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Based on the joint work

with Mina Aganagic and Samson Shatashvili
2016-



and the project

BPS/CFT correspondence and
non-perturbative Dyson-Schwinger equations

NN, 2004-



There are two ways to realize a symmetry in quantum system



There are two ways to realize a symmetry in quantum system

Start with a classical system with symmetry and quantize



Start with a classical system with symmetry and quantize

Example: geometric quantization

∫
(p,q)∈coadjoint orbit

DpDq exp

(
i

∫
pdq −

∫
TrA · µ(p, q)

)

∼ 〈v1 |TH
(
P exp

∫
A

)
| v2〉

inspiration Borel - Weil - Bott theorem, 1957

Kirillov 1961; path integral suggested in 1961 by Faddeev

Alekseev, Faddeev, Shatashvili 1988



Emergent symmetry in quantum system



Preparations:

Γ ⊂ SU(2) finite subgroup



Preparations:

Γ ⊂ SU(2) finite subgroup

Irreps Ri , i = 0, . . . , r



Preparations: quivers from Γ

Γ ⊂ SU(2) finite subgroup

Irreps Ri =⇒ vertices i = 0, . . . , r of a quiver Γ

edges: Ri ⊗ C2 =
⊕

e∈s−1(i)

Rt(e)
⊕

e∈t−1(i)

Rs(e)



Preparations: quivers from Γ

Γ ⊂ SU(2) finite subgroup

Irreps Ri =⇒ vertices i = 0, . . . , r of a quiver Γ

edges: Ri ⊗ C2 =
⊕

e∈s−1(i)

Rt(e)
⊕

e∈t−1(i)

Rs(e)



Symmetry hints: McKay duality
Irreps Ri =⇒ vertices i = 0, . . . , r of a quiver Γ

edges: Ri ⊗ C2 =
⊕

e∈s−1(i)

Rt(e)
⊕

e∈t−1(i)

Rs(e)

Dynkin labels: ai = Ri, 2ai =
∑

e∈s−1(i)

at(e) +
∑

e∈t−1(i)

as(e)



Symmetry hints: McKay duality

Quiver Γ = affine Dynkin diagram of GΓ

McKay dual simple Lie group (ADE)



Symmetry hints: Weyl group WΓ

ALE spaces = C̃2/Γ

Four dimensional hyperkähler manifolds, with moduli (Rr ⊗ R3)/WΓ

H2(ALE,Z) form the WΓ - local system over the moduli space



Symmetry hints: Weyl group WΓ

ALE spaces = C̃2/Γ

Four dimensional hyperkähler manifolds, with moduli

MΓ = {
(
ζRi , ζ

C
i

)
} ∈ (h(GΓ)⊗ R⊕ C)/WΓ

H2(ALE,Z) form the WΓ - local system over the moduli space



Emergent symmetry in quantum system

Example: Nakajima algebras

Start with the 4 + 1 dimensional

Supersymmetric U(w) gauge theory on

(
ALE = R̃4/Γ

)
× R1



In a low-energy weak-coupling adiabatic approximation =⇒
Vafa, Witten, 1994

Supersymmetric quantum mechanics on Mv,w(R̃4/Γ)

U(w) instantons on ALE space R̃4/Γ,
with topological charges v = (v0, v1, . . . , vr)

and boundary conditions at infinity
U(w) −→ Hw = U(w0)× U(w1)× . . .× U(wr)



Supersymmetric quantum mechanics on Mv,w(R̃4/Γ)

A→ flat connection at infinity

π1(S3/Γ) = Γ→ U(w)

U(w) −→ Hw = U(w0)× U(w1)× . . .× U(wr)

− 1

8π2

∫
ALE

TrF ∧ F ∼ v0
1

2πi
TrF ∼ v1[Σ1] + . . .+ vr[Σr]



Supersymmetric quantum mechanics on Mv,w(ALE)

Ground states: cohomology H∗ (Mv,w(ALE))

Nakajima: Hw,Γ =
⊕
v
H∗ (Mv,w (ALE)) is

an irreducible
highest weight
representation
of Kac-Moody algebra ĝΓ

GΓ - McKay dual Lie group



Supersymmetric quantum mechanics on Mv,w(ALE)

Ground states: cohomology H∗ (Mv,w(ALE))

Nakajima: work Hw × U(1)-equivariantly

Hw,Γ =
⊕
v

H∗ (Mv,w(ALE))

irrep of the Yangian Y (ĝΓ) of ĝΓ

Ginzburg,Vasserot (finite A series); Varagnolo, 2000



More generally

Mv,w(ALE) is an example of a quiver variety Mγ(w,v)

Supersymmetric quantum mechanics on Mγ(w,v)

Ground states: cohomology H∗ (Mγ(w,v))

Nakajima: work Hw × U(1)-equivariantly

Hw,Γ =
⊕
v

H∗ (Mγ(w,v))

irrep of the Yangian Y (gγ) of gγ
Varagnolo, 2000



More generally

Sigma model ∼ supersymmetric quantum mechanics on LMγ(w,v)

Ground states: K-theory K (Mγ(w,v))

Nakajima: work Hw × U(1)-equivariantly

Hw,Γ =
⊕
v

K (Mγ(w,v))

irrep of quantum affine algebra Uq(gγ) of gγ
Nakajima, 1999



SURPRISES

Need to sum over v:

Full symmetry is realized in a collection of quantum systems



SURPRISES

Need to sum over v: collections of quantum systems

Natural in 4 + 1 theory but it is not a quantum field theory

No obvious realization of GΓ in the classical system



HINTS

String theory realization of the gauge theory

makes the summation over v natural

In string theory the appearence of GΓ comes naturally



Mental note:

String theory may provide a natural explanation



Natural habitat

for the Yangian algebras?



Natural habitat of the Yangian

Spin chains!



Natural habitat of the Yangian

Spin chains! Start with Y (sl2) for simplicity

Finite dimensional Hilbert space

H = C2 ⊗ C2 ⊗ . . .⊗ C2



H =

L times︷ ︸︸ ︷
C2 ⊗ C2 ⊗ . . .⊗ C2

Hamiltonian

Ĥ =
L∑
a=1

σxa ⊗ σxa+1 + σya ⊗ σ
y
a+1 + σza ⊗ σza+1



Hamiltonian

H =

L times︷ ︸︸ ︷
C2 ⊗ C2 ⊗ . . .⊗ C2

Ĥ =

L∑
a=1

σxa ⊗ σxa+1 + σya ⊗ σ
y
a+1 + σza ⊗ σza+1

~σa+L = ~σa

Heisenberg magnet: periodic isotropic homogeneous spin chain



Hamiltonians!

H =

L times︷ ︸︸ ︷
C2 ⊗ C2 ⊗ . . .⊗ C2

Ĥ1 =

L∑
a=1

σxa ⊗ σxa+1 + σya ⊗ σ
y
a+1 + σza ⊗ σza+1

Ĥ2, Ĥ3, . . . , ĤL, . . .

[Ĥi, Ĥj ] = 0

Quantum integrability!



Commuting Hamiltonians from Transfer Matrix

T̂ (x) = xL exp

∞∑
n=1

1

n
x−nĤn

Quantum integrability⇔ [T̂ (x′), T̂ (x′′)] = 0



Transfer matrices



Transfer matrices from the R-matrix

T̂ (x) = TrVaux (R(x, µ1)R(x, µ2) . . . R(x, µL)) : H −→ H

 

z0

Z1

z2

z3

W4

W2

W3

W1

H = V1(µ1)⊗ V2(µ2)⊗ . . .⊗ VL(µL)



Yang-Baxter equation for the R-matrix

1
2

3

2

1

3

z0
z0

Z1

z2

z3

z6

z2
z4

z5

z3

Z’1

z5

z4

z6
=

Implies [T̂ (x′), T̂ (x′′)] = 0 by the train argument



Yang-Baxter equation for the R-matrix

1
2

3

2

1

3

z0
z0

Z1

z2

z3

z6

z2
z4

z5

z3

Z’1

z5

z4

z6
=

=⇒

=⇒ [T̂ (x′), T̂ (x′′)] = 0 by the cyclicity of TrVaux



Transfer matrices from the R-matrix

T̂ (x) = TrVaux (R(x, µ1)R(x, µ2) . . . R(x, µL)) : H −→ H

H = V1(µ1)⊗ V2(µ2)⊗ . . .⊗ VL(µL)

µ1, . . . , µL ∈ C inhomogeneities

Heisenberg spin chain was homogeneous, i.e. µa = 0



Twisted transfer matrices from the R-matrix

T̂ (x; q) = TrVaux gq (R(x, µ1)R(x, µ2) . . . R(x, µL)) : H −→ H

Twisted spin chain, ~σa+L = Ad(gq)~σa

For SU(2): gq = q
1
2
σz



Anisotropic models from the trigonometric and elliptic R-matrices
Baxter, Drinfeld, Belavin, Jimbo

T̂ (x; q) = TrVaux gq (R(x, µ1)R(x, µ2) . . . R(x, µL)) : H −→ H

Ĥ1 →
L∑
a=1

ασxa ⊗ σxa+1 + βσya ⊗ σ
y
a+1 + γσza ⊗ σza+1

(α : β : γ) =

{ (1 : 1 : 1) rational XXX
(1 : 1 : ∆) trigonometric XXZ

(1 : ∆′ : ∆′′) elliptic XYZ



Lattice model



Lattice model

Partition function via transfer matrix formalism
L. Onsager solution of the Ising model

ZL,L̃ = TrHL

(
T̂ (x1; q)T̂ (x2; q) . . . T̂ (xL̃; q) · gq̃

)



Lattice model on a torus: double trace
not in the sense of gauge theory

ZL,L̃ = TrHL

(
T̂ (x1; q)T̂ (x2; q) . . . T̂ (xL̃; q) · gq̃

)



Lattice model on the torus

ZL,L̃ = TrHL

(
T̂ (x1; q)T̂ (x2; q) . . . T̂ (xL̃; q) · gq̃

)



Lattice model: double trace

ZL,L̃(q, q̃) =
∑

over states on the edges of the lattice

Boltzmann weights = products of R-matrix elements



Lattice model: modularity

Exchange A and B cycles

L vs L̃

q vs q̃



Lattice model: Hamiltonian viewpoint

ZL,L̃ = TrHL

(
T̂ (x1; q)T̂ (x2; q) . . . T̂ (xL̃; q) · gq̃

)
Bethe states: ψσ ∈ H

T̂ (x, q)ψσ = Tσ(x, q)ψσ

ZL,L̃ =
∑

over the eigenvalues of the transfer matrix

ZL,L̃(q, q̃) =
∑
N

q̃N
∑

σ1,...,σN

Tσ(x1; q) . . . Tσ(xL̃; q)

Sum over the number of Bethe roots = ”magnons”



Hamiltonian viewpoint: Bethe ansatz

Bethe states: ψσ ∈ H

T̂ (x, q)ψσ = Tσ(x, q)ψσ

for all x



Lightnining review of Bethe ansatz
Faddeev, Sklyanin, Takhtajan

Kulish, Reshetikhin

Isergin, Korepin

Drinfeld, Jimbo, Miwa

Monodromy matrix

(
A(x) B(x)
C(x) D(x)

)
= R(x, µ1) . . . R(x, µL) : Vaux ⊗H→ Vaux ⊗H



Lightnining review of Bethe ansatz

Monodromy matrix(
A(x) B(x)
C(x) D(x)

)
: Vaux ⊗H→ Vaux ⊗H

Yangian Y (sl2) generators

A(x), B(x), C(x), D(x) : H→ H



Lightnining review of Bethe ansatz

Monodromy matrix

(
A(x) B(x)
C(x) D(x)

)
= R(x, µ1) . . . R(x, µL) : Vaux ⊗H→ Vaux ⊗H

Bethe state

ψσ = B(σ1)B(σ2) . . . B(σN )| ↓↓ . . . ↓〉



Lightnining review of Bethe ansatz

Bethe state (algebraic Bethe ansatz)

ψσ = B(σ1)B(σ2) . . . B(σN )| ↓↓ . . . ↓〉

Bethe roots σ1, . . . , σN



Lightnining review of Bethe ansatz

Bethe equations

q

L∏
a=1

σi − µa + u

σi − µa − u
=
∏
j 6=i

σi − σj + 2u

σi − σj − 2u

Solutions = Bethe roots σ1, . . . , σN
Planck constant ≈ u



Lightning review of Bethe ansatz

Functional Bethe Ansatz: T −Q relation
Baxter, Sklyanin

P (x− u)Qσ(x+ 2u) + qP (x+ u)Qσ(x− 2u) = Tσ(x; q)Qσ(x)

Qσ(x) =

N∏
i=1

(x− σi) , P (x) =

L∏
a=1

(x− µa)

The content of this equation: Tσ(x; q) has no singularities in x



Lightnining review of Bethe ansatz

Qσ(x) =

N∏
i=1

(x− σi) = eigenvalue of Baxter operator Q̂(x)

P (x) =

L∏
a=1

(x− µa) = Drinfeld polynomial



Lightnining review of Bethe ansatz
q-character form of Bethe equations

E. Frenkel, Reshetikhin

Yσ(x+ 2u) + q`(x)Yσ(x)−1 =
Tσ(x; q)

P (x− u)

Tσ(x; q) is a polynomial in x

Yσ(x) =
Qσ(x)

Qσ(x− 2u)

`(x) =
P (x+ u)

P (x− u)



Lightnining review of Bethe ansatz

q-character form of Bethe equations

Yσ(x+ 2u) + q`(x)Yσ(x)−1 =
Tσ(x; q)

P (x− u)

Yσ(x) =
Qσ(x)

Qσ(x− 2u)
=

eigenvalue of the operator Ŷ (x)



q-character

Ŷ (x+ 2u) + q`(x)Ŷ(x)−1 =

the fundamental q-character of Y (sl2)



q-characters for general quivers

Ŷi(x+2u) +

+ qi`i(x)Ŷi(x)−1
∏

e∈s−1(i)

Ŷt(e)(x+µe+u)
∏

e∈t−1(i)

Ŷs(e)(x−µe+u)+. . .

= the fundamental q-character of Y (gΓ)

`i(x) =
Pi(x+ u)

Pi(x− u)

the `-weight



q-character for Â0
NN, Pestun, Shatashvili, 2013

E. Frenkel, D. Hernandez, 2013-2015

Additional parameter ε = µe

∑
λ

q|λ|
∏
�∈λ

`(x+ c�)

∏
�∈∂+λ

Ŷ (x+ 2u+ c�)∏
�∈∂−λ

Ŷ (x+ c�)

= the fundamental q-character of Y (û(1))

c� = ε(i− j)− u(i+ j − 2) , � = (i, j)

`(x) = P (x+u)
P (x−u)



Bethe/gauge correspondence



Bethe/gauge correspondence
NN, Shatashvili 2007



Bethe/gauge correspondence
Prior work: Moore, NN, Shatashvili, 1997

Givental, 1993

Gorsky, NN, 1992-1994

Gerasimov, Shatashvili, 2006



N = (2, 2), d = 2 super-Poincare invariant gauge theory

Bethe/gauge correspondence

Quantum integrable system



Supersymmetric vacua (in finite volume)

↑

Bethe/gauge correspondence

↓

Stationary states = joint eigenvectors of quantum integrals of motion



Twisted chiral ring, e.g. On = 1
(2πi)nn!Trσn

↑

Bethe/gauge correspondence

↓

Quantum integrals of motion Ĥn, e.g. T̂rLn for Lax operator L



Effective twisted superpotential W(σ1, . . . , σN )

↑

Bethe/gauge correspondence

↓

The Yang-Yang functional Y(σ1, . . . , σN )



N = (2, 2), d = 2 super-Poincare invariant gauge theory

⇐= ? =⇒

Quantum integrable system



N = 4, d = 2 U(N) gauge theory
with L hypermultiplets in the fundamental representation

Example of Bethe/gauge correspondence

Inhomogeneous twisted length L SU(2) spin 1
2 chain

in the sector with N spins up



Softly broken N = 4→ N = 2, d = 2 U(N) gauge theory
by the twisted mass u, corresponding to the U(1) symmetry

Q, Q̃ 7→ eiuQ, eiuQ̃

Φ 7→ e−2iuΦ

Inhomogeneities µa = twisted masses
↔ U(L) flavor symmetry of N = 4 theory

the twist parameter q = Kähler modulus

q = e2πit = eiϑ−2πr



Bethe equations

= quantum cohomology (twisted chiral ring) relations

q

L∏
a=1

σi − µa + u

σi − µa − u
=
∏
j 6=i

σi − σj + 2u

σi − σj − 2u

Solutions =
eigenvalues of the complex scalar in the U(N) vector multiplet:

σ ∼ diag(σ1, . . . , σN )

up to permutations of σi’s –
the remainder of the U(N) gauge symmetry



Bethe equations

= quantum cohomology (twisted chiral ring) relations

1 = q

L∏
a=1

σi − µa + u

σi − µa − u
∏
j 6=i

σi − σj − 2u

σi − σj + 2u
= exp

(
∂W̃

∂σi

)

W̃ (σ1, . . . , σN ) = effective twisted superpotential

one-loop exact computation!



Baxter Q-operator

= characteristic polynomial of the adjoint Higgs

Q(x) = Det(x− σ)



Gauged linear sigma model on T ∗Gr(N,L)
low energy description of our gauge theory for r � 0

Q(x)[p] = cx(Ep) = Chern polynomial of the tautological bundle

Q(x)[p] = xN − c1(Ep)x
N−1 + c2(Ep)x

N−2 − . . .

local operator Q(x)[p], p ∈ Σ
in the sigma model with worldsheet Σ, roughly:

Ep →M , Ep = ev∗pE

E = rk N tautological bundle over T ∗Gr(N,L)

ev : Σ×M −→ T ∗Gr(N,L) evaluation map



Lift to three dimensions

Σ −→ S1 × Σ

Twisted masses→Wilson loops + real masses

XXX→ XXZ = trigonometric case



Lift to four dimensions

Σ −→ E × Σ

Elliptic curve E

Twisted masses→ Holomorphic GL(L)× C× bundle on E

XXX→ XYZ = elliptic case



Lift to four dimensions

Σ −→ E × Σ

Elliptic curve E

Twisted masses→ Holomorphic GL(L)× C× bundle on E

XYZ = elliptic case — anomalous when L 6= 2N



What is the meaning of Tσ(x)?

What is the meaning of T −Q relations?



Quiver gauge theory



N = (4, 4) quiver gauge theory

N = 4 softly broken down to N = 2

Quiver γ with the set Vertγ of vertices
and the set Edgeγ of edges



N = (4, 4) quiver gauge theory

N = 4 softly broken down to N = 2

Quiver γ with the set Vertγ of vertices
and the set Edgeγ of edges

e ∈ Edgeγ , s(e), t(e) ∈ Vertγ

source and target



Examples of quivers



Apologies for notations

Ni, Li

Stand both for vector spaces (colors CNi and flavors CLi),
their dimensions, sometimes characters

Ni ∼
∑
α∈[Ni]

eσi,α

Li ∼
∑
f∈[Li]

eµi,f

[p] := {1, 2, . . . , p}



Gauge group

G = ×i∈VertγU(Ni)



Vector multiplet scalars

Φi, σi ∈ LieGL(Ni)



Matter hypermultiplets

Fundamentals Qi ∈ Hom(Li, Ni), Q̃i ∈ Hom(Ni, Li)



Matter hypermultiplets

Fundamentals Qi ∈ Hom(Li, Ni), Q̃i ∈ Hom(Ni, Li)

Bi-fundamentals Qe ∈ Hom(Ns(e), Nt(e)), Q̃e ∈ Hom(Nt(e), Ns(e))



Matter superpotential

W =
∑

i∈Vertγ

TrLi

(
Q̃iΦiQi

)
+

+
∑

e∈Edgeγ

TrNs(e)

(
Q̃eΦt(e)Qe

)
− TrNt(e)

(
QeΦs(e)Q̃e

)



Matter masses, compatible with N = 4

Mi ∈ End(Li) , µe ∈ C

Twisted masses of the fundamental and
the bi-fundamental hypermultiplets, respectively(

Qi, Q̃i, Qe, Q̃e

)
−→

(
Qie

−iMi , eiMiQ̃i, e
iµeQe, e

−iµeQ̃e

)



Susy breaking by the twisted mass u

W =
∑

i∈Vertγ

TrMi

(
Q̃iΦiQi

)
+

+
∑

e∈Edgeγ

TrNs(e)

(
Q̃eΦt(e)Qe

)
− TrNt(e)

(
QeΦs(e)Q̃e

)

The most important U(1) symmetry

(
Qi, Q̃i, Qe, Q̃e,Φi

)
−→

(
eiuQi, e

iuQ̃i, e
iuQe, e

iuQ̃e, e
−2iuΦi

)



Integrate out massive matter

W̃ (σi,α) =

∑
i∈Vertγ

∑
α∈[Ni]

 log(qi)σi,α +
∑
β∈[Ni]

$ (−2u+ σi,α − σi,β) +

+
∑
f∈[Li]

($ (u+ σi,α − µi,f) +$ (u− σi,α + µi,f))


+

∑
e∈Edgeγ

∑
α∈[Nt(e)]

∑
β∈[Ns(e)]

(
$
(
u+ µe + σt(e),α − σs(e),β

)
+$

(
u− µe + σs(e),β − σt(e),α

))



Rational case

$(z) = z ( log(z)− 1 ) , exp$′(z) = z



Trigonometric case

$R(z) =

= R
z2

2
− log(2R)z − 1

2R
Li2
(
e−2Rz

)
− π2

12R
,

exp$′R(z) =
sinh(Rz)

R



Elliptic case

$R,ρ(z) = R
z2

2
− log(2R)z − π2

12R
+

+

∞∑
n=0

1

2R

(
Li2
(
e2πinρe−2Rz

)
− Li2

(
e2πi(n+1)ρe2Rz

))
,

exp$′R,ρ(z) =
1

2iR

θ11(2iRz; ρ)

θ′11(0; ρ)



Supersymmetric vacua of the quiver gauge theory

exp
∂W̃

∂σi,α
= 1 , i ∈ Vertγ , α ∈ [Ni]



Supersymmetric vacua of the quiver gauge theory

exp
∂W̃

∂σi,α
= 1 , i ∈ Vertγ , α ∈ [Ni]

Correspond to Bethe equations of a spin chain
with Y (gγ) symmetry



Supersymmetric vacua of the quiver gauge theory

exp
∂W̃

∂σi,α
= 1 , i ∈ Vertγ , α ∈ [Ni]



q-character formulation

exp
∂W̃

∂σi,α
= 1 , i ∈ Vertγ , α ∈ [Ni]

Can be reformulated as the system of conditions for the q-characters

Ti(x) := Yi(x+ 2u)+

+qi`i(x)

∏
e∈s−1(i)

Yt(e)(x+ µe + u)
∏

e∈t−1(i)

Ys(e)(x− µe + u)

Yi(x)
+ . . .

to have no singularities in x

except for the poles coming from `i(x)’s



Partition function on T 2

TrHsusy[(Ni)](−1)F exp−
∑
k

tkO
(0)
k

↑
Bethe/gauge correspondence

↓

Gibbs ensemble partition function in the weight ~N subspace

TrHQIS[(Ni)] exp−
∑
k

tkĤk



Partition function on T 2

TrHsusy[(Ni)](−1)F exp−
∑
k

tkO
(0)
k ∼

∑
vac

e−
∑
k tk〈Ok〉vac

assuming all vacua are bosonic

↑
Bethe/gauge correspondence

↓

Gibbs ensemble partition function in the weight ~N subspace

TrHQIS[(Ni)] exp−
∑
k

tkĤk



Partition function on T 2 of the ensemble of gauge theories

Z =
∑
(Ni)

∏
i

q̃Nii TrHsusy[(Ni)](−1)F exp−
∑
k

tkO
(0)
k

↑
Bethe/gauge correspondence

↓

Toroidal Lattice model Partition function

Z = TrHQIS

∏
i

q̃N̂ii exp−
∑
k

tkĤk



Questions
↓

•Why sum over ~N?

•Why choose tkOk in such a way, that

exp−
∑
k

tkĤk = T̂ (x1; q) . . . T̂ (xL̃; q) ?



Questions

•Why choose tkOk in such a way, that

exp−
∑
k

tkĤk = T̂ (x1; q) . . . T̂ (xL̃; q) ?

T̂ (x; q) turns out to be a natural observable
within the twisted chiral ring



q-characters

T̂ (x; q) turns out to be a natural observable
within the twisted chiral ring

Well-behaved with respect to the

non-perturbative Dyson-Schwinger relations



Non-perturbative Dyson-Schwinger relations



Non-perturbative Dyson-Schwinger relations

Contributions of topologically distinct sectors to the path integral
are related to each other

⇔

Analytic properties of 〈T̂ (x; q)〉, e.g. no poles in x



Remarks
↓

•When the quiver γ is one of the affine Dynkin diagrams

• Bethe equations correspond to the spin chains
with Kac-Moody spin groups

• There are gauge theories corresponding to the super-Lie algebras

• For general γ — a wild Lie algebra gγ



Remarks

What has changed compared to the old results of Nakajima et al.

Unlike simple Lie groups, Yangians, quantum affine algebras, etc.
have inequivalent maximal commutative subalgebras

To see them all, we need

the q-parameters: Kähler moduli

of the two dimensional theory

not visible at the level of supersymmetric quantum mechanics!



Remarks

Max commutative = Bethe subalgebras

at the level of supersymmetric quantum mechanics, q→ 0

become Gelfand-Zetlin subalgebras
Nazarov, 1995



Remarks

The original formulation of Bethe/gauge correspondence

mostly concerned with the commutative (quantum integrals) subalgebra

The non-abelian structure provides rigidity
and offers an exciting perspective

on the string landscape of vacua



Remarks

The original formulation of Bethe/gauge correspondence:

The non-abelian structure comes from domain walls

viewed as operators in the spirit of S-branes
Gutperle, Strominger, 2002



Remarks

Recent progress:

The non-abelian structure, i.e. R-matrices

can be understood mathematically using the stable envelope basis
Maulik, Okounkov 2012; Aganagic, Okounkov 2016



Questions
↓

If one replaces the R-matrices with spectral parameters
by the R-matrices without (finite quantum group Uq(g)),

one can describe the lattice model using
Chern-Simons theory with gauge group G in three dimensions

SCS =
k

4π

∫
Tr

(
AdA+

2

3
A3

)
Witten 1989

• How to introduce the spectral parameter into Chern-Simons theory?



Cohomological field theory perspective
Start with CohFT with the moduli space M of solutions

Fields/Equations/Symmetries paradigm:
d-dimensional fields

Q2 = 0

Correlations functions: integrals of products of cohomology classes of M

〈O1 . . .Op〉d ∼
∫
M

Ω1 ∧ . . . ∧ Ωp

{Q,Oi} = 0, Oi ↔ Ωi, dΩi = 0



Loop upgrade
NN, PhD. thesis 1996

Baulieu, NN, Losev, 1997

Oxidation of cohomological field theory:
make fields t-dependent

K-theory of M
Fields/Equations/Symmetries paradigm:
loop space, i.e. d+ 1-dimensional fields

Correlations functions: pushforwards of K-theory classes of M

Q2 = ∂t

〈O1 . . .Op〉d+1 ∼
∫
M

Â(M) ∧ Ω1 ∧ . . . ∧ Ωp



Double Loop upgrade
NN, PhD. thesis, 1996

Baulieu, NN, Losev, 1997

Costello, 2013

Oxidation of cohomological field theory:
make fields z, z̄-dependent
Ell-cohomology of M

Fields/Equations/Symmetries paradigm:
double loop space, i.e. d+ 2-dimensional fields

Correlations functions: pushforwards in elliptic cohomology of M

Q2 = ∂z̄

〈O1 . . .Op〉d+2 ∼
∫
M

Êll(M) ∧ Ω1 ∧ . . . ∧ Ωp



3d CS = loop upgrade of 2d YM

M = moduli space of G− flat connections on Σ

N = 2 d = 2 super-Yang-Mills theory, twisted version

QA = Ψ ,QΨ = DAσ ,Qσ = 0

Qχ = H ,QH = [σ, χ] ,Qσ̄ = η ,Qη = [σ, σ̄]



Review of the cohomological field theory on

M = moduli space of G− flat connections on Σ

N = 2 d = 2 super-Yang-Mills theory, twisted version

QA = ψ ,Qψ = DAσ ,Qσ = 0

Qχ = H ,QH = [σ, χ] ,Qσ̄ = η ,Qη = [σ, σ̄]

S0 = Q

∫
Σ

Tr
(
χ
(
iFA − g2

YM ? H
)

+ ψ ∧ ?DAσ̄ + η[σ, σ̄]
)

↑
Bare action



Review of 2d YM as deformation of SYM

M = moduli space of G− flat connections on Σ

N = 2 d = 2 super-Yang-Mills theory, twisted version

S0 + iκ

∫
Σ

Tr

(
σFA +

1

2
ψ ∧ ψ

)
↑

2-observable, viewed as deformation of the action
Twisted F -term in the physical theory, W̃ = κ

2 Trσ2



Review of 2d YM

N = 2 d = 2 super-Yang-Mills theory, twisted version

S0 + iκ

∫
Σ

Tr

(
σFA +

1

2
ψ ∧ ψ

)
↑

2-observable, viewed as deformation of the action
Twisted F -term in the physical theory, W̃ = κ

2 Trσ2

Twisted F̄ -term, W̃ ∗ = κ̄
2 Trσ̄2

shifts the action by the Q-exact term

+iκ̄

∫
Σ

Tr (σ̄H + ηχ)



Review of 2d YM
Take the limit κ̄→∞

iκ̄

∫
Σ

Tr (σ̄H + ηχ)

The quartet σ̄, H, η, χ decouples: and we are left with A,ψ, σ
Witten 1992

QA = ψ ,Qψ = DAσ ,Qσ = 0

S = iκ

∫
Σ

Tr

(
σFA +

1

2
ψ ∧ ψ

)
↑

2-observable, becomes the action

Add 0-observable tTrσ2 =⇒ 2d Yang-Mills theory



Loop upgrade

S = iκ

∫
Σ

Tr

(
σFA +

1

2
ψ ∧ ψ

)
↓

SCS =
k

4π

∫
Σ×S1

Tr

(
AdA+

2

3
A3 + ψψ

)



Double Loop upgrade
NN, PhD. thesis 1996, proposed to explain the representation theory of quantum affine algebras

S = iκ

∫
Σ

Tr

(
σFA +

1

2
ψ ∧ ψ

)
↓

S4dCS = κ

∫
Σ×E

dz ∧ Tr

(
AdA+

2

3
A3 + ψψ

)

where dz is a holomorphic one-differential on E:

an elliptic curve, a cylinder, or a plane
Recent revival, Costello 2013



Susy of the Double Loop upgrade

S4dCS = κ

∫
Σ×E

dz ∧ Tr

(
AdA+

2

3
A3 + ψψ

)

is Q-invariant, with

QAm = ψm , Qψm = Fmz̄ , QAz̄ = 0

QAz = η , Qη = Fzz̄ ,

Qχ = H , QH = Dz̄χ

m = 1, 2 −→ coordinates on Σ



Anomaly of the Double Loop upgrade

S4dCS = κ

∫
Σ×E

dz ∧ Tr

(
AdA+

2

3
A3 + ψψ

)

when E is an elliptic curve, is not gauge invariant

S4dCS −→ S4dCS + κ

∫
Σ×E

dz ∧ integral 3− form

under large gauge transformations



Anomaly of the Double Loop upgrade

S4dCS = κ

∫
Σ×E

dz ∧ Tr

(
AdA+

2

3
A3 + ψψ

)

when E is an elliptic curve, is not gauge invariant

S4dCS −→ S4dCS + κ

∫
Σ×E

dz ∧ integral 3− form

under large gauge transformations, incommensurate periods...



Double Loop upgrade of N = 4 d = 4 theory

S4dCS = κ

∫
Σ×E

dz ∧ Tr

(
AdA+

2

3
A3 + ψψ

)

when E is an elliptic curve, is not gauge invariant

S4dCS −→ S4dCS + κ

∫
Σ×E

dz ∧ integral 3− form

under large gauge transformations: incommensurate periods...



String theory realization



String theory realization

Various puzzles will be resolved

Different approaches will be connected



String theory realization

IIB string on ALE × R2 × E × T 2



String theory realization

IIB string on
(
ALE × R2

)
×̃u E × T 2



String theory realization

IIB string on
(
ALE× R2

)
×̃u E × T 2

ALE with ζCi = 0 =⇒ U(1)-isometry
ALE is twisted with a line bundle Lu over E
R2 is twisted with a line bundle L−2

u over E



String theory realization of our gauge theory
IIB string on

(
ALE× R2

)
×̃u E × T 2

with fractional D-branes



String theory realization of our gauge theory
IIB string on

(
ALE× R2

)
×̃u E × T 2

with LD7-branes on ALE× E × T 2

with ND3-branes on E × T 2

with KD1-branes on E



String theory realization of our gauge theory

IIB string on
(
ALE× R2

)
×̃u E × T 2

with LD7-branes on ALE× E × T 2

with ND3-branes on E × T 2

with KD1-branes on E
Fractionalization: (L,N,K) −→ (Li, N i,Ki)

Compact branes to be summed over



String theory realization of the q-character
NN, 2015

IIB string on
(
ALE× R2

)
×̃u E × T 2

with fractional D7, D3, D1-branes and D5-branes in addition



String theory realization of the q-character

IIB string on
(
ALE× R2

)
×̃u E × T 2

with LD7-branes on ALE× E × T 2

with ND3-branes on E × T 2

with KD1-branes on E
with L̃D5-branes on ALE× E



String theory realization of the q-character

with ND3-branes on E × T 2

with L̃D5-branes on ALE× E

This is similar to the construction of crossed instantons
qq-character and q-character observables

in 4d and 5d supersymmetric gauge theories
NN, Pestun 2012; NN, Pestun Shatashvili 2013; NN 2015-



String theory realization

Now we shall get a 6d-ish version

of Chern-Simons theory, dual

to the collection of quiver gauge theories



String theory realization

Now we shall get a 6d-ish version of CS theory

using T-dual string background(s)



T -dual description: electric frame
T-duality along E and one of the circles in T 2

IIA string on ALE× R2 × Ě × Š1 × S1

with fractional D-branes



T -dual description: magnetic frame
T-dualize one of the circles in T 2

IIA string on ALE× R2 × E × Š1 × S1

with fractional D-branes



Six dimensional super-Yang-Mills
Witten; Strominger; Greene, Morrison, Strominger; Bershadsky, Sadov, Vafa, 1995

IIA string on ALE



Six dimensional super-Yang-Mills: electric frame
IIA string on ALE× R2 × Ě × Š1 × S1

with fractional D-branes =⇒ electric sources
more details below



Six dimensional super-Yang-Mills: magnetic frame

IIA string on ALE× R2 × E × Š1 × S1

with fractional D-branes =⇒ magnetic sources

Twist by Lu =⇒ 6d Ω-deformation of SYM



Six dimensional super-Yang-Mills: magnetic frame

IIA string on ALE× R2 × E × Š1 × S1

with fractional D-branes =⇒ magnetic sources

Twist by Lu =⇒ 6d Ω-deformation of SYM
preserving N = (2, 2) d = 2 super-Poincare invariance

with 2 out of 4 scalars remaining massless: root of a Higgs branch



Six dimensional super-Yang-Mills: magnetic frame

IIA string on ALE× R2 × E × Š1 × S1

with fractional D-branes =⇒ magnetic sources

Twist by Lu =⇒ 6d Ω-deformation of SYM

In the limit of vanishing size E =⇒ N = 2∗ theory in 4d
with special Ω-deformation, m = −ε =⇒ massless chiral in 2d



Six dimensional super-Yang-Mills: magnetic frame

IIA string on ALE× R2 × E × Š1 × S1

with fractional D-branes =⇒ magnetic sources

Twist by Lu =⇒ 6d Ω-deformation of SYM

In the limit of vanishing size E =⇒ N = 2∗ theory in 4d
with special Ω-deformation, m = −ε =⇒ massless chiral in 2d

magnetic membranes reduce to
susy ’t Hooft operators wrapped on A and B cycles on Š1 × S1



Six dimensional super-Yang-Mills: electric frame

IIA string on ALE× R2 × Ě × Š1 × S1

with fractional D-branes =⇒ electric sources

Twist by Lu upon T -duality on E

produces the Neveu-Schwarz B-field, with H = dB 6= 0



Six dimensional Chern-Simons theory

IIA string on ALE× R2 × Ě × Š1 × S1

with electric sources

with the Neveu-Schwarz B-field, with H = dB 6= 0 =⇒

∫
R2×Ě×Š1×S1

H ∧ CS(A)

from the
∫
C ∧G ∧G Chern-Simons term in 11d



Four dimensional Chern-Simons theory

IIA string on ALE× R2 × Ě × Š1 × S1

Neveu-Schwarz B-field, so that H = dB 6= 0

∫
R2

H ∼ Re
dz

u

Supersymmetric localization =⇒∫
R2×Ě×Š1×S1

H ∧ CS(A) =
1

u

∫
Ě×Š1×S1

dz ∧ CS(A)

Up to Q-exact terms, A = A+ i(. . .)



Open-closed string duality



Open-closed string duality



Open-closed string duality



Open-closed string duality



Open-closed string duality



Line operators



Line operators and instanton moduli



Line operators and instanton moduli



Two kinds of line operators



Two kinds of line operators and instanton moduli



String exchanges between line operators



String exchanges between line operators



Gluon exchanges between Ŵilson loops



Ŵilson loop =Wilson loop with a hat

ŴR
λ̂
[C, q] = TrR

λ̂

(
qL0 P exp

∮
C
A

)
,

for the highest weight representation R
λ̂

of ĜΓ Kac-Moody group



Ŵilson loop = Wilson loop with a hat

ŴR
λ̂
[C, q] = TrR

λ̂

(
qL0 P exp

∮
C
A

)
,

Can be expanded in ordinary GΓ - Wilson loops,

with higher spin representations suppressed by powers of q



Dictionary

ŴR
λ̂
[C, q] = TrR

λ̂

(
qL0 P exp

∮
C
A

)
,

In our story, the two kinds of line operators we encounter correspond to

λ̂ =

r∑
i=0

Li$i , and λ̂ =

r∑
i=0

L̃i$i

respectively, with $i being the fundamental weights of ĝΓ



Dictionary: weight subspaces

R
λ̂

=
⊕
ŵ

Rŵ
λ̂
,

In our story, the two weight subspaces we encounter correspond to

ŵ =

r∑
i=0

Li$i −Niαi , and ŵ =

r∑
i=0

L̃i$i − Ñiαi

respectively, with Ñi = Ki, and αi being the simple roots of ĝΓ



Twist parameters

The parameters qi and q̃i

↔

background GC
Γ-flat connection on Š1 × S1



Twist parameters

The parameters qi and q̃i

↔

background GC
Γ-flat connection on Š1 × S1

Can be fixed in the six-dimensional setup (in 4d problematic)



Virasoro
qi and q̃i ↔ flat GC

Γ-connection on Š1 × S1

and the parameters q and q̃ of the Ŵilson loop operators

q =
∏

i∈Vertγ

qaii , q̃ =
∏

i∈Vertγ

q̃aii

In string theory:

q = exp −
LŠ1Ms

gs
+ i

∫
Š1

C(1) , q̃ = exp − LS1Ms

gs
+ i

∫
S1

C(1)

C(1) = Background IIA Ramond-Ramond U(1) flat gauge field on Š1 × S1



Virasoro and M-theory

qi and q̃i ↔ flat GC
Γ-connection on Š1 × S1

and the parameters q and q̃ of the Ŵilson loop operators

q =
∏

i∈Vertγ

qaii , q̃ =
∏

i∈Vertγ

q̃aii

Lift to M-theory: line operators become M5 branes

wrapped on ALE×
(
Š1 orS1

)
× S1

10, respectively

q, q̃ – elliptic curve nodes for
(
Š1 orS1

)
× S1

10



Little strings
Berkooz, Rosali, Seiberg; Seiberg 1997

Losev, Moore, Shatashvili 1997

Reviews Aharony 1999; Kutasov 2001

in BPS/CFT context, (2,0) version, Aganagic, Haouzi, 2016

Take the limit gs → 0, keeping Ms finite: q, q̃ → 0

The Ŵilson loop operator becomes the ordinary one

Decouple one of the nodes, e.g. the affine one

ĝΓ → gΓ , q0 → 0 , q̃0 → 0

L0 = K0 = 0 = L̃0 = N0



In lieu of conclusions

The Chern-Simons
∫
dz ∧ CS(A) approach to quantum groups

has the advantage of making the group whose quantum deformation
one is seeking, visible in the structure of sources

Seems problematic for groups outside the ADE (BCFG) classification

Bethe/gauge correspondence does not have the explicit GΓ symmetry
but is more general (covers all quivers and also super-algebras)

Lots of things to learn and understand better...



One wild speculation

Naively, to describe affine quiver theories

One would attempt to study the LGΓ, or ĜΓ gauge theory

One additional dimension: 7d theory? natural in M-theory on ALE

However, we learned: U(1)L0 ⊂ ĜΓ is the 10d RR U(1) gauge field

Perhaps we’ll learn about the origin of the (12d?) E8 gauge field
Hořava, Witten 1996; Witten 1997; Diaconescu, Moore, Witten 2000

Lots of things to learn and understand better...



THANK YOU


