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Disclaimers

This talk will be about QFTs with four Poincaré supercharges.

The relevant supersymmetry algebras in dimensions d = 2, 3 and 4
are called:

2d N = (2, 2) S1
←− 3d N = 2 S1

←− 4d N = 1

We restrict ourselves to theories with a U(1)R symmetry:

[R,Q] = −Q , [R, Q̄] = Q̄ ,

Including but not limited to: SCFTs.
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The twisted chiral ring
Consider the 2d case:

2d N = (2, 2) : {Q−, Q̄−} = Pz , {Q+, Q̄+} = −Pz̄ ,
{Q−, Q̄+} = iZ , {Q+, Q̄−} = iZ̄ ,

with Z a complex central charge that commutes with R.

N = (2, 2) theories contain interesting subsectors of protected
local operators.

We are interested in the twisted chiral ring:

ω : [Q−, ω] = 0 , [Q̄+, ω] ( mod Q or Q̄-exact )

It is conveniently singled out by the topological A-twist.
[Witten, 1988]
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Twisted chiral ring for d = 3 and 4

In dimension d > 2, the twisted-chiral condition breaks so(d)
covariance down to so(2).

Twisted chiral operators are extended operators of codimension 2:

d = 3: half-BPS line operators in 3d N = 2 theories, L .
(For instance, supersymmetric Wilson loop operators.)

d = 4: half-BPS surface operators in 4d N = 1 theories, S.
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Fusion algebras

Parallel twisted chiral operators have non-singular OPE.

They satisfy a fusion algebra. We must have:

Li ·Lj = Nijk Lk

for half-BPS line operators L in 3d, and similarly for S in 4d.

These algebras have been discussed e.g. by:
[Kapustin, Willett, 2013; Cecotti, Gaiotto, Vafa, 2013]
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A-models

Our setup will be:
• 3d N = 2 theory on R2 × S1

• 4d N = 1 theory on R2 × T 2

with line operators on S1, or surface operators on T 2.

R2 can be compactified to Σg with the A-twist. We define the
“A-model” of the 3d or 4d theory as the 2d TFT on Σg obtained
by going to the cohomology of Q− and Q̄+.

A-model observables:

〈LiLj · · · 〉Σg×S1 , 〈SiSj · · · 〉Σg×T 2

They capture the quantum ring structure constants Nijk.
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Another disclaimer

This talk will be exclusively concerned with ultraviolet
(UV)-complete gauge theories with a UV Lagrangian: 1

〈O〉 =
∫

[DV DΦ] e−
∫
d3x
√
g L(V,Φ) O(V,Φ)

For instance:
• 3d N = 2 SQED
• 3d N = 2∗ quivers
• 4d N = 1 SU(Nc) SQCD
• · · ·

1My apologies.
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Supersymmetric indices and partition functions
In the last 10 years, there has been a lot of interest in computing
supersymmetric partition functions and indices:

ZM3 [T3d N=2] , ZM3×S1 [T4d N=1] = IM3

This can be done using supersymmetric localization in many
examples. [Pestun, 2007; Kapustin, Willett, Yaakov, 2010; Jafferis, 2010; Hama,
Hosomichi, Lee, 2010; Benini, Eager, Hori, Tachikawa, 2013; Hori, Kim, Yi, 2014;
Assel, Cassani, Martelli, 2014; ...]

ForM3 ∼= Σg × S1, it is a A-model observable:

ZΣg×S1 = 〈1〉Σg×S1

Computed in [Nekrasov, Shatashvili, 2014; Benini, Zaffaroni, 2014, 2015; CC,
Kim, 2015]

Can we understand more general partition functions as A-model
observables?
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Supersymmetric indices and partition functions
One of the best-known example is the three-sphere index:
[Romelsberger, 2005]

IS3 = TrS3

[
(−1)FpJ3+J ′

3+ 1
2RqJ3−J ′

3+ 1
2R
∏
F

yQFF

]

In 3d, this reduce to the (“squashed”) S3
b partition function.

In this talk: p = q ≡ q , ↔ b = 1

The index can be computed in terms of an elliptic hypergeometric
integral:

IS3 = qES3 (q; q)2rk(G)
∞
|WG|

∮ rk(G)∏
a=1

dxa
2πixa

∏
ρ,ω Γ0

(
xρyωqrω−1; q

)∏
α Γ0

(
xαq−1; q

) ,

[Romelsberger, 2005; Dolan, Osborn, 2008]
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Supersymmetric indices and partition functions

Localization computations can be very subtle.

In this talk, I’ll explain a different method to compute:

ZM3 , ZM3×S1 ,

for 3d and 4d gauge theories, for a relatively simple family ofM3
backgrounds allowed by supersymmetry.

This will teach us some interesting lessons about these objects,
and will allow us to compute a few new interesting observables in
theories with 4 supercharges.

Previous works: [Ohta, Yoshida, 2012; Nishioka, Yaakov, 2014]
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3d N = 2 theories
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3d N = 2 gauge theory

Consider 3d N = 2 supersymmetric
Yang-Mills-Chern-Simons-matter theories, with:

• Vector multiplet V for a gauge group G, with Lie(G) = g.
• Chiral multiplets Φi in representations Ri of g.
• R-symmetry-preserving superpotential W (Φ).
• A choice of CS interactions for G×GF :

SCS = k

4π

∫
M3

d3x
√
g(iεµνρ

(
aµ∂νaρ −

2i
3 aµaνaρ

)
− 2σD + 2iλ̃λ)

We have the CS level k ∈ Z, andM3 must be a spin manifold.
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Circle compactification

Consider the theory on R2 × S1, with S1 a circle of radius β.
Using the Kaluza-Klein (KK) expansion:

φ =
∑
n∈Z

φn(z, z̄)einψ ,

we can consider the 3d theory as a 2d theory with an infinite
number of fields, in 2d N = (2, 2) supermultiplets.

In particular, we have a 2d vector multiplet that includes a
complex scalar:

u = iβσ − a(0) , a(0) = 1
2π

∫
S1
aµdx

µ

with σ the real scalar in V in 3d. We take u dimensionless.
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Circle compactification

Consider giving an expectation values to the scalar u in the 2d
vector multiplet. This corresponds to the classical Coulomb branch
of the 3d theory: [Aganagic, Hori, Karch, Tong, 2001]

u = diag(ua) , a = 1, · · · , rk(G)

Due to large gauge transformations along S1, we have:

ua ∼ ua + 1 , M ∼= (C∗)rk(G)/WG

We will also use the variables:

xa ≡ e2πiua
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Circle compactification

At a generic point on M, the 3d gauge group is Higgsed to:

G→ H ∼=
rk(G)∏
a=1

U(1)a

We can also think in terms of diagonalization of the 2d vector
multiplet. In the path integral language, we should still sum over
topological sectors, using a functional Weyl integral formula. [Blau,
Thompson, 1992, 1993].

We integrate out all massive fields and write down an effective
field theory for the low-energy modes ua and its superpartners, in
twisted chiral multiplets Ua. That is our “A-model.”
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Mass parameters: background GF vector multiplets

We are considering the theory in the presence of arbitrary
supersymmetry-preserving background fields for the flavor
symmetry GF with maximal torus:

HF =
∏
α

U(1)α ⊂ GF

We have the flavor parameters:

να = iβmF
α − a(0)F

α , yα ≡ e2πiνα

One may call ν and y the “chemical potentials” and “fugacities”,
respectively.
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A-model Lagrangian

Consider the A-twisted theory. This is equivalent to “curved-space
supersymmetry” [Festuccia, Seiberg, 2012] on Σg × S1.

Up to Q-exact terms, the Lagrangian of the effective field theory
on M reads:

STQFT =
∫

Σg

(
−ifa

∂W(u, ν)
∂ua

+ Λ̃aΛb∂
2W(u, ν)
∂ua∂ub

)

+ i

2

∫
Σg
d2x
√
gΩ(u, ν)R

with fa the abelian field strength of aaµ and R the Ricci scalar.
[Witten, 1993; Nekrasov, Shatashvili, 2014]
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Effective twisted superpotential and effective dilaton

The A-model is fully determined by the two holomorphic
potentials:

W(u, ν) , Ω(u, ν)

The effective twisted superpotential takes the schematic form:

W = k

2u(u+ 1) + kF

2 ν(ν + 1) + kg
24 + 1

(2πi)2

∑
(ρ,ω)∈(R,RF )

Li2(xρyω)

The classical contribution is from CS terms, including background
CS terms.

The dilog is a one-loop correction from integrating out the matter
fields. This result is for the so-called U(1)− 1

2
quantization of a 3d

Dirac fermion, which preserves gauge invariance but breaks parity.
[CC, Kim, Willett, 2017]
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Effective twisted superpotential and effective dilaton

Similarly, the effective dilaton takes the form:

Ω = kaRua + kαRνα + 1
2k

RR

− 1
2πi

∑
(ρ,ω)∈(R,RF )

(rω − 1) log(1− xρyω)

− 1
2πi

∑
α∈g

log(1− xα)

The CS contributions are supersymmetric CS terms involving the
U(1)R background gauge field [CC, Dumitrescu, Festuccia, Komargodski,
Seiberg, 2012].

Note the contribution from the W-bosons.
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Effective twisted superpotential and effective dilaton

The twisted superpotential is only defined modulo the ambiguity:

W ∼W + naua + nανα + n0 , na, nα, n0 ∈ Z ,

due to the sum over topological sectors. Similarly, we have:

Ω ∼ Ω + n , n ∈ Z

This corresponds to branch cut ambiguities in the variables u, ν.
One the other hand, well-defined A-model operators will be
holomorphic in u, ν.
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The Bethe equations

Let us define the so-called Bethe equations:

Πa(u, ν) ≡ exp
(

2πi∂W
∂ua

)
= 1 ,

[Nekrasov, Shatashvili, 2009]

The vacua of the A-model are two-dimensional vacua,
the Bethe vacua:

SBE =
{
ûa

∣∣∣∣ Πa(û, ν) = 1 , ∀a , w · û 6= û, ∀w ∈WG

}
/WG

Importantly, we must exclude would-be “non-abelian
vacua”—solutions of Πa = 1 not acted on freely by the Weyl
group—by hand.
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A-model defect operators

Given W, Ω, we can define a number of “canonical” defect
operators, which are local on Σg.

These operators probably have an explicit construction in the
three-dimensional UV theory, but we will only focus on their
A-model “low energy” description.
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The flavor flux operators

In the presence of flavor symmetries U(1)α ⊂ GF , we can turn on
generic background vector multiplets VFα , as long as we preserve
the A-twist supercharges.

In particular, we have chemical potentials and background fluxes

να ,
1

2π

∫
Σg
fα = nα ∈ Z

This adds a piece to the A-model action:

Sflux =
∫

Σg

(
−ifα

∂W(u, ν)
∂να

)
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The flavor flux operators

The background field fα can have arbitrary profile over Σg:

If we concentrate its flux near a point, we obtain a singularity,
describable by a local operator.
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The flavor flux operators

In particular, if we take

fα = 2π nα δ2(x− x0) ,

turning on background flux is equivalent to the insertion of a local
operator:

Πα(u, ν)nα

in the path integral, with

Πα(u, ν) = exp
(

2πi∂W(u, ν)
∂να

)

We call Πα the flux operator for the flavor symmetry U(1)α.
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The handle-gluing operator

Any 2d TQFT has a “handle-gluing operator” H:

The explicit form of H for simple LG models is given by [Vafa, 1990].
The generalization to 2d gauge theories was investigated more
recently. [Melnikov, Plesser, 2005; Nekrasov, Shatashvili, 2014]
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The handle-gluing operator

In the A-twisted gauge theory, the handle-gluing operator can be
seen as a “flux operator for U(1)R”.

It is given explicitly by: [Nekrasov, Shatashvili, 2014]

H(u, ν) = e2πiΩ(u,ν) det
ab

(
∂2W(u, ν)
∂ua∂ub

)

The appearance of the Hessian determinant of W is due to the
presence of fermionic zero modes from the gauginos.
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Σg × S1 correlators and the 3d twisted index
In any 2d TQFT, we have:

〈O〉Σg = 〈OHg〉CP 1 = TrV
(
Hg−1O

)
where V is the TQFT Hilbert space. For us, V ∼= SBE.

For the 3d A-model, we then find: [Nekrasov, Shatashvili, 2014]〈
L
〉

Σg×S1
=

∑
x̂∈SBE

L (x̂)H(x̂, y)g−1 Πα(x̂, y)nα

for any line operator L on Σg × S1, in the presence of background
fluxes nα for the flavor symmetry. This can also be computed by
supersymmetric localization in the UV [Benini, Zaffaroni, 2015, 2016; CC,
Kim, 2016]

Note: The operators Πα and H are rational functions of x and y.
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The fibering operator

There exists another “canonical” A-model operator one can build
from W.

From the 2d point of view, the full flavor symmetry is:

G2d
F = GF × U(1)KK

We have distinguished symmetry U(1)KK , whose conserved charge
is the circle momentum. There exists a 2d background vector
multiplet that couples to the KK momentum. In particular, we
have the 2d twisted mass:

mKK = 1
β
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The fibering operator

Definition: the fibering operator is the flux operator for U(1)KK .

Reinstating dimensions, we find:

F(u, ν) ≡ exp
(

2πi ∂

∂mKK

(
mKKW(u, ν)

))

This leads to the explicit expression:

F(u, ν) = exp
(
2πi

(
W − ua∂uaW − να∂ναW

))

in terms of the twisted superpotential W(u, ν).
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The fibering operators
Inserting Fp, p ∈ Z, in the A-model, we realize a principal circle
bundle over Σg:

S1 −→Mg,p
π−→ Σg .

p = 1
2π

∫
Σg
daKK

ThisMg,p is the simplest example of a Seifert manifold.

Supersymmetry is preserved by a pull-back of the A-twist on Σg.
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The fibering operator

Importantly, the fibering operator is not fully gauge invariant under
G×GF . Instead, we have the difference equations:

F(ua + 1, ν) = F(u, ν) Πa(u, ν)−1

F(u, να + 1) = F(u, ν) Πα(u, ν)−1

It is, however, gauge invariant (under G) on the Bethe vacua,
where Πa(û) = 1.

All observables are fully G×GF invariant.
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The fibering operator

Explicitly, in the YM-CS-matter theory:

F(u, ν) = e−πik u
2−πikF ν2+πi

12kg
∏

(ρ,ω)∈(R,RF )
FΦ(ρ(u) + ω(ν))

in terms of the simple function:

FΦ(u) = exp
( 1

2πiLi2
(
e2πiu

)
+ u log

(
1− e2πiu

))
This is a meromorphic function of u with poles at u = −1,−2, · · ·
and zeros at z = 1, 2, · · · . Note the identity:

FΦ(u)FΦ(−u) = eπiu
2−πi6
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TheMg,p partition function

We then directly find theMg,p supersymmetric partition function:

ZMg,p(ν; n) =
∑

û∈SBE

F(û, ν)pH(û, ν)g−1 Πα(û, ν)nα

We can view this as an expectation value for a defect line operator
F at a point on Σg:

ZMg,p(ν) = 〈Fp〉Σg×S1

In this sense, theMg,p partition functions is just another A-model
observable.
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The S3 partition function
Special case g = 0, p = 1: The S3 partition function.

ZS3(ν) =
∑

û∈SBE

F(û, ν)H(û, ν)−1 = 〈F〉S2×S1

Here, 〈1〉S2×S1 = ZS2×S1 is also known as “twisted 3d index”.
[Benini, Zaffaroni, 2015]

So far, we chose all R-charges ri ∈ Z for the chiral multiplets Φi.
This is necessary for the A-twist point of view.

On S3, there is a canonical analytic continuation

ZS3(ν)→ ZS3(ν + (R− 1))

to any ri ∈ R. [CC, Dumitrescu, Festuccia, Komargodski, 2014]

In particular, this gives a nice way to compute FS3 = − logZS3 for
a 3d N = 2 SCFT. [Jafferis, 2012]
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4d N = 1 theories
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4d N = 1 gauge theories

Consider an N = 1 gauge theory. For simplicity, we take G
semi-simple and simply connected, and asymptotically-free theories.

We play the same game as before by compactifying on a T 2 with
modular parameter τ . Now, the G×GF parameters u, ν are
themselves valued in a torus:

u ∼ u+ 1 ∼ u+ τ, ν ∼ ν + 1 ∼ ν + τ

Let us introduce the convenient notation:

ua = (ua, να) , a = (a, α)
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4d N = 1 gauge theories

The twisted superpotential is given by:

W(u; τ) = −A
abcuaubuc

6τ +
∑

ρ∈(R,RF )
ψ
(
ρ(u); τ

)
It is a purely quantum (one-loop) effect. We defined the “elliptic
dilog”:

ψ(u; τ) ≡ − 1
2πi

∫ u

0
dv log θ(v; τ)

in terms of the θ-function θ(u; τ) = θ1(u; τ)/iη(τ):

θ(u; τ) ≡ e−πiuq
1

12

∞∏
k=0

(1−xqk)(1−x−1qk+1) , x ≡ e2πiu , q ≡ e2πiτ
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Anomalies
In 4d, symmetries of L can be anomalous. The perturbative
anomaly coefficients are:

Aabc =
∑
ρ

ρaρbρc ∝ Tr(R,RF )(T a{TbT c})

Aa =
∑
ρ

ρa ∝ Tr(R,RF )(T a)

We must impose the anomaly-free condition:

Aabc = Aa = 0 , Aabγ = Aaβγ = 0

On the other-hand, we still have non-vanishing ’t Hooft anomalies
for GF :

Aαβγ ,Aα 6= 0
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’t Hooft anomalies and modular transformations
Classically, we have the symmetries under the “elliptic”
transformations:

u ∼ u+ 1 ∼ u+ τ, ν ∼ ν + 1 ∼ ν + τ

and the full modular group SL(2,Z) acting on T 2:

S : ua →
ua
τ
, τ → −1

τ
, T : ua → ua , τ → τ + 1

The anomaly-free condition ensures that W is fully G-invariant.

The other (non-gauged) symmetries can be violated. For instance:

S : W
(u
τ
,−1

τ

)
= 1

τ
W(u, τ) + 1

6τ2A
abcuaubuc + 1

4τA
aua
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Flux operators and the 4d Bethe equations

One can similarly compute Ω(u; τ). As in 3d, we may define:

Πa(u, ν; τ) , Πα(u, ν; τ) , H(u, ν; τ)

The Bethe equations are Πa = 1 as before. Explicitly:

∏
(ρ,ω)∈(R,RF )

θ
(
ρ(u) + ω(ν); τ

)−ρa = 1 , ∀a ,

and excluding any solution left invariant by (part of) the Weyl
group.

For an anomaly-free theory, the LHS is modular and elliptic in all
parameters, so the equations are well-defined.
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Fibering operators
The 4d A-model is defined on T 2 ∼= S1

β1
× S1

β2
with Im(τ) = β2

β1
.

In 2d, we have an U(1)2
KK symmetry, with mass parameters:

mKK1 = τ

β2
, mKK2 = 1

β2

The corresponding fibering operators are:

F1(u, ν; τ) = exp
(

2πi∂W
∂τ

)
and

F2(u, ν; τ) = exp
(

2πi
(
W − ua

∂W
∂ua
− να

∂W
∂να
− τ ∂W

∂τ

))
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Fibering operators

The apparent difference between the F1 and F2 is due to an
implicit choice of modular frame. One can show that they are
related by an S transformation:

F2

(u
τ

;−1
τ

)
= e−

πi
3τ2Aabcuaubuc F1(u; τ) ,

The insertion of Fp1
1 F

p2
2 (p1, p2 ∈ Z) in the A-model is equivalent

to considering the theory on:

T 2 −→Mg,p × S1 −→ Σg , p = gcd(p1, p2)

This is perfectly consistent with the known classification of N = 1
supersymmetric backgrounds. [Dumitrescu, Festuccia, Seiberg, 2012]
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Fibering operators

Thus we can just choose (p1, p2) = (p, 0) and insert Fp1 .

More explicitly, the fibering operator F1 is given by:

F1(u, ν; τ) =
∏

(ρ,ω)∈(R,RF )
Γ0(ρ(u) + ω(ν); τ)

in terms of a “reduced” elliptic Γ-function:

Γ0(u; τ) = Γe(qx; q, q) =
∞∏
k=0

(
1− x−1qk+1

1− xqk+1

)k+1
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TheMg,p supersymmetric index

We can directly compute theMg,p × S1 partition function:

ZMg,p×S1(ν; τ) =
∑

û∈SBE

F1(û, ν; τ)p H(û, ν; τ)g−1 Πα(û, ν; τ)nα

This computes explicitly theMg,p index:

ZMg,p×S1 = IMg,p = TrMg,p

[
(−1)F q2J3+R yQαα

]

In particular (after analytic continuation in the R-charges),
this gives a new evaluation formula for the N = 1 superconformal
index in the “round” limit q = p = q.
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Modular properties

The SL(2,Z) generators:

S =
(

0 1
−1 0

)
, T̃ = S3TS =

(
1 0
−1 1

)
act on the A-model operators as:

S[F1] = e
πi
3τA

abcuaubuc F2
−1 , T̃ [F1] = F1 F2 ,

S[F2] = e−
πi

3τ2A
abcuaubuc F1 , T̃ [F2] = F2 ,

S[Πa] = e
πi
2 A

a
e
πi
τ A

abcubuc Πa , T̃ [Πa] = e−
πi
6 A

a
Πa ,

S[H] = e
πi
2 A

R

e
πi
τ A

Rbcubuc H , T̃ [H] = e−
πi
6 A

R

H

It all follows from the properties of W and Ω.
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Modular properties

For p 6= 0, theMg,p × S1 background breaks SL(2,Z) explicitly.

Some hitherto mysterious modular action on the S3 index (e.g. in
[Spiridonov, Vartanov, 2012]) are simply explained.

For p = 0, the Σg × T 2 partition function transforms simply:

S[ZΣg×T 2 ] = e
πi
2 (nαAα+(g−1)AR) e

πi
τ (nαAαβγ+(g−1)ARβγ)νβνγ ZΣg×T 2

T̃ [ZΣg×T 2 ] = e−
πi
6 (nαAα+(g−1)AR) ZΣg×T 2

Note that it transforms as an N = (0, 2) elliptic genus. Indeed,
there is (formally) a 2d N = (0, 2) theory on T 2 obtained by
dimensional reduction on Σg.
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Some consistency checks
This sum-over-Bethe-vacua formula reproduces (and generalizes) a
number of previous results obtained by different methods. In
particular:

• The limit β → 0 on the S1 factor is governed by the trace
anomalies—“Cardy-like formula.” [di Pietro, Komargodski, 2014]

• The β →∞ limit is governed by a so-called “supersymmetric
Casimir energy.” [Assel, Cassani, Martelli, 2014; Assel, Cassani, di Pietro,
Komargodski, Lorenzen, Martelli, 2015; Bobev, Bullimore, Kim, 2015]

• We relate the S3 × S1 partition function [Romelsberger, 2007;
Assel, Cassani, Martelli, 2014] to the S2 × T 2 partition function
[Benini, Zaffaroni, 2015; Honda, Yoshida, 2015]:

ZS3×S1 = 〈F1〉S2×T 2
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Applications
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3d N = 2 Wilson loop algebras
Supersymmetric Wilson loops are realized on the Coulomb branch
M as:

WR = TrR (x) =
∑
ρ∈R

xρ

for R a representation of G. The Wilson loop algebra is of the
form:

A ∼= R[xa, x−1
a ]WG/IBE , R = Q(yα, y−1

α )

Example: U(N)k N = 2 CS theory:

A ∼= Z[xa, x−1
a ]SN /I , I =

(
(−xa)k

)
This is the Verlinde algebra for pure U(N)k̂ CS at level
k̂ = k − sign(k)N .
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3d N = 2 Wilson loop algebras

Another very interesting example is U(N) YM theory with Nf

fundamental and Nf antifundamental chiral multiplets. The theory
has GF = SU(Nf )× SU(Nf )× U(1)A × U(1)T . Consider the
fugacities:

yi, ỹi , yA , z , z̃ ≡ z y−NfA

such that
∏Nf
i=1 y

−1
i =

∏Nf
i=1 ỹi = y

−Nf
A . The Bethe equations are:

P (xa) = 0 , a = 1, · · · , Nc, xa 6= xb if a 6= b

P (x) =
Nf∏
i=1

(x− yi)− z̃
Nf∏
j=1

(x− ỹj)
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3d N = 2 Wilson loop algebras
We can easily write down an explicit presentation of the algebra.
Let us denote the Wilson loop WR by the Young tableau of the
U(Nc) rep. R.

For instance, consider the case of U(3), Nf = 5:

=R3 − R2 + R1 ,

=R4 − R2 + R1 ,

=R5 − R2 + R1 , Rn ≡
1

1− z̃ (sn(y)− z̃sn(ỹ))

This theory has a U(2), Nf = 5 Aharony dual. [Aharony, 1997] The
Bethe equations also encode the duality relations for Wilson loops:

D = R1 − ,
D

= R2 − R1 + ,

In the limit Rn → 0, one recovers the Verlinde algebra for U(3)k̂=2
and level-rank duality.
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Witten index

By taking the chemical potentials να generic enough, we have a
discrete number of Bethe vacua—the 2d theory is fully massive.
(We only consider theories where ν can be taken “generic
enough.”)

The quantity:
|SBE | ∈ N

is the simplest A-model observable. It is simply the Witten index:

ZT d = |SBE | , d = 3 or 4

This is a regulated Witten index in the presence of generic masses
for the matter fields. In 3d, it is known to be invariant as we
change the mass parameters. [Intriligator, Seiberg, 2013] Similar in 4d.
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The Witten index of SQCD

Consider N = 1 SQCD: SU(Nc) with Nf flavors.

The Bethe equations are:

e2πiλ
Nf∏
i=1

θ(−va + ν̃i)
θ(va + νi)

= 1 , a = 1, · · · , Nc ,
Nc∑
a=1

va = µB

One can compute:

ZT 4 = |SBE | =
(
Nf − 2
Nc − 1

)

This result is nicely consistent with Seiberg duality.
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Infrared dualities of supersymmetric QFTs
The A-model is itself a TFT. In particular, it is RG invariant. This
leads to new tests of infrared dualities. The full A-models A and
AD of infrared-dual theories T and T D should match.

I.e. there exists an isomorphism:

D : A→ AD

In particular, on Bethe vacua:

D : SBE → SBE : û 7→ ûD

Two operators O ∈ A and OD ∈ AD are dual if and only if:

O(û) = OD(ûD)

The existence of D implies that ZMg,p or ZMg,p×S1 (etc.) match.
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4d N = 1 Seiberg duality
Seiberg duality: SU(Nc) with Nf flavors Qi, Q̃j dual to
SU(Nf −Nc) with Nf flavors qi, q̃j , N2

f singlets Mij and
W = Mqq̃. [Seiberg, 1994]

Bethe equations:

Π0(va, λ) = 1 , a = 1, · · · , Nc ,
Nc∑
a=1

va = µB

Π0(v, λ) ≡ e2πiλ
Nf∏
i=1

θ(−v + ν̃i)
θ(v + νi)

.

Let ṽk denote the Nf solutions to Π0(v, λ) = 1 at arbitrary λ.
Bethe vacuum:

{v̂a, λ0}
∣∣ {v̂a}Nca=1 ≡ A ⊂ {ṽk}

Nf
k=1 , λ = λ0 such that

∑
a

v̂a = µB
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4d N = 1 Seiberg duality
Duality map:

D : {v̂a, λ0} 7→ {v̂Dā , λD0 } , {v̂Dā }
Nf−Nc
ā=1 = Ac ⊂ {ṽk}

Nf
k=1 , λD0 = −λ0

Equality of fibering operators of dual theories is equivalent to the
identity:

Nf∏
k=1

Nf∏
i=1

Γ0(ṽk + νi)Γ0(−ṽk + ν̃i) =
Nf∏
i,j=1

Γ0(νi + ν̃j)

We don’t have a proof, but we can check it numerically. On the
other hand, some simple manipulations on θ-functions implies that
H(û) = HD(ûD).
That then implies the equality of allMg,p indices:

ZMg,p×S1 [T ] = ZMg,p×S1 [T D]
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Summary and outlook
We described simple TFT for (abelianized) 2d gauge fields—the
A-models—that compute supersymmetric partition functions—and,
more generally, expectation values of codimension-2 operators— in
3d and 4d gauge theories with 4 supercharges.
What’s next?

• Describe any allowed (Seifert)M3 in this language.
• Extend to “non-Lagrangian” theories.
• Describe the algebra of half-BPS surface operators in 4d
N = 1 gauge theories. [in progress] (Mathematical
interpretation?)

• Describe and interpret the Ω-deformation at genus g = 0.
“Quantization” of twisted chiral ring? Connect to 3d
holomorphic blocks [Beem, Dimofte, Pasquetti, 2012]

• 3d/3d correspondence: M5-branes onMg,p ×MTFT
3 ?
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