition function [Benini, Zaffaroni, 2015; Honda, Yoshida, 2015]:

 $Z_{S^3 \times S^1} = \overline{\langle \mathcal{F}_1 \rangle_{S^2 \times T^2}}$

3d $\mathcal{N}=2$ theories

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Outlook

Applications

3d $\mathcal{N} = 2$ Wilson loop algebras

Supersymmetric Wilson loops are realized on the Coulomb branch ${\mathfrak M}$ as:

$$W_{\mathfrak{R}} = \operatorname{Tr}_{\mathfrak{R}}(x) = \sum_{\rho \in \mathfrak{R}} x^{
ho}$$

for $\mathfrak R$ a representation of ${\bf G}.$ The Wilson loop algebra is of the form:

$$\mathcal{A} \cong \mathbf{R}[x_a, x_a^{-1}]^{W_{\mathbf{G}}} / I_{\mathrm{BE}} , \qquad \mathbf{R} = \mathbb{Q}(y_\alpha, y_\alpha^{-1})$$

Example: $U(N)_k \mathcal{N} = 2$ CS theory:

$$\mathcal{A} \cong \mathbb{Z}[x_a, x_a^{-1}]^{S_N} / I$$
, $I = \left((-x_a)^k \right)$

This is the Verlinde algebra for pure $U(N)_{\hat{k}}$ CS at level $\hat{k} = k - \operatorname{sign}(k)N.$

3d $\mathcal{N} = 2$ Wilson loop algebras

Another very interesting example is U(N) YM theory with N_f fundamental and N_f antifundamental chiral multiplets. The theory has $\mathbf{G}_F = SU(N_f) \times SU(N_f) \times U(1)_A \times U(1)_T$. Consider the fugacities:

$$y_i, \quad \tilde{y}_i , \quad y_A , \quad z , \quad \tilde{z} \equiv z y_A^{-N_f}$$

such that $\prod_{i=1}^{N_f} y_i^{-1} = \prod_{i=1}^{N_f} \tilde{y}_i = y_A^{-N_f}$. The Bethe equations are:
 $P(x_a) = 0 , \quad a = 1, \cdots, N_c, \qquad x_a \neq x_b$ if $a \neq b$

$$P(x) = \prod_{i=1}^{N_f} (x - y_i) - \tilde{z} \prod_{j=1}^{N_f} (x - \tilde{y}_j)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

3d $\mathcal{N} = 2$ Wilson loop algebras

We can easily write down an explicit presentation of the algebra. Let us denote the Wilson loop W_{\Re} by the Young tableau of the $U(N_c)$ rep. \Re .

For instance, consider the case of U(3), $N_f = 5$:

This theory has a U(2), $N_f = 5$ Aharony dual. [Aharony, 1997] The Bethe equations also encode the duality relations for Wilson loops:

$$\Box^D = R_1 - \Box , \qquad \qquad \Box^D = R_2 - R_1 \Box + \Box \Box ,$$

In the limit $R_n \to 0$, one recovers the Verlinde algebra for $U(3)_{\hat{k}=2}$ and level-rank duality.

Witten index

By taking the chemical potentials ν_{α} generic enough, we have a discrete number of Bethe vacua—the 2d theory is fully massive. (We *only* consider theories where ν can be taken "generic enough.")

The quantity:

$$|\mathcal{S}_{BE}| \in \mathbb{N}$$

is the simplest A-model observable. It is simply the Witten index:

$$Z_{T^d} = |\mathcal{S}_{BE}| , \qquad d = 3 \text{ or } 4$$

This is a regulated Witten index in the presence of generic masses for the matter fields. In 3d, it is known to be invariant as we change the mass parameters. [Intriligator, Seiberg, 2013] Similar in 4d.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outlook

The Witten index of SQCD

Consider $\mathcal{N} = 1$ SQCD: $SU(N_c)$ with N_f flavors.

The Bethe equations are:

$$e^{2\pi i\lambda} \prod_{i=1}^{N_f} \frac{\theta(-v_a + \tilde{\nu}_i)}{\theta(v_a + \nu_i)} = 1 , \quad a = 1, \cdots, N_c , \qquad \sum_{a=1}^{N_c} v_a = \mu_B$$

One can compute:

$$\mathcal{Z}_{T^4} = |\mathcal{S}_{BE}| = \begin{pmatrix} N_f - 2\\ N_c - 1 \end{pmatrix}$$

This result is nicely consistent with Seiberg duality.

Infrared dualities of supersymmetric QFTs

The A-model is itself a TFT. In particular, it is RG invariant. This leads to new tests of infrared dualities. The full A-models A and A^D of infrared-dual theories \mathcal{T} and \mathcal{T}^D should match.

I.e. there exists an isomorphism:

$$\mathcal{D}: \mathbf{A} \to \mathbf{A}^D$$

In particular, on Bethe vacua:

$$\mathcal{D}: \mathcal{S}_{\rm BE} \to \mathcal{S}_{\rm BE} : \hat{u} \mapsto \hat{u}^D$$

Two operators $\mathcal{O} \in \mathbf{A}$ and $\mathcal{O}^D \in \mathbf{A}^D$ are dual if and only if:

 $\mathcal{O}(\hat{u}) = \mathcal{O}_D(\hat{u}^D)$

The existence of \mathcal{D} implies that $Z_{\mathcal{M}_{g,p}}$ or $Z_{\mathcal{M}_{g,p} \times S^1}$ (etc.) match.

Outlook

4d $\mathcal{N} = 1$ Seiberg duality Seiberg duality: $SU(N_c)$ with N_f flavors Q_i , \tilde{Q}_j dual to $SU(N_f - N_c)$ with N_f flavors q^i , \tilde{q}^j , N_f^2 singlets M_{ij} and $W = Mq\tilde{q}$. [Seiberg, 1994]

Bethe equations:

$$\Pi_0(v_a, \lambda) = 1$$
, $a = 1, \cdots, N_c$, $\sum_{a=1}^{N_c} v_a = \mu_B$

$$\Pi_0(v,\lambda) \equiv e^{2\pi i\lambda} \prod_{i=1}^{N_f} \frac{\theta(-v+\tilde{\nu}_i)}{\theta(v+\nu_i)}$$

Let \tilde{v}_k denote the N_f solutions to $\Pi_0(v, \lambda) = 1$ at arbitrary λ . Bethe vacuum:

$$\{\hat{v}_a, \lambda_0\} \mid \{\hat{v}_a\}_{a=1}^{N_c} \equiv A \subset \{\tilde{v}_k\}_{k=1}^{N_f}, \quad \lambda = \lambda_0 \text{ such that } \sum_a \hat{v}_a = \mu_B$$

4d $\mathcal{N} = 1$ Seiberg duality

Duality map:

$$\mathcal{D}: \{\hat{v}_a, \lambda_0\} \mapsto \{\hat{v}_{\bar{a}}^D, \lambda_0^D\} , \quad \{\hat{v}_{\bar{a}}^D\}_{\bar{a}=1}^{N_f - N_c} = A^c \subset \{\tilde{v}_k\}_{k=1}^{N_f} , \ \lambda_0^D = -\lambda_0$$

Equality of fibering operators of dual theories is equivalent to the identity:

$$\prod_{k=1}^{N_f} \prod_{i=1}^{N_f} \Gamma_0(\tilde{\nu}_k + \nu_i) \Gamma_0(-\tilde{\nu}_k + \tilde{\nu}_i) = \prod_{i,j=1}^{N_f} \Gamma_0(\nu_i + \tilde{\nu}_j)$$

We don't have a proof, but we can check it numerically. On the other hand, some simple manipulations on θ -functions implies that $\mathcal{H}(\hat{u}) = \mathcal{H}^D(\hat{u}^D)$.

That then implies the equality of all $\mathcal{M}_{q,p}$ indices:

$$Z_{\mathcal{M}_{g,p}\times S^1}[\mathcal{T}] = Z_{\mathcal{M}_{g,p}\times S^1}[\mathcal{T}^D]$$

Summary and outlook

We described simple TFT for (abelianized) 2d gauge fields—the *A*-models—that compute supersymmetric partition functions—and, more generally, expectation values of codimension-2 operators— in 3d and 4d gauge theories with 4 supercharges.

What's next?

- Describe any allowed (Seifert) \mathcal{M}_3 in this language.
- Extend to "non-Lagrangian" theories.
- Describe the algebra of half-BPS surface operators in 4d ${\cal N}=1$ gauge theories. [in progress] (Mathematical interpretation?)
- Describe and interpret the Ω -deformation at genus g = 0. "Quantization" of twisted chiral ring? Connect to 3d holomorphic blocks [Beem, Dimofte, Pasquetti, 2012]
- 3d/3d correspondence: M5-branes on $\mathcal{M}_{g,p} \times \mathcal{M}_3^{\mathrm{TFT}}$?