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Part I: Picking surfaces at random
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Random planar maps

I A planar map is a finite graph together with an
embedding in the plane so that no edges cross.

I Its faces are the connected components of the
complement of its edges

I A map is a quadrangulation if each face has 4
adjacent edges

I A quadrangulation corresponds to a metric space
when equipped with the graph distance

I Interested in uniformly random quadrangulations
with n faces — random planar map (RPM).

I First studied by Tutte in 1960s while working on the
four color theorem. Long history in cominbatorics,
statistical physics, and probability.
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What is the structure of a typical quadrangulation when the number of faces is large?

How many are there? Tutte:

2× 3n

(n + 1)(n + 2)

(
2n
n

)
.
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Random quadrangulation with 25,000 faces

(Simulation due to J.F. Marckert)
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Structure of large random planar maps

(Simulation due to J.F. Marckert)

I Diameter is n1/4 (Chaissang-Schaefer)

I Non-trivial subsequentially limiting metric spaces
upon scaling distances by n−1/4 (Le Gall)

I Subsequentially limiting space is a.s.:

I 4-dimensional (Le Gall)
I homeomorphic to the 2-sphere (Le Gall and

Paulin, Miermont)

I There exists a unique limit in distribution: the
Brownian map (Le Gall, Miermont)

I The Brownian map (TBM) comes equipped with
an area measure which is the limit of the
rescaled measure on RPM which assigns unit
mass for each face.
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Liouville quantum gravity

I D planar domain

I Consider a surface with Riemmanian metric of the form eγh(z)(dx2 + dy 2) for γ > 0

I Liouville quantum gravity (LQG): take h to be an instance of the Gaussian free field
(GFF) on D.

I The GFF is the Gaussian process indexed by x ∈ D with covariance
cov(h(x), h(y)) = G(x , y) where G is the Green’s function for ∆ on D

I Since G(x , y) ∼ − log |x − y | for x ∼ y , the GFF has infinite variance at points,
hence is not a function. Rather, it is a distribution in the sense of Schwartz. So,
the expression eγh does not make mathematical sense.

I Previously, only the volume form made sense of as a limit

lim
ε→0

εγ
2/2eγhε(z)(dx2 + dy 2)

where hε is a mollified version of h and εγ
2/2 is a normalization term.

I This talk is about constructing the metric. Not obviously possible using
mollification. Will take an indirect approach.
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Canonical embedding of TBM into S2

I TBM is an abstract metric measure space homeomorphic to S2, but it does not
obviously come with a canonical embedding into S2

I It is believed that there should be a “natural embedding” of TBM into S2 and that
the embedded surface is described by a form of Liouville quantum gravity (LQG)
with γ =

√
8/3

ψ

I Discrete approach: take a uniformly random planar map and embed it conformally
into S2 (circle packing, uniformization, etc...), then in the n→∞ limit it converges
to a form of

√
8/3-LQG. Not the approach we will describe today ...
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Main result

I Liouville quantum gravity (LQG): eγh(z)(dx2 + dy 2), h a GFF

I The Brownian map (TBM): scaling limit of uniformly random quadrangulations

Theorem (M., Sheffield)
TBM and

√
8/3-LQG are equivalent. More precisely, there is a way to endow√

8/3-LQG with a metric so that it is isometric to TBM.

Comments

1. Construction is purely in the continuum

2. Ideas are connected to aggregation models, such as the Eden model and diffusion limited
aggregation
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Part II:

Schramm-Loewner evolution
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Schramm-Loewner evolution (SLE)
I Random fractal curve in a planar domain

I Introduced by Schramm in ’99 to describe
limits of interfaces in discrete models

I Characterized by conformal invariance and
domain Markov property

I Indexed by a parameter κ > 0

I Simple for κ ∈ (0, 4], self-intersecting for
κ ∈ (4, 8), space-filling for κ ≥ 8

I Dimension: 1 + κ/8 for κ ≤ 8

I Some special κ values:

I κ = 2 LERW, κ = 8 UST
I κ = 8/3 Self-avoiding walk
I κ = 3 Ising, κ = 16/3 FK-Ising
I κ = 4 GFF level lines
I κ = 6 Percolation
I κ = 12 Bipolar orientations
I · · ·

Critical percolation, hexagonal lattice

Each hexagon is colored red or black

with prob. 1
2
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SLEκ

η(t)
gt

η(s)

gt(η(s))

Wt=gt(η(t))

Loewner’s equation: if η is a non self-crossing path in H with η(0) ∈ R and gt is the
Riemann map from the unbounded component of H \ η([0, t]) to H normalized by
gt(z) = z + o(1) as z →∞, then

∂tgt(z) =
2

gt(z)−Wt
where g0(z) = z and Wt = gt(η(t)). (F)

SLEκ in H: The random curve associated with (F) with Wt =
√
κBt , B a standard

Brownian motion. Other domains: apply conformal mapping.
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Simulations due to Tom Kennedy.
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Part III:

Construction of the metric
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Detour: Eden growth model (1961)

I Growth on a graph where at each time
step, add a vertex uniformly at random
from those adjacent to the cluster at the
previous step.

I Question: Large scale behavior of the
growth?

I Cox and Durrett (1981) showed that the
macroscopic shape is convex

I Computer simulations show that it is not a
Euclidean disk

I Z2 has preferential directions

I But a random planar map does not ...
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Eden model on random planar maps I
I RPM, random vertex x . Grow Eden cluster from x (Angel’s peeling process).

Important observations:

I Conditional law of map given growth at time n only depends on the boundary
lengths of the outside components.

Exploration respects the Markovian structure of
the map.

Belief: At large scales this is close to a ball in the graph metric (now proved by Curien

and Le Gall)
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Eden model on random planar maps II

Goal: Make sense of the Eden model in the continuum on top of a LQG surface

I Explain a discrete variant of the Eden model that involves two operations that we
do know how to perform in the continuum:

I Sample random points according to boundary length
I Draw (scaling limits of) critical percolation interfaces (SLE6)
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Eden model on random planar maps II

Variant:

I Pick two edges on outer boundary
of cluster

I Color vertices between edges blue
and yellow

I Color vertices on rest of map blue
or yellow with prob. 1

2

I Explore percolation (blue/yellow)
interface

I Forget colors

I Repeat

I This exploration also respects the Markovian structure of the map.

I Expect that at large scales this growth process looks the same as the Eden model,
hence the same as the graph metric ball
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Continuum limit ansatz

I Sample a random planar map

and two edges uniformly at random

I Color vertices blue/yellow with probability 1/2

and draw percolation interface

I Conformally map to the sphere

Ansatz Image of random map converges to a
√

8/3-LQG surface and the image of the

interface converges to an independent SLE6.
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Continuum analog of first passage percolation on LQG

I Start off with
√

8/3-LQG surface

I Fix δ > 0 small and a starting point x

I Draw δ units of SLE6

I Resample the tip according to
boundary length

I Repeat

I Know the conditional law of the LQG
surface at each stage

QLE(8/3, 0) is the limit as δ → 0 of this growth process.

In the limit, this describes the growth of a metric ball in a metric space which is

isometric to TBM.
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Discrete approximation of QLE(8/3, 0). Metric ball on a
√

8/3-LQG
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What is QLE(γ2, η)?

QLE(8/3, 0) is a member of a two-parameter family of processes called QLE(γ2, η)

I γ is the type of LQG surface on which the process grows

I η determines the manner in which it grows

Let µHARM (resp. µLEN) be harmonic (resp. length) measure on a γ-LQG surface. The
rate of growth (i.e., rate at which microscopic particles are added) is proportional to(

dµHARM

dµLEN

)η
dµLEN.

I Eden model: η = 0

I Diffusion limited aggregation: η = 1

I η-dieletric breakdown model: general values of η
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Simulation of Euclidean DLA
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DLA in math?

Not a lot of progress.

Open questions

I Does DLA have a “scaling limit”?

I Is the shape random at large scales?

I Does the macroscopic shape look like a tree (i.e., does it make macroscopic loops)?

I What is its asymptotic dimension? Simulation prediction: ≈ 1.71 on Z2

What about DLA on random planar maps and Liouville quantum gravity surfaces?
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Discrete approximation of QLE(2, 1). DLA on a
√

2-LQG
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QLE(γ2, η) processes we can construct

γ2

η

0

1

−1

1 2 3 4

(2, 1)

(8/3, 0) (4, 1/4)

Each of the QLE(γ2, η) processes with (γ2, η) on the orange curves is built from an

SLEκ process using tip re-randomization.
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Other γ?

I Other γ values correspond to random planar maps which are decorated by a
statistical physics model (e.g., the Ising model).

I Very little is understood about how the metric should behave or how to construct it
for γ 6=

√
8/3.

I For example, the Hausdorff dimension of γ-LQG for γ 6=
√

8/3 is not known.
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