Liouville quantum gravity and the Brownian map

Jason Miller

Cambridge

joint with Scott Sheffield (MIT)

July 28, 2017

Overview

Part I: Picking surfaces at random

- 1. Discrete: random planar maps
- 2. Continuum: Liouville quantum gravity (LQG)
- 3. Relationship

Part II: Schramm-Loewner evolution

Part III: Construction of the metric on LQG

Part I: Picking surfaces at random

A planar map is a finite graph together with an embedding in the plane so that no edges cross.

- A planar map is a finite graph together with an embedding in the plane so that no edges cross.
- Its faces are the connected components of the complement of its edges

- A planar map is a finite graph together with an embedding in the plane so that no edges cross.
- Its faces are the connected components of the complement of its edges
- A map is a quadrangulation if each face has 4 adjacent edges

- A planar map is a finite graph together with an embedding in the plane so that no edges cross.
- Its faces are the connected components of the complement of its edges
- A map is a quadrangulation if each face has 4 adjacent edges
- A quadrangulation corresponds to a metric space when equipped with the graph distance

- A planar map is a finite graph together with an embedding in the plane so that no edges cross.
- Its faces are the connected components of the complement of its edges
- A map is a quadrangulation if each face has 4 adjacent edges
- A quadrangulation corresponds to a metric space when equipped with the graph distance
- Interested in uniformly random quadrangulations with *n* faces — random planar map (RPM).

- A planar map is a finite graph together with an embedding in the plane so that no edges cross.
- Its faces are the connected components of the complement of its edges
- A map is a quadrangulation if each face has 4 adjacent edges
- A quadrangulation corresponds to a metric space when equipped with the graph distance
- Interested in uniformly random quadrangulations with *n* faces — random planar map (RPM).
- First studied by Tutte in 1960s while working on the four color theorem. Long history in cominbatorics, statistical physics, and probability.

What is the structure of a typical quadrangulation when the number of faces is large?

What is the structure of a typical quadrangulation when the number of faces is large? How many are there? **Tutte**:

$$\frac{2\times 3^n}{(n+1)(n+2)} \begin{pmatrix} 2n\\n \end{pmatrix}.$$

(Simulation due to J.F. Marckert)

• Diameter is $n^{1/4}$ (Chaissang-Schaefer)

(Simulation due to J.F. Marckert)

- Diameter is n^{1/4} (Chaissang-Schaefer)
- ▶ Non-trivial subsequentially limiting metric spaces upon scaling distances by $n^{-1/4}$ (Le Gall)

(Simulation due to J.F. Marckert)

(Simulation due to J.F. Marckert)

- Diameter is n^{1/4} (Chaissang-Schaefer)
- Non-trivial subsequentially limiting metric spaces upon scaling distances by n^{-1/4} (Le Gall)
- Subsequentially limiting space is a.s.:
 - 4-dimensional (Le Gall)
 - homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)

(Simulation due to J.F. Marckert)

- Diameter is $n^{1/4}$ (Chaissang-Schaefer)
- Non-trivial subsequentially limiting metric spaces upon scaling distances by n^{-1/4} (Le Gall)
- Subsequentially limiting space is a.s.:
 - 4-dimensional (Le Gall)
 - homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)
- There exists a unique limit in distribution: the Brownian map (Le Gall, Miermont)

(Simulation due to J.F. Marckert)

- Diameter is n^{1/4} (Chaissang-Schaefer)
- Non-trivial subsequentially limiting metric spaces upon scaling distances by n^{-1/4} (Le Gall)
- Subsequentially limiting space is a.s.:
 - 4-dimensional (Le Gall)
 - homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)
- There exists a unique limit in distribution: the Brownian map (Le Gall, Miermont)
- The Brownian map (TBM) comes equipped with an area measure which is the limit of the rescaled measure on RPM which assigns unit mass for each face.

D planar domain

- D planar domain
- Consider a surface with Riemmanian metric of the form $e^{\gamma h(z)}(dx^2 + dy^2)$ for $\gamma > 0$

- ► D planar domain
- Consider a surface with Riemmanian metric of the form $e^{\gamma h(z)}(dx^2 + dy^2)$ for $\gamma > 0$
- Liouville quantum gravity (LQG): take h to be an instance of the Gaussian free field (GFF) on D.

- D planar domain
- Consider a surface with Riemmanian metric of the form $e^{\gamma h(z)}(dx^2 + dy^2)$ for $\gamma > 0$
- Liouville quantum gravity (LQG): take h to be an instance of the Gaussian free field (GFF) on D.
- The GFF is the Gaussian process indexed by x ∈ D with covariance cov(h(x), h(y)) = G(x, y) where G is the Green's function for Δ on D

- D planar domain
- Consider a surface with Riemmanian metric of the form $e^{\gamma h(z)}(dx^2 + dy^2)$ for $\gamma > 0$
- Liouville quantum gravity (LQG): take h to be an instance of the Gaussian free field (GFF) on D.
- The GFF is the Gaussian process indexed by x ∈ D with covariance cov(h(x), h(y)) = G(x, y) where G is the Green's function for Δ on D
- Since G(x, y) ~ − log |x − y| for x ~ y, the GFF has infinite variance at points, hence is not a function. Rather, it is a distribution in the sense of Schwartz. So, the expression e^{γh} does not make mathematical sense.

- D planar domain
- Consider a surface with Riemmanian metric of the form $e^{\gamma h(z)}(dx^2 + dy^2)$ for $\gamma > 0$
- Liouville quantum gravity (LQG): take h to be an instance of the Gaussian free field (GFF) on D.
- The GFF is the Gaussian process indexed by x ∈ D with covariance cov(h(x), h(y)) = G(x, y) where G is the Green's function for Δ on D
- Since G(x, y) ~ − log |x − y| for x ~ y, the GFF has infinite variance at points, hence is not a function. Rather, it is a distribution in the sense of Schwartz. So, the expression e^{γh} does not make mathematical sense.
- Previously, only the volume form made sense of as a limit

$$\lim_{\epsilon\to 0} \epsilon^{\gamma^2/2} e^{\gamma h_{\epsilon}(z)} (dx^2 + dy^2)$$

where h_{ϵ} is a mollified version of h and $\epsilon^{\gamma^2/2}$ is a normalization term.

- D planar domain
- Consider a surface with Riemmanian metric of the form $e^{\gamma h(z)}(dx^2 + dy^2)$ for $\gamma > 0$
- Liouville quantum gravity (LQG): take h to be an instance of the Gaussian free field (GFF) on D.
- The GFF is the Gaussian process indexed by x ∈ D with covariance cov(h(x), h(y)) = G(x, y) where G is the Green's function for Δ on D
- Since G(x, y) ~ − log |x − y| for x ~ y, the GFF has infinite variance at points, hence is not a function. Rather, it is a distribution in the sense of Schwartz. So, the expression e^{γh} does not make mathematical sense.
- Previously, only the volume form made sense of as a limit

$$\lim_{\epsilon\to 0}\epsilon^{\gamma^2/2}e^{\gamma h_{\epsilon}(z)}(dx^2+dy^2)$$

where h_{ϵ} is a mollified version of h and $\epsilon^{\gamma^2/2}$ is a normalization term.

This talk is about constructing the metric. Not obviously possible using mollification. Will take an indirect approach.

▶ TBM is an abstract metric measure space homeomorphic to **S**², but it does not obviously come with a canonical embedding into **S**²

- ► TBM is an abstract metric measure space homeomorphic to S², but it does not obviously come with a canonical embedding into S²
- ▶ It is believed that there should be a "natural embedding" of TBM into S^2 and that the embedded surface is described by a form of Liouville quantum gravity (LQG) with $\gamma = \sqrt{8/3}$

- ► TBM is an abstract metric measure space homeomorphic to S², but it does not obviously come with a canonical embedding into S²
- ▶ It is believed that there should be a "natural embedding" of TBM into S^2 and that the embedded surface is described by a form of Liouville quantum gravity (LQG) with $\gamma = \sqrt{8/3}$

Discrete approach: take a uniformly random planar map and embed it conformally into S² (circle packing, uniformization, etc...), then in the n→∞ limit it converges to a form of √8/3-LQG.

Jason Miller (Cambridge)

- ► TBM is an abstract metric measure space homeomorphic to S², but it does not obviously come with a canonical embedding into S²
- ▶ It is believed that there should be a "natural embedding" of TBM into S^2 and that the embedded surface is described by a form of Liouville quantum gravity (LQG) with $\gamma = \sqrt{8/3}$

▶ Discrete approach: take a uniformly random planar map and embed it conformally into \mathbf{S}^2 (circle packing, uniformization, etc...), then in the $n \to \infty$ limit it converges to a form of $\sqrt{8/3}$ -LQG. Not the approach we will describe today ...

- Liouville quantum gravity (LQG): $e^{\gamma h(z)}(dx^2 + dy^2)$, h a GFF
- ▶ The Brownian map (TBM): scaling limit of uniformly random quadrangulations

Theorem (M., Sheffield)

TBM and $\sqrt{8/3}$ -LQG are equivalent. More precisely, there is a way to endow $\sqrt{8/3}$ -LQG with a metric so that it is isometric to TBM.

- Liouville quantum gravity (LQG): $e^{\gamma h(z)}(dx^2 + dy^2)$, h a GFF
- ▶ The Brownian map (TBM): scaling limit of uniformly random quadrangulations

Theorem (M., Sheffield)

TBM and $\sqrt{8/3}$ -LQG are equivalent. More precisely, there is a way to endow $\sqrt{8/3}$ -LQG with a metric so that it is isometric to TBM.

Comments

- Liouville quantum gravity (LQG): $e^{\gamma h(z)}(dx^2 + dy^2)$, h a GFF
- > The Brownian map (TBM): scaling limit of uniformly random quadrangulations

Theorem (M., Sheffield)

TBM and $\sqrt{8/3}$ -LQG are equivalent. More precisely, there is a way to endow $\sqrt{8/3}$ -LQG with a metric so that it is isometric to TBM.

Comments

 $1. \ \ Construction \ is \ purely \ in \ the \ continuum$

- Liouville quantum gravity (LQG): $e^{\gamma h(z)}(dx^2 + dy^2)$, h a GFF
- The Brownian map (TBM): scaling limit of uniformly random quadrangulations

Theorem (M., Sheffield)

TBM and $\sqrt{8/3}$ -LQG are equivalent. More precisely, there is a way to endow $\sqrt{8/3}$ -LQG with a metric so that it is isometric to TBM.

Comments

- 1. Construction is purely in the continuum
- 2. Ideas are connected to aggregation models, such as the Eden model and diffusion limited aggregation

Part II: Schramm-Loewner evolution

Schramm-Loewner evolution (SLE)

Random fractal curve in a planar domain

Critical percolation, hexagonal lattice Each hexagon is colored red or black with prob. $\frac{1}{2}$

Schramm-Loewner evolution (SLE)

- Random fractal curve in a planar domain
- Introduced by Schramm in '99 to describe limits of interfaces in discrete models

Critical percolation, hexagonal lattice Each hexagon is colored red or black with prob. $\frac{1}{2}$
- Random fractal curve in a planar domain
- Introduced by Schramm in '99 to describe limits of interfaces in discrete models

- Random fractal curve in a planar domain
- Introduced by Schramm in '99 to describe limits of interfaces in discrete models

- Random fractal curve in a planar domain
- Introduced by Schramm in '99 to describe limits of interfaces in discrete models
- Characterized by conformal invariance and domain Markov property

- Random fractal curve in a planar domain
- Introduced by Schramm in '99 to describe limits of interfaces in discrete models
- Characterized by conformal invariance and domain Markov property
- Indexed by a parameter $\kappa > 0$

- Random fractal curve in a planar domain
- Introduced by Schramm in '99 to describe limits of interfaces in discrete models
- Characterized by conformal invariance and domain Markov property
- Indexed by a parameter κ > 0
- Simple for κ ∈ (0, 4], self-intersecting for κ ∈ (4, 8), space-filling for κ ≥ 8

- Random fractal curve in a planar domain
- Introduced by Schramm in '99 to describe limits of interfaces in discrete models
- Characterized by conformal invariance and domain Markov property
- Indexed by a parameter κ > 0
- Simple for κ ∈ (0, 4], self-intersecting for κ ∈ (4, 8), space-filling for κ ≥ 8
- Dimension: $1 + \kappa/8$ for $\kappa \leq 8$

- Random fractal curve in a planar domain
- Introduced by Schramm in '99 to describe limits of interfaces in discrete models
- Characterized by conformal invariance and domain Markov property
- Indexed by a parameter κ > 0
- Simple for κ ∈ (0, 4], self-intersecting for κ ∈ (4, 8), space-filling for κ ≥ 8
- Dimension: $1 + \kappa/8$ for $\kappa \leq 8$
- Some special κ values:
 - $\kappa = 2$ LERW, $\kappa = 8$ UST
 - $\kappa = 8/3$ Self-avoiding walk
 - $\kappa = 3$ Ising, $\kappa = 16/3$ FK-Ising
 - $\kappa = 4$ GFF level lines
 - $\kappa = 6$ Percolation
 - $\kappa = 12$ Bipolar orientations

• • • •

Critical percolation, hexagonal lattice Each hexagon is colored red or black

with prob. $\frac{1}{2}$

SLE_{κ}

Loewner's equation: if η is a non self-crossing path in **H** with $\eta(0) \in \mathbf{R}$ and g_t is the Riemann map from the unbounded component of $\mathbf{H} \setminus \eta([0, t])$ to **H** normalized by $g_t(z) = z + o(1)$ as $z \to \infty$, then

$$\partial_t g_t(z) = \frac{2}{g_t(z) - W_t}$$
 where $g_0(z) = z$ and $W_t = g_t(\eta(t))$. (\bigstar)

SLE_{κ}

Loewner's equation: if η is a non self-crossing path in **H** with $\eta(0) \in \mathbf{R}$ and g_t is the Riemann map from the unbounded component of $\mathbf{H} \setminus \eta([0, t])$ to **H** normalized by $g_t(z) = z + o(1)$ as $z \to \infty$, then

$$\partial_t g_t(z) = rac{2}{g_t(z) - W_t}$$
 where $g_0(z) = z$ and $W_t = g_t(\eta(t))$. (\bigstar)

SLE_{κ} in H: The random curve associated with (\bigstar) with $W_t = \sqrt{\kappa}B_t$, B a standard Brownian motion.

SLE_{κ}

Loewner's equation: if η is a non self-crossing path in **H** with $\eta(0) \in \mathbf{R}$ and g_t is the Riemann map from the unbounded component of $\mathbf{H} \setminus \eta([0, t])$ to **H** normalized by $g_t(z) = z + o(1)$ as $z \to \infty$, then

$$\partial_t g_t(z) = rac{2}{g_t(z) - W_t}$$
 where $g_0(z) = z$ and $W_t = g_t(\eta(t)).$ (\bigstar)

SLE_{κ} in H: The random curve associated with (\bigstar) with $W_t = \sqrt{\kappa}B_t$, B a standard Brownian motion. Other domains: apply conformal mapping.

Simulations due to Tom Kennedy.

Part III: Construction of the metric

- Growth on a graph where at each time step, add a vertex uniformly at random from those adjacent to the cluster at the previous step.
- Question: Large scale behavior of the growth?

- Growth on a graph where at each time step, add a vertex uniformly at random from those adjacent to the cluster at the previous step.
- Question: Large scale behavior of the growth?

- Growth on a graph where at each time step, add a vertex uniformly at random from those adjacent to the cluster at the previous step.
- Question: Large scale behavior of the growth?
- Cox and Durrett (1981) showed that the macroscopic shape is convex

- Growth on a graph where at each time step, add a vertex uniformly at random from those adjacent to the cluster at the previous step.
- Question: Large scale behavior of the growth?
- Cox and Durrett (1981) showed that the macroscopic shape is convex
- Computer simulations show that it is not a Euclidean disk

- Growth on a graph where at each time step, add a vertex uniformly at random from those adjacent to the cluster at the previous step.
- Question: Large scale behavior of the growth?
- Cox and Durrett (1981) showed that the macroscopic shape is convex
- Computer simulations show that it is not a Euclidean disk
- ► **Z**² has preferential directions

- Growth on a graph where at each time step, add a vertex uniformly at random from those adjacent to the cluster at the previous step.
- Question: Large scale behavior of the growth?
- Cox and Durrett (1981) showed that the macroscopic shape is convex
- Computer simulations show that it is not a Euclidean disk
- ► **Z**² has preferential directions
- But a random planar map does not ...

▶ RPM, random vertex *x*. Grow Eden cluster from *x* (Angel's peeling process).

▶ RPM, random vertex *x*. Grow Eden cluster from *x* (Angel's peeling process).

Important observations:

▶ RPM, random vertex x. Grow Eden cluster from x (Angel's peeling process).

Important observations:

Conditional law of map given growth at time n only depends on the boundary lengths of the outside components.

▶ RPM, random vertex *x*. Grow Eden cluster from *x* (Angel's peeling process).

Important observations:

Conditional law of map given growth at time *n* only depends on the boundary lengths of the outside components. *Exploration respects the Markovian structure of the map*.

▶ RPM, random vertex *x*. Grow Eden cluster from *x* (Angel's peeling process).

Important observations:

Conditional law of map given growth at time n only depends on the boundary lengths of the outside components. Exploration respects the Markovian structure of the map.

Belief: At large scales this is close to a ball in the graph metric (now proved by Curien and Le Gall)

Goal: Make sense of the Eden model in the continuum on top of a LQG surface

- Explain a discrete variant of the Eden model that involves two operations that we do know how to perform in the continuum:
 - Sample random points according to boundary length
 - ▶ Draw (scaling limits of) critical percolation interfaces (SLE₆)

Variant:

 Pick two edges on outer boundary of cluster

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface
- Forget colors

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

• This exploration also respects the Markovian structure of the map.

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. ¹/₂
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- This exploration also respects the Markovian structure of the map.
- Expect that at large scales this growth process looks the same as the Eden model, hence the same as the graph metric ball

Sample a random planar map

Sample a random planar map and two edges uniformly at random

- Sample a random planar map and two edges uniformly at random
- ► Color vertices blue/yellow with probability 1/2

- Sample a random planar map and two edges uniformly at random
- \blacktriangleright Color vertices blue/yellow with probability 1/2 and draw percolation interface

- Sample a random planar map and two edges uniformly at random
- \blacktriangleright Color vertices blue/yellow with probability 1/2 and draw percolation interface
- Conformally map to the sphere

- Sample a random planar map and two edges uniformly at random
- \blacktriangleright Color vertices blue/yellow with probability 1/2 and draw percolation interface
- Conformally map to the sphere

Ansatz Image of random map converges to a $\sqrt{8/3}$ -LQG surface and the image of the interface converges to an independent SLE_6 .

- Start off with $\sqrt{8/3}$ -LQG surface
- Fix $\delta > 0$ small and a starting point x

- Start off with $\sqrt{8/3}$ -LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE₆

- Start off with $\sqrt{8/3}$ -LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE₆
- Resample the tip according to boundary length

- Start off with $\sqrt{8/3}$ -LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE₆
- Resample the tip according to boundary length
- Repeat

- Start off with $\sqrt{8/3}$ -LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE₆
- Resample the tip according to boundary length
- Repeat

- Start off with $\sqrt{8/3}$ -LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE₆
- Resample the tip according to boundary length
- Repeat

- Start off with $\sqrt{8/3}$ -LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE₆
- Resample the tip according to boundary length
- Repeat

- Start off with $\sqrt{8/3}$ -LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE₆
- Resample the tip according to boundary length
- Repeat

- Start off with $\sqrt{8/3}$ -LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE₆
- Resample the tip according to boundary length
- Repeat

- Start off with $\sqrt{8/3}$ -LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE₆
- Resample the tip according to boundary length
- Repeat
- Know the conditional law of the LQG surface at each stage

- Start off with $\sqrt{8/3}$ -LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE₆
- Resample the tip according to boundary length
- Repeat
- Know the conditional law of the LQG surface at each stage

QLE(8/3,0) is the limit as $\delta \rightarrow 0$ of this growth process.

- Start off with $\sqrt{8/3}$ -LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE₆
- Resample the tip according to boundary length
- Repeat
- Know the conditional law of the LQG surface at each stage

QLE(8/3,0) is the limit as $\delta \rightarrow 0$ of this growth process.

In the limit, this describes the growth of a metric ball in a metric space which is isometric to TBM.

Discrete approximation of ${\rm QLE}(8/3,0).$ Metric ball on a $\sqrt{8/3}\text{-}\mathsf{LQG}$

Jason Miller (Cambridge)

QLE(8/3,0) is a member of a two-parameter family of processes called $QLE(\gamma^2,\eta)$

- $\blacktriangleright~\gamma$ is the type of LQG surface on which the process grows
- $\blacktriangleright \eta$ determines the manner in which it grows

QLE(8/3,0) is a member of a two-parameter family of processes called $QLE(\gamma^2,\eta)$

- $\blacktriangleright~\gamma$ is the type of LQG surface on which the process grows
- $\blacktriangleright \eta$ determines the manner in which it grows

Let μ_{HARM} (resp. μ_{LEN}) be harmonic (resp. length) measure on a γ -LQG surface. The rate of growth (i.e., rate at which microscopic particles are added) is proportional to

$$\left(rac{d\mu_{
m HARM}}{d\mu_{
m LEN}}
ight)^\eta d\mu_{
m LEN}.$$

QLE(8/3,0) is a member of a two-parameter family of processes called $QLE(\gamma^2,\eta)$

- $\blacktriangleright~\gamma$ is the type of LQG surface on which the process grows
- $\blacktriangleright \eta$ determines the manner in which it grows

Let μ_{HARM} (resp. μ_{LEN}) be harmonic (resp. length) measure on a γ -LQG surface. The rate of growth (i.e., rate at which microscopic particles are added) is proportional to

$$\left(rac{d\mu_{
m HARM}}{d\mu_{
m LEN}}
ight)^\eta d\mu_{
m LEN}.$$

Eden model: $\eta = 0$

QLE(8/3,0) is a member of a two-parameter family of processes called $QLE(\gamma^2,\eta)$

- $\blacktriangleright~\gamma$ is the type of LQG surface on which the process grows
- $\blacktriangleright \eta$ determines the manner in which it grows

Let μ_{HARM} (resp. μ_{LEN}) be harmonic (resp. length) measure on a γ -LQG surface. The rate of growth (i.e., rate at which microscopic particles are added) is proportional to

$$\left(rac{d\mu_{ ext{HARM}}}{d\mu_{ ext{LEN}}}
ight)^\eta d\mu_{ ext{LEN}}.$$

- Eden model: $\eta = 0$
- Diffusion limited aggregation: $\eta = 1$

QLE(8/3,0) is a member of a two-parameter family of processes called $QLE(\gamma^2,\eta)$

- $\blacktriangleright~\gamma$ is the type of LQG surface on which the process grows
- $\blacktriangleright \eta$ determines the manner in which it grows

Let μ_{HARM} (resp. μ_{LEN}) be harmonic (resp. length) measure on a γ -LQG surface. The rate of growth (i.e., rate at which microscopic particles are added) is proportional to

$$\left(rac{d\mu_{ ext{HARM}}}{d\mu_{ ext{LEN}}}
ight)^\eta d\mu_{ ext{LEN}}.$$

- Eden model: $\eta = 0$
- Diffusion limited aggregation: $\eta = 1$
- η -dieletric breakdown model: general values of η

Simulation of Euclidean DLA

Jason Miller (Cambridge)

DLA in math?

Open questions

Does DLA have a "scaling limit"?

DLA in math?

Not a lot of progress.

- Does DLA have a "scaling limit"?
- Is the shape random at large scales?

- Does DLA have a "scaling limit"?
- Is the shape random at large scales?
- Does the macroscopic shape look like a tree (i.e., does it make macroscopic loops)?

DLA in math?

Not a lot of progress.

- Does DLA have a "scaling limit"?
- Is the shape random at large scales?
- ▶ Does the macroscopic shape look like a tree (i.e., does it make macroscopic loops)?
- \blacktriangleright What is its asymptotic dimension? Simulation prediction: pprox 1.71 on \mathbf{Z}^2

DLA in math?

Not a lot of progress.

Open questions

- Does DLA have a "scaling limit"?
- Is the shape random at large scales?
- Does the macroscopic shape look like a tree (i.e., does it make macroscopic loops)?
- \blacktriangleright What is its asymptotic dimension? Simulation prediction: ≈ 1.71 on \textbf{Z}^2

What about DLA on random planar maps and Liouville quantum gravity surfaces?

Discrete approximation of ${\rm QLE}(2,1).$ DLA on a $\sqrt{2}\text{-}\mathsf{LQG}$

Jason Miller (Cambridge)

Each of the $QLE(\gamma^2, \eta)$ processes with (γ^2, η) on the orange curves is built from an SLE_{κ} process using tip re-randomization.

Jason Miller (Cambridge)

Other γ values correspond to random planar maps which are decorated by a statistical physics model (e.g., the Ising model).

- Other γ values correspond to random planar maps which are decorated by a statistical physics model (e.g., the Ising model).
- ▶ Very little is understood about how the metric should behave or how to construct it for $\gamma \neq \sqrt{8/3}$.

Other γ ?

- Other γ values correspond to random planar maps which are decorated by a statistical physics model (e.g., the Ising model).
- ► Very little is understood about how the metric should behave or how to construct it for $\gamma \neq \sqrt{8/3}$.
- ► For example, the Hausdorff dimension of γ -LQG for $\gamma \neq \sqrt{8/3}$ is not known.