Open-closed (little) string duality

 and
Chern-Simons-Bethe/gauge correspondence

NIKITA NEKRASOV

Simons Center for Geometry and Physics, Stony Brook
YITP, Stony Brook; IHES, Bures-sur-Yvette; IITP, Moscow; ITEP, Moscow
String-Math 2017, July 28, 2017

Based on the joint work

with Mina Aganagic and Samson Shatashvili

and the project

BPS/CFT correspondence and
non-perturbative Dyson-Schwinger equations

There are two ways to realize a symmetry in quantum system

There are two ways to realize a symmetry in quantum system

Start with a classical system with symmetry and quantize

Start with a classical system with symmetry and quantize

Example: geometric quantization

$$
\begin{gathered}
\int_{(p, q) \in \text { coadjoint orbit }} D p D q \exp \left(\mathrm{i} \int p d q-\int \operatorname{Tr} A \cdot \mu(p, q)\right) \\
\sim \quad\left\langle v_{1}\right| T_{\mathcal{H}}\left(P \exp \int A\right)\left|v_{2}\right\rangle
\end{gathered}
$$

inspiration Borel - Weil - Bott theorem, 1957
Kirillov 1961; path integral suggested in 1961 by Faddeev
Alekseev, Faddeev, Shatashvili 1988

Emergent symmetry in quantum system

Preparations:

$$
\Gamma \subset S U(2) \quad \text { finite subgroup }
$$

Preparations:

$\Gamma \subset S U(2) \quad$ finite subgroup

Irreps $\mathcal{R}_{i}, \quad i=0, \ldots, r$

Preparations: quivers from $г$

$$
\Gamma \subset S U(2) \quad \text { finite subgroup }
$$

Irreps $\mathcal{R}_{i} \Longrightarrow$ vertices $i=0, \ldots, r$ of a quiver Γ

$$
\text { edges: } \quad \mathcal{R}_{i} \otimes \mathbb{C}^{2}=\bigoplus_{e \in s^{-1}(i)} \mathcal{R}_{t(e)} \bigoplus_{e \in t^{-1}(i)} \mathcal{R}_{s(e)}
$$

Preparations: quivers from $г$

$$
\Gamma \subset S U(2) \quad \text { finite subgroup }
$$

Irreps $\mathcal{R}_{i} \Longrightarrow$ vertices $i=0, \ldots, r$ of a quiver Γ edges: $\quad \mathcal{R}_{i} \otimes \mathbb{C}^{2}=\bigoplus_{e \in s^{-1}(i)} \mathcal{R}_{t(e)} \bigoplus_{e \in t^{-1}(i)} \mathcal{R}_{s(e)}$

Symmetry hints: McKay duality

Irreps $\mathcal{R}_{i} \Longrightarrow$ vertices $i=0, \ldots, r$ of a quiver Γ
edges: $\quad \mathcal{R}_{i} \otimes \mathbb{C}^{2}=\bigoplus_{e \in s^{-1}(i)} \mathcal{R}_{t(e)} \bigoplus_{e \in t^{-1}(i)} \mathcal{R}_{s(e)}$

Dynkin labels: $\quad a_{i}=\mathcal{R}_{i}, \quad 2 a_{i}=\sum_{e \in s^{-1}(i)} a_{t(e)}+\sum_{e \in t^{-1}(i)} a_{s(e)}$

$$
\text { (a) } \tilde{\mathrm{D}}_{1}^{2 n}
$$

Symmetry hints: McKay duality

Quiver $\Gamma=$ affine Dynkin diagram of G_{Γ}
McKay dual simple Lie group (ADE)

Symmetry hints: Weyl group \mathcal{W}_{Γ}

ALE spaces $=\widetilde{\mathbb{C}^{2} / \Gamma}$

Four dimensional hyperkähler manifolds, with moduli $\left(\mathbb{R}^{r} \otimes \mathbb{R}^{3}\right) / \mathcal{W}_{\Gamma}$ $H^{2}(\mathrm{ALE}, \mathbb{Z})$ form the \mathcal{W}_{Γ} - local system over the moduli space

Symmetry hints: Weyl group \mathcal{W}_{Γ}

$$
\text { ALE spaces }=\widetilde{\mathbb{C}^{2} / \Gamma}
$$

Four dimensional hyperkähler manifolds, with moduli

$$
\mathcal{M}_{\Gamma}=\left\{\left(\zeta_{i}^{\mathbb{R}}, \zeta_{i}^{\mathbb{C}}\right)\right\} \in\left(\mathfrak{h}\left(G_{\Gamma}\right) \otimes \mathbb{R} \oplus \mathbb{C}\right) / \mathcal{W}_{\Gamma}
$$

$H^{2}(\mathrm{ALE}, \mathbb{Z})$ form the \mathcal{W}_{Γ} - local system over the moduli space

Emergent symmetry in quantum system

Example: Nakajima algebras

Start with the $4+1$ dimensional

Supersymmetric $U(w)$ gauge theory on

$$
\left(\mathrm{ALE}=\widetilde{\mathbb{R}^{4} / \Gamma}\right) \times \mathbb{R}^{1}
$$

In a low-energy weak-coupling adiabatic approximation \Longrightarrow
Vafa, Witten, 1994

Supersymmetric quantum mechanics on $\mathcal{M}_{\mathrm{v}, \mathrm{w}}\left(\widetilde{\mathbb{R}^{4} / \Gamma}\right)$

$$
\begin{gathered}
U(w) \text { instantons on ALE space } \widetilde{\mathbb{R}^{4} / \Gamma}, \\
\text { with topological charges } \mathbf{v}=\left(v_{0}, v_{1}, \ldots, v_{r}\right) \\
\text { and boundary conditions at infinity } \\
U(w) \longrightarrow H_{\mathbf{w}}=U\left(w_{0}\right) \times U\left(w_{1}\right) \times \ldots \times U\left(w_{r}\right)
\end{gathered}
$$

Supersymmetric quantum mechanics on $\mathcal{M}_{\mathrm{v}, \mathrm{w}}\left(\widetilde{\mathbb{R}^{4} / \Gamma}\right)$
$A \rightarrow$ flat connection at infinity

$$
\begin{gathered}
\pi_{1}\left(\mathrm{~S}^{3} / \Gamma\right)=\Gamma \rightarrow U(w) \\
U(w) \longrightarrow H_{\mathbf{w}}=U\left(w_{0}\right) \times U\left(w_{1}\right) \times \ldots \times U\left(w_{r}\right) \\
-\frac{1}{8 \pi^{2}} \int_{\text {ALE }} \operatorname{Tr} F \wedge F \sim v_{0} \quad \frac{1}{2 \pi \mathrm{i}} \operatorname{Tr} F \sim v_{1}\left[\Sigma_{1}\right]+\ldots+v_{r}\left[\Sigma_{r}\right] \\
\text { (2.) (2.) } \sum_{\text {E. }}^{5} \text {. }
\end{gathered}
$$

Supersymmetric quantum mechanics on $\mathcal{M}_{\mathbf{v}, \mathbf{w}}$ (ALE)

Ground states: cohomology $H^{*}\left(\mathcal{M}_{\mathbf{v}, \mathbf{w}}(\mathrm{ALE})\right)$
Nakajima: $\mathcal{H}_{\mathrm{w}, \Gamma}=\bigoplus_{\mathbf{v}} H^{*}\left(\mathcal{M}_{\mathrm{v}, \mathbf{w}}(\mathrm{ALE})\right)$ is
an irreducible highest weight representation of Kac-Moody algebra $\widehat{\mathfrak{g}}_{\Gamma}$ $G_{\Gamma}-$ McKay dual Lie group

Supersymmetric quantum mechanics on $\mathcal{M}_{\mathbf{v}, \mathbf{w}}$ (ALE)

Ground states: cohomology $H^{*}\left(\mathcal{M}_{\mathrm{v}, \mathrm{w}}(\mathrm{ALE})\right)$

Nakajima: work $H_{\mathrm{w}} \times U(1)$-equivariantly

$$
\mathcal{H}_{\mathbf{w}, \Gamma}=\bigoplus_{\mathbf{v}} H^{*}\left(\mathcal{M}_{\mathbf{v}, \mathbf{w}}(\mathrm{ALE})\right)
$$

irrep of the Yangian $Y\left(\widehat{\mathfrak{g}}_{\Gamma}\right)$ of $\widehat{\mathfrak{g}}_{\Gamma}$
Ginzburg, Vasserot (finite A series); Varagnolo, 2000

More generally

$\mathcal{M}_{\mathbf{v}, \mathbf{w}}$ (ALE) is an example of a quiver variety $\mathfrak{M}_{\gamma}(\mathbf{w}, \mathbf{v})$
Supersymmetric quantum mechanics on $\mathfrak{M}_{\gamma}(\mathbf{w}, \mathbf{v})$
Ground states: cohomology $H^{*}\left(\mathfrak{M}_{\gamma}(\mathbf{w}, \mathbf{v})\right)$
Nakajima: work $H_{\mathbf{w}} \times U(1)$-equivariantly

$$
\mathcal{H}_{\mathbf{w}, \Gamma}=\bigoplus_{\mathbf{v}} H^{*}\left(\mathfrak{M}_{\gamma}(\mathbf{w}, \mathbf{v})\right)
$$

irrep of the Yangian $Y\left(\mathfrak{g}_{\gamma}\right)$ of \mathfrak{g}_{γ}

More generally

Sigma model \sim supersymmetric quantum mechanics on $L \mathfrak{M}_{\gamma}(\mathbf{w}, \mathbf{v})$

Ground states: K-theory $K\left(\mathfrak{M}_{\gamma}(\mathbf{w}, \mathbf{v})\right)$

Nakajima: work $H_{\mathrm{w}} \times U(1)$-equivariantly

$$
\mathcal{H}_{\mathbf{w}, \Gamma}=\bigoplus_{\mathbf{v}} K\left(\mathfrak{M}_{\gamma}(\mathbf{w}, \mathbf{v})\right)
$$

irrep of quantum affine algebra $U_{q}\left(\mathfrak{g}_{\gamma}\right)$ of \mathfrak{g}_{γ}

SURPRISES

Need to sum over v:

Full symmetry is realized in a collection of quantum systems

SURPRISES

Need to sum over v: collections of quantum systems

Natural in $4+1$ theory but it is not a quantum field theory

No obvious realization of G_{Γ} in the classical system

HINTS

String theory realization of the gauge theory

makes the summation over v natural

In string theory the appearence of G_{Γ} comes naturally

Mental note:

String theory may provide a natural explanation

Natural habitat

for the Yangian algebras?

Natural habitat of the Yangian

Spin chains!

Natural habitat of the Yangian

Spin chains! Start with $Y\left(s l_{2}\right)$ for simplicity

Finite dimensional Hilbert space

$$
\mathcal{H}=\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \ldots \otimes \mathbb{C}^{2}
$$

$$
\mathcal{H}=\overbrace{\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \ldots \otimes \mathbb{C}^{2}}^{L \text { times }}
$$

Hamiltonian

$$
\widehat{H}=\sum_{a=1}^{L} \sigma_{a}^{x} \otimes \sigma_{a+1}^{x}+\sigma_{a}^{y} \otimes \sigma_{a+1}^{y}+\sigma_{a}^{z} \otimes \sigma_{a+1}^{z}
$$

Hamiltonian

$$
\begin{gathered}
\mathcal{H}=\overbrace{\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \ldots \otimes \mathbb{C}^{2}}^{L \text { times }} \\
\widehat{H}=\sum_{a=1}^{L} \sigma_{a}^{x} \otimes \sigma_{a+1}^{x}+\sigma_{a}^{y} \otimes \sigma_{a+1}^{y}+\sigma_{a}^{z} \otimes \sigma_{a+1}^{z} \\
\vec{\sigma}_{a+L}=\vec{\sigma}_{a}
\end{gathered}
$$

Heisenberg magnet: periodic isotropic homogeneous spin chain

Hamiltonians!

$$
\begin{gathered}
\mathcal{H}=\overbrace{\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \ldots \otimes \mathbb{C}^{2}}^{L \text { times }} \\
\widehat{H}_{1}=\sum_{a=1}^{L} \sigma_{a}^{x} \otimes \sigma_{a+1}^{x}+\sigma_{a}^{y} \otimes \sigma_{a+1}^{y}+\sigma_{a}^{z} \otimes \sigma_{a+1}^{z}
\end{gathered}
$$

$$
\widehat{H}_{2}, \widehat{H}_{3}, \ldots, \widehat{H}_{L}, \ldots
$$

$$
\left[\widehat{H}_{i}, \widehat{H}_{j}\right]=0
$$

Quantum integrability!

Commuting Hamiltonians from Transfer Matrix

$$
\widehat{T}(x)=x^{L} \exp \sum_{n=1}^{\infty} \frac{1}{n} x^{-n} \widehat{H}_{n}
$$

Quantum integrability $\Leftrightarrow\left[\widehat{T}\left(x^{\prime}\right), \widehat{T}\left(x^{\prime \prime}\right)\right]=0$

Transfer matrices

$$
\begin{gathered}
\mathrm{R}: \mathrm{V} \otimes \mathrm{~V} \longrightarrow \mathrm{~V} \otimes \mathrm{~V} \\
\mathrm{~T}: \mathcal{H} \longrightarrow \mathrm{H}
\end{gathered}
$$

$$
\begin{aligned}
& 4 \\
& 4
\end{aligned}
$$

Transfer matrices from the R-matrix

$$
\widehat{T}(x)=\operatorname{Tr}_{V_{\text {aux }}}\left(R\left(x, \mu_{1}\right) R\left(x, \mu_{2}\right) \ldots R\left(x, \mu_{L}\right)\right): \mathcal{H} \longrightarrow \mathcal{H}
$$

Yang-Baxter equation for the R-matrix

Implies $\left[\widehat{T}\left(x^{\prime}\right), \widehat{T}\left(x^{\prime \prime}\right)\right]=0$ by the train argument

Yang-Baxter equation for the R-matrix

$\Longrightarrow\left[\widehat{T}\left(x^{\prime}\right), \widehat{T}\left(x^{\prime \prime}\right)\right]=0$ by the cyclicity of $\operatorname{Tr}_{\text {Vaux }}$

Transfer matrices from the R-matrix

$$
\widehat{T}(x)=\operatorname{Tr}_{V_{\text {aux }}}\left(R\left(x, \mu_{1}\right) R\left(x, \mu_{2}\right) \ldots R\left(x, \mu_{L}\right)\right): \mathcal{H} \longrightarrow \mathcal{H}
$$

$$
\begin{aligned}
& \mathcal{H}=V_{1}\left(\mu_{1}\right) \otimes V_{2}\left(\mu_{2}\right) \otimes \ldots \otimes V_{L}\left(\mu_{L}\right) \\
& \mu_{1}, \ldots, \mu_{L} \in \mathbb{C} \quad \text { inhomogeneities }
\end{aligned}
$$

Heisenberg spin chain was homogeneous, i.e. $\mu_{a}=0$

Twisted transfer matrices from the R-matrix

$$
\widehat{T}(x ; \mathfrak{q})=\operatorname{Tr}_{V_{\text {aux }}} g_{\mathfrak{q}}\left(R\left(x, \mu_{1}\right) R\left(x, \mu_{2}\right) \ldots R\left(x, \mu_{L}\right)\right): \mathcal{H} \longrightarrow \mathcal{H}
$$

Twisted spin chain, $\vec{\sigma}_{a+L}=\operatorname{Ad}\left(g_{q}\right) \vec{\sigma}_{a}$

For $S U(2): \quad g_{\mathfrak{q}}=\mathfrak{q}^{\frac{1}{2} \sigma^{z}}$

Anisotropic models from the trigonometric and elliptic R-matrices
Baxter, Drinfeld, Belavin, Jimbo

$$
\begin{gathered}
\widehat{T}(x ; \mathfrak{q})=\operatorname{Tr}_{V_{\text {aux }}} g_{\mathfrak{q}}\left(R\left(x, \mu_{1}\right) R\left(x, \mu_{2}\right) \ldots R\left(x, \mu_{L}\right)\right): \mathcal{H} \longrightarrow \mathcal{H} \\
\widehat{H}_{1} \rightarrow \sum_{a=1}^{L} \alpha \sigma_{a}^{x} \otimes \sigma_{a+1}^{x}+\beta \sigma_{a}^{y} \otimes \sigma_{a+1}^{y}+\gamma \sigma_{a}^{z} \otimes \sigma_{a+1}^{z}
\end{gathered}
$$

$$
(\alpha: \beta: \gamma)=\left\{\begin{array}{ccc}
(1: 1: 1) & \text { rational } & \mathbf{X X X} \\
(1: 1: \Delta) & \text { trigonometric } & \mathbf{X X Z} \\
\left(1: \Delta^{\prime}: \Delta^{\prime \prime}\right) & \text { elliptic } & \mathbf{X Y Z}
\end{array}\right.
$$

Lattice model

Lattice model

Partition function via transfer matrix formalism

L. Onsager solution of the Ising model

$$
z_{L, \tilde{L}}=\operatorname{Tr}_{\mathcal{H}_{L}}\left(\widehat{T}\left(x_{1} ; \mathfrak{q}\right) \widehat{T}\left(x_{2} ; \mathfrak{q}\right) \ldots \widehat{T}\left(x_{\tilde{L}} ; \mathfrak{q}\right) \cdot g_{\tilde{q}}\right)
$$

Lattice model on a torus: double trace

not in the sense of gauge theory

$$
z_{L, \tilde{L}}=\operatorname{Tr}_{\mathcal{H}_{L}}\left(\widehat{T}\left(x_{1} ; \mathfrak{q}\right) \widehat{T}\left(x_{2} ; \mathfrak{q}\right) \ldots \widehat{T}\left(x_{\tilde{L}} ; \mathfrak{q}\right) \cdot g_{\overline{\mathfrak{q}}}\right)
$$

Lattice model on the torus

$$
z_{L, \tilde{L}}=\operatorname{Tr}_{\mathcal{H}_{L}}\left(\widehat{T}\left(x_{1} ; \mathfrak{q}\right) \widehat{T}\left(x_{2} ; \mathfrak{q}\right) \ldots \widehat{T}\left(x_{\tilde{L}} ; \mathfrak{q}\right) \cdot g_{\tilde{q}}\right)
$$

Lattice model: double trace

$z_{L, \tilde{L}}(\mathfrak{q}, \tilde{\mathfrak{q}})=\sum$ over states on the edges of the lattice
Boltzmann weights $=$ products of R-matrix elements

Lattice model: modularity

Exchange A and B cycles

$$
\begin{aligned}
& L \operatorname{vs} \tilde{L} \\
& \mathfrak{q} \operatorname{vs} \tilde{\mathfrak{q}}
\end{aligned}
$$

Lattice model: Hamiltonian viewpoint

$$
z_{L, \tilde{L}}=\operatorname{Tr}_{\mathcal{H}_{L}}\left(\widehat{T}\left(x_{1} ; \mathfrak{q}\right) \widehat{T}\left(x_{2} ; \mathfrak{q}\right) \ldots \widehat{T}\left(x_{\tilde{L}} ; \mathfrak{q}\right) \cdot g_{\tilde{q}}\right)
$$

Bethe states: $\psi_{\sigma} \in \mathcal{H}$

$$
\widehat{T}(x, \mathfrak{q}) \psi_{\sigma}=T_{\sigma}(x, \mathfrak{q}) \psi_{\sigma}
$$

$z_{L, \tilde{L}}=\sum$ over the eigenvalues of the transfer matrix

$$
z_{L, \tilde{L}}(\mathfrak{q}, \tilde{\mathfrak{q}})=\sum_{N} \tilde{\mathfrak{q}}^{N} \sum_{\sigma_{1}, \ldots, \sigma_{N}} T_{\sigma}\left(x_{1} ; \mathfrak{q}\right) \ldots T_{\sigma}\left(x_{\tilde{L}} ; \mathfrak{q}\right)
$$

Sum over the number of Bethe roots = "magnons"

Hamiltonian viewpoint: Bethe ansatz

Bethe states: $\psi_{\sigma} \in \mathcal{H}$

$$
\widehat{T}(x, \mathfrak{q}) \psi_{\sigma}=T_{\sigma}(x, \mathfrak{q}) \psi_{\sigma}
$$

for all x

Lightnining review of Bethe ansatz

Faddeev, Sklyanin, Takhtajan

Kulish, Reshetikhin Isergin, Korepin

Drinfeld, Jimbo, Miwa

Monodromy matrix

$$
\left(\begin{array}{ll}
A(x) & B(x) \\
C(x) & D(x)
\end{array}\right)=R\left(x, \mu_{1}\right) \ldots R\left(x, \mu_{L}\right): V_{\mathrm{aux}} \otimes \mathcal{H} \rightarrow V_{\mathrm{aux}} \otimes \mathcal{H}
$$

Lightnining review of Bethe ansatz

Monodromy matrix

$$
\left(\begin{array}{ll}
A(x) & B(x) \\
C(x) & D(x)
\end{array}\right): V_{\mathrm{aux}} \otimes \mathcal{H} \rightarrow V_{\mathrm{aux}} \otimes \mathcal{H}
$$

Yangian $Y\left(s l_{2}\right)$ generators

$$
A(x), B(x), C(x), D(x): \mathcal{H} \rightarrow \mathcal{H}
$$

Lightnining review of Bethe ansatz

Monodromy matrix

$$
\left(\begin{array}{ll}
A(x) & B(x) \\
C(x) & D(x)
\end{array}\right)=R\left(x, \mu_{1}\right) \ldots R\left(x, \mu_{L}\right): V_{\mathrm{aux}} \otimes \mathcal{H} \rightarrow V_{\mathrm{aux}} \otimes \mathcal{H}
$$

Bethe state

$$
\psi_{\sigma}=B\left(\sigma_{1}\right) B\left(\sigma_{2}\right) \ldots B\left(\sigma_{N}\right)|\downarrow \downarrow \ldots \downarrow\rangle
$$

Lightnining review of Bethe ansatz

Bethe state (algebraic Bethe ansatz)

$$
\psi_{\sigma}=B\left(\sigma_{1}\right) B\left(\sigma_{2}\right) \ldots B\left(\sigma_{N}\right)|\downarrow \downarrow \ldots \downarrow\rangle
$$

Bethe roots $\sigma_{1}, \ldots, \sigma_{N}$

Lightnining review of Bethe ansatz

Bethe equations

$$
\mathfrak{q} \prod_{a=1}^{L} \frac{\sigma_{i}-\mu_{a}+u}{\sigma_{i}-\mu_{a}-u}=\prod_{j \neq i} \frac{\sigma_{i}-\sigma_{j}+2 u}{\sigma_{i}-\sigma_{j}-2 u}
$$

Solutions $=$ Bethe roots $\sigma_{1}, \ldots, \sigma_{N}$
Planck constant $\approx u$

Lightning review of Bethe ansatz

Functional Bethe Ansatz: $T-Q$ relation
Baxter, Sklyanin

$$
P(x-u) Q_{\sigma}(x+2 u)+\mathfrak{q} P(x+u) Q_{\sigma}(x-2 u)=T_{\sigma}(x ; \mathfrak{q}) Q_{\sigma}(x)
$$

$$
Q_{\sigma}(x)=\prod_{i=1}^{N}\left(x-\sigma_{i}\right), \quad P(x)=\prod_{a=1}^{L}\left(x-\mu_{a}\right)
$$

The content of this equation: $T_{\sigma}(x ; \mathfrak{q})$ has no singularities in x

Lightnining review of Bethe ansatz

$$
\begin{gathered}
Q_{\sigma}(x)=\prod_{i=1}^{N}\left(x-\sigma_{i}\right)=\text { eigenvalue of Baxter operator } \widehat{Q}(x) \\
P(x)=\prod_{a=1}^{L}\left(x-\mu_{a}\right)=\text { Drinfeld polynomial }
\end{gathered}
$$

Lightnining review of Bethe ansatz

q-character form of Bethe equations

E. Frenkel, Reshetikhin

$$
Y_{\sigma}(x+2 u)+\mathfrak{q} \ell(x) Y_{\sigma}(x)^{-1}=\frac{T_{\sigma}(x ; \mathfrak{q})}{P(x-u)}
$$

$T_{\sigma}(x ; \mathfrak{q})$ is a polynomial in x

$$
\begin{aligned}
Y_{\sigma}(x) & =\frac{Q_{\sigma}(x)}{Q_{\sigma}(x-2 u)} \\
\ell(x) & =\frac{P(x+u)}{P(x-u)}
\end{aligned}
$$

Lightnining review of Bethe ansatz

q-character form of Bethe equations

$$
Y_{\sigma}(x+2 u)+\mathfrak{q} \ell(x) Y_{\sigma}(x)^{-1}=\frac{T_{\sigma}(x ; \mathfrak{q})}{P(x-u)}
$$

$$
Y_{\sigma}(x)=\frac{Q_{\sigma}(x)}{Q_{\sigma}(x-2 u)}=
$$

eigenvalue of the operator $\widehat{Y}(x)$

q-character

$$
\widehat{Y}(x+2 u)+\mathfrak{q} \ell(x) \widehat{Y}(x)^{-1}=
$$

the fundamental q-character of $Y\left(s l_{2}\right)$

q-characters for general quivers

$$
\begin{aligned}
& \widehat{Y}_{i}(x+2 u)+ \\
& +\mathfrak{q}_{i} \ell_{i}(x) \widehat{Y}_{i}(x)^{-1} \prod_{e \in s^{-1}(i)} \widehat{Y}_{t(e)}\left(x+\mu_{e}+u\right) \prod_{e \in t^{-1}(i)} \widehat{Y}_{s(e)}\left(x-\mu_{e}+u\right)+\ldots
\end{aligned}
$$

$$
=\text { the fundamental } q \text {-character of } Y\left(\mathfrak{g}_{\Gamma}\right)
$$

$$
\ell_{i}(x)=\frac{P_{i}(x+u)}{P_{i}(x-u)}
$$

the ℓ-weight

q-character for \widehat{A}_{0}

NN, Pestun, Shatashvili, 2013
E. Frenkel, D. Hernandez, 2013-2015

Additional parameter $\varepsilon=\mu_{e}$

$$
\sum_{\lambda} \mathfrak{q}^{|\lambda|} \prod_{\square \in \lambda} \ell\left(x+c_{\square}\right) \frac{\prod_{\llbracket \partial_{+} \lambda} \widehat{Y}\left(x+2 u+c_{\square}\right)}{\prod_{\llbracket \partial_{-} \lambda} \hat{Y}\left(x+c_{\square}\right)}
$$

$=$ the fundamental q-character of $Y(\widehat{u(1)})$

$$
\begin{aligned}
& c_{\square}=\varepsilon(i-j)-u(i+j-2), \quad \square=(i, j) \\
& \ell(x)=\frac{P(x+u)}{P(x-u)}
\end{aligned}
$$

Bethe/gauge correspondence

Bethe/gauge correspondence

NN, Shatashvili 2007

Bethe/gauge correspondence

Prior work: Moore, NN, Shatashvili, 1997
Givental, 1993
Gorsky, NN, 1992-1994
Gerasimov, Shatashvili, 2006
$\mathcal{N}=(2,2), d=2$ super-Poincare invariant gauge theory

Bethe/gauge correspondence

Quantum integrable system

Supersymmetric vacua (in finite volume)

Bethe/gauge correspondence

Stationary states = joint eigenvectors of quantum integrals of motion

Twisted chiral ring, e.g. $\mathcal{O}_{n}=\frac{1}{(2 \pi \mathrm{i})^{n} n!} \operatorname{Tr} \sigma^{n}$

Bethe/gauge correspondence

Quantum integrals of motion \widehat{H}_{n}, e.g. $\widehat{\operatorname{Tr} L^{n}}$ for Lax operator L

Effective twisted superpotential $\mathcal{W}\left(\sigma_{1}, \ldots, \sigma_{N}\right)$

Bethe/gauge correspondence

The Yang-Yang functional $y\left(\sigma_{1}, \ldots, \sigma_{N}\right)$

$\mathcal{N}=(2,2), d=2$ super-Poincare invariant gauge theory

Quantum integrable system

$$
\mathcal{N}=4, d=2 U(N) \text { gauge theory }
$$

with L hypermultiplets in the fundamental representation

Example of Bethe/gauge correspondence

Inhomogeneous twisted length $L S U(2)$ spin $\frac{1}{2}$ chain in the sector with N spins up

Softly broken $\mathcal{N}=4 \rightarrow \mathcal{N}=2, d=2 U(N)$ gauge theory by the twisted mass u, corresponding to the $U(1)$ symmetry

$$
\begin{gathered}
Q, \tilde{Q} \mapsto e^{\mathrm{i} u} Q, e^{\mathrm{i} u} \tilde{Q} \\
\Phi \mapsto e^{-2 \mathrm{i} u} \Phi
\end{gathered}
$$

Inhomogeneities $\mu_{a}=$ twisted masses $\leftrightarrow U(L)$ flavor symmetry of $\mathcal{N}=4$ theory
the twist parameter $\mathfrak{q}=$ Kähler modulus

$$
\mathfrak{q}=e^{2 \pi \mathrm{i} t}=e^{\mathrm{i} \vartheta-2 \pi r}
$$

Bethe equations

= quantum cohomology (twisted chiral ring) relations

$$
\mathfrak{q} \prod_{a=1}^{L} \frac{\sigma_{i}-\mu_{a}+u}{\sigma_{i}-\mu_{a}-u}=\prod_{j \neq i} \frac{\sigma_{i}-\sigma_{j}+2 u}{\sigma_{i}-\sigma_{j}-2 u}
$$

Solutions =

eigenvalues of the complex scalar in the $U(N)$ vector multiplet:

$$
\sigma \sim \operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{N}\right)
$$

up to permutations of σ_{i} 's the remainder of the $U(N)$ gauge symmetry

Bethe equations

= quantum cohomology (twisted chiral ring) relations

$$
1=\mathfrak{q} \prod_{a=1}^{L} \frac{\sigma_{i}-\mu_{a}+u}{\sigma_{i}-\mu_{a}-u} \prod_{j \neq i} \frac{\sigma_{i}-\sigma_{j}-2 u}{\sigma_{i}-\sigma_{j}+2 u}=\exp \left(\frac{\partial \widetilde{W}}{\partial \sigma_{i}}\right)
$$

$\widetilde{W}\left(\sigma_{1}, \ldots, \sigma_{N}\right)=$ effective twisted superpotential

one-loop exact computation!

Baxter Q-operator

= characteristic polynomial of the adjoint Higgs

$$
Q(x)=\operatorname{Det}(x-\sigma)
$$

Gauged linear sigma model on $T^{*} \operatorname{Gr}(N, L)$

```
                low energy description of our gauge theory for r>>0
```

$Q(x)[p]=c_{x}\left(\mathcal{E}_{p}\right)=$ Chern polynomial of the tautological bundle

$$
\begin{aligned}
& Q(x)[p]=x^{N}-c_{1}\left(\varepsilon_{p}\right) x^{N-1}+c_{2}\left(\mathcal{E}_{p}\right) x^{N-2}-\ldots \\
& \text { local operator } Q(x)[p], p \in \Sigma \\
& \text { in the sigma model with worldsheet } \Sigma \text {, roughly: }
\end{aligned}
$$

$$
\mathcal{E}_{p} \rightarrow \mathcal{M}, \quad \mathcal{E}_{p}=e v_{p}^{*} \mathbf{E}
$$

$\mathbf{E}=$ rk N tautological bundle over $T^{*} \operatorname{Gr}(N, L)$
$e v: \Sigma \times \mathcal{M} \longrightarrow T^{*} \operatorname{Gr}(N, L) \quad$ evaluation map

Lift to three dimensions

$$
\Sigma \longrightarrow \mathbf{S}^{1} \times \Sigma
$$

Twisted masses \rightarrow Wilson loops + real masses

$$
\mathbf{X X X} \rightarrow \mathbf{X X Z}=\text { trigonometric case }
$$

Lift to four dimensions

$$
\Sigma \longrightarrow E \times \Sigma
$$

Elliptic curve E

Twisted masses \rightarrow Holomorphic $G L(L) \times \mathbb{C}^{\times}$bundle on E

$$
\mathbf{X X X} \rightarrow \mathbf{X Y Z}=\text { elliptic case }
$$

Lift to four dimensions

$$
\Sigma \longrightarrow E \times \Sigma
$$

Elliptic curve E

Twisted masses \rightarrow Holomorphic $G L(L) \times \mathbb{C}^{\times}$bundle on E
$\mathbf{X Y Z}=$ elliptic case - anomalous when $L \neq 2 N$

What is the meaning of $T_{\sigma}(x)$?

What is the meaning of $T-Q$ relations?

Quiver gauge theory

$$
\mathcal{N}=(4,4) \text { quiver gauge theory }
$$

$$
\mathcal{N}=4 \text { softly broken down to } \mathcal{N}=2
$$

Quiver γ with the set Vert ${ }_{\gamma}$ of vertices and the set Edge ${ }_{\gamma}$ of edges

$$
\mathcal{N}=(4,4) \text { quiver gauge theory }
$$

$$
\mathcal{N}=4 \text { softly broken down to } \mathcal{N}=2
$$

Quiver γ with the set Vert of vertices and the set Edge ${ }_{\gamma}$ of edges

$$
e \in \operatorname{Edge}_{\gamma}, \quad s(e), t(e) \in \operatorname{Vert}_{\gamma}
$$

source and target

Examples of quivers

Apologies for notations

$$
N_{i}, L_{i}
$$

Stand both for vector spaces (colors $\mathbb{C}^{N_{i}}$ and flavors $\mathbb{C}^{L_{i}}$), their dimensions, sometimes characters

$$
\begin{aligned}
& N_{i} \sim \sum_{\alpha \in\left[N_{i}\right]} e^{\sigma_{i, \alpha}} \\
& L_{i} \sim \sum_{\mathfrak{f} \in\left[L_{i}\right]} e^{\mu_{i, f}} \\
& {[p]:=\{1,2, \ldots, p\} }
\end{aligned}
$$

Gauge group

$$
G=\times_{i \in \operatorname{Vert}_{\gamma}} U\left(N_{i}\right)
$$

Vector multiplet scalars

$$
\Phi_{i}, \sigma_{i} \in \operatorname{Lie} G L\left(N_{i}\right)
$$

Matter hypermultiplets

Fundamentals $Q_{i} \in \operatorname{Hom}\left(L_{i}, N_{i}\right), \tilde{Q}_{i} \in \operatorname{Hom}\left(N_{i}, L_{i}\right)$

Matter hypermultiplets

Fundamentals $Q_{i} \in \operatorname{Hom}\left(L_{i}, N_{i}\right), \tilde{Q}_{i} \in \operatorname{Hom}\left(N_{i}, L_{i}\right)$

Bi-fundamentals $Q_{e} \in \operatorname{Hom}\left(N_{s(e)}, N_{t(e)}\right), \tilde{Q}_{e} \in \operatorname{Hom}\left(N_{t(e)}, N_{s(e)}\right)$

Matter superpotential

$$
\begin{gathered}
W=\sum_{i \in \operatorname{Vert}_{\gamma}} \operatorname{Tr}_{L_{i}}\left(\tilde{Q}_{i} \Phi_{i} Q_{i}\right)+ \\
+\sum_{e \in \operatorname{Edge}_{\gamma}} \operatorname{Tr}_{N_{s(e)}}\left(\tilde{Q}_{e} \Phi_{t(e)} Q_{e}\right)-\operatorname{Tr}_{N_{t(e)}}\left(Q_{e} \Phi_{s(e)} \tilde{Q}_{e}\right)
\end{gathered}
$$

Matter masses, compatible with $\mathcal{N}=4$

$$
\mathfrak{M}_{i} \in \operatorname{End}\left(L_{i}\right), \quad \mu_{e} \in \mathbb{C}
$$

Twisted masses of the fundamental and the bi-fundamental hypermultiplets, respectively

$$
\left(Q_{i}, \tilde{Q}_{i}, Q_{e}, \tilde{Q}_{e}\right) \longrightarrow\left(Q_{i} e^{-\mathrm{i} \mathfrak{M} \eta_{i}}, e^{\mathrm{i} \prod_{i}} \tilde{Q}_{i}, e^{\mathrm{i} \mu_{e}} Q_{e}, e^{-\mathrm{i} \mu_{e}} \tilde{Q}_{e}\right)
$$

Susy breaking by the twisted mass u

$$
\begin{gathered}
W=\sum_{i \in \operatorname{Vert}_{\gamma}} \operatorname{Tr}_{M_{i}}\left(\tilde{Q}_{i} \Phi_{i} Q_{i}\right)+ \\
+\sum_{e \in \text { Edge }_{\gamma}} \operatorname{Tr}_{N_{s(e)}}\left(\tilde{Q}_{e} \Phi_{t(e)} Q_{e}\right)-\operatorname{Tr}_{N_{t(e)}}\left(Q_{e} \Phi_{s(e)} \tilde{Q}_{e}\right)
\end{gathered}
$$

The most important $U(1)$ symmetry

$$
\left(Q_{i}, \tilde{Q}_{i}, Q_{e}, \tilde{Q}_{e}, \Phi_{i}\right) \longrightarrow\left(e^{\mathrm{i} u} Q_{i}, e^{\mathrm{i} u} \tilde{Q}_{i}, e^{\mathrm{i} u} Q_{e}, e^{\mathrm{i} u} \tilde{Q}_{e}, e^{-2 \mathrm{i} u} \Phi_{i}\right)
$$

Integrate out massive matter

$$
\begin{gathered}
\widetilde{W}\left(\sigma_{i, \alpha}\right)= \\
\sum_{i \in \operatorname{Vert}_{\gamma}} \sum_{\alpha \in\left[N_{i}\right]}\left(\log \left(\mathfrak{q}_{i}\right) \sigma_{i, \alpha}+\sum_{\beta \in\left[N_{i}\right]} \varpi\left(-2 u+\sigma_{i, \alpha}-\sigma_{i, \beta}\right)+\right. \\
\left.+\sum_{\mathrm{f} \in\left[L_{i}\right]}\left(\varpi\left(u+\sigma_{i, \alpha}-\mu_{i, \mathrm{f}}\right)+\varpi\left(u-\sigma_{i, \alpha}+\mu_{i, \mathrm{f}}\right)\right)\right) \\
+\sum_{e \in \operatorname{Edge}_{\gamma}} \sum_{\alpha \in\left[N_{t(e)}\right]} \sum_{\beta \in\left[N_{s(e)}\right]}\left(\varpi\left(u+\mu_{e}+\sigma_{t(e), \alpha}-\sigma_{s(e), \beta}\right)\right. \\
\left.+\varpi\left(u-\mu_{e}+\sigma_{s(e), \beta}-\sigma_{t(e), \alpha}\right)\right)
\end{gathered}
$$

Rational case

$$
\varpi(z)=z(\log (z)-1), \quad \exp \varpi^{\prime}(z)=z
$$

Trigonometric case

$$
\begin{gathered}
\varpi_{R}(z)= \\
=R \frac{z^{2}}{2}-\log (2 R) z-\frac{1}{2 R} \operatorname{Li}_{2}\left(e^{-2 R z}\right)-\frac{\pi^{2}}{12 R}, \\
\exp \varpi_{R}^{\prime}(z)=\frac{\sinh (R z)}{R}
\end{gathered}
$$

Elliptic case

$$
\begin{gathered}
\varpi_{R, \rho}(z)=R \frac{z^{2}}{2}-\log (2 R) z-\frac{\pi^{2}}{12 R}+ \\
+\sum_{n=0}^{\infty} \frac{1}{2 R}\left(\operatorname{Li}_{2}\left(e^{2 \pi \mathrm{in} \rho} e^{-2 R z}\right)-\operatorname{Li}_{2}\left(e^{2 \pi \mathrm{i}(n+1) \rho} e^{2 R z}\right)\right) \\
\exp \varpi_{R, \rho}^{\prime}(z)=\frac{1}{2 \mathrm{i} R} \frac{\theta_{11}(2 \mathrm{i} R z ; \rho)}{\theta_{11}^{\prime}(0 ; \rho)}
\end{gathered}
$$

Supersymmetric vacua of the quiver gauge theory

$$
\exp \frac{\partial \tilde{W}}{\partial \sigma_{i, \alpha}}=1, \quad i \in \operatorname{Vert}_{\gamma}, \alpha \in\left[N_{i}\right]
$$

Supersymmetric vacua of the quiver gauge theory

$$
\exp \frac{\partial \tilde{W}}{\partial \sigma_{i, \alpha}}=1, \quad i \in \operatorname{Vert}_{\gamma}, \alpha \in\left[N_{i}\right]
$$

Correspond to Bethe equations of a spin chain with $Y\left(\mathfrak{g}_{\gamma}\right)$ symmetry

Supersymmetric vacua of the quiver gauge theory

$$
\exp \frac{\partial \tilde{W}}{\partial \sigma_{i, \alpha}}=1, \quad i \in \operatorname{Vert}_{\gamma}, \alpha \in\left[N_{i}\right]
$$

q-character formulation

$$
\exp \frac{\partial \tilde{W}}{\partial \sigma_{i, \alpha}}=1, \quad i \in \operatorname{Vert}_{\gamma}, \alpha \in\left[N_{i}\right]
$$

Can be reformulated as the system of conditions for the q-characters

$$
\begin{gathered}
\mathcal{T}_{i}(x):=y_{i}(x+2 u)+ \\
+\mathfrak{q}_{i} i_{i}(x) \frac{\prod_{e \in s^{-1}(i)} y_{t(e)}\left(x+\mu_{e}+u\right) \prod_{e \in t^{-1}(i)} y_{s(e)}\left(x-\mu_{e}+u\right)}{y_{i}(x)}+\ldots
\end{gathered}
$$

to have no singularities in x
except for the poles coming from $\ell_{i}(x)$'s

Partition function on T^{2}

$$
\begin{gathered}
\operatorname{Tr}_{\mathcal{H}_{\text {susy }}\left[\left(N_{i}\right)\right]}(-1)^{F} \exp -\sum_{k} t_{k} \mathcal{O}_{k}^{(0)} \\
\text { Bethe/gauge correspondence }
\end{gathered}
$$

\downarrow

Gibbs ensemble partition function in the weight \vec{N} subspace

$$
\operatorname{Tr}_{\mathcal{H}_{\mathrm{QIS}}\left[\left(N_{i}\right)\right]} \exp -\sum_{k} t_{k} \widehat{H}_{k}
$$

Partition function on T^{2}

$$
\operatorname{Tr}_{\mathcal{H}_{\text {susy }}\left[\left(N_{i}\right)\right]}(-1)^{F} \exp -\sum_{k} t_{k} \mathcal{O}_{k}^{(0)} \sim \sum_{\mathrm{vac}} e^{-\sum_{k} t_{k}\left\langle\mathcal{O}_{k}\right\rangle_{\mathrm{vac}}}
$$

assuming all vacua are bosonic

Bethe/gauge correspondence

\downarrow
Gibbs ensemble partition function in the weight \vec{N} subspace

$$
\operatorname{Tr}_{\mathcal{H}_{\mathrm{QuS}}\left[\left(N_{i}\right)\right]} \exp -\sum_{k} t_{k} \widehat{H}_{k}
$$

Partition function on T^{2} of the ensemble of gauge theories

$$
z=\sum_{\left(N_{i}\right)} \prod_{i} \tilde{\mathfrak{q}}_{i}^{N_{i}} \operatorname{Tr}_{\mathcal{H}_{\text {susy }}\left[\left(N_{i}\right)\right]}(-1)^{F} \exp -\sum_{k} t_{k} \mathcal{O}_{k}^{(0)}
$$

Bethe/gauge correspondence

\downarrow
Toroidal Lattice model Partition function

$$
z=\operatorname{Tr}_{\mathcal{H}_{\text {QIS }}} \prod_{i} \tilde{\mathfrak{q}}_{i}^{\widehat{N}_{i}} \exp -\sum_{k} t_{k} \widehat{H}_{k}
$$

Questions

- Why sum over \vec{N} ?

- Why choose $t_{k} \mathcal{O}_{k}$ in such a way, that

$$
\exp -\sum_{k} t_{k} \widehat{H}_{k}=\widehat{T}\left(x_{1} ; \mathfrak{q}\right) \ldots \widehat{T}\left(x_{\tilde{L}} ; \mathfrak{q}\right) ?
$$

Questions

- Why choose $t_{k} \mathcal{O}_{k}$ in such a way, that

$$
\exp -\sum_{k} t_{k} \widehat{H}_{k}=\widehat{T}\left(x_{1} ; \mathfrak{q}\right) \ldots \widehat{T}\left(x_{\tilde{L}} ; \mathfrak{q}\right) ?
$$

$\widehat{T}(x ; \mathfrak{q})$ turns out to be a natural observable within the twisted chiral ring

q-characters

$\widehat{T}(x ; \mathfrak{q})$ turns out to be a natural observable within the twisted chiral ring

Well-behaved with respect to the
non-perturbative Dyson-Schwinger relations

Non-perturbative Dyson-Schwinger relations

Non-perturbative Dyson-Schwinger relations

Contributions of topologically distinct sectors to the path integral are related to each other
\Leftrightarrow

Analytic properties of $\langle\widehat{T}(x ; \mathfrak{q})\rangle$, e.g. no poles in x

Remarks

\downarrow

- When the quiver γ is one of the affine Dynkin diagrams
- Bethe equations correspond to the spin chains with Kac-Moody spin groups
- There are gauge theories corresponding to the super-Lie algebras
- For general γ — a wild Lie algebra \mathfrak{g}_{γ}

Remarks

What has changed compared to the old results of Nakajima et al.
Unlike simple Lie groups, Yangians, quantum affine algebras, etc. have inequivalent maximal commutative subalgebras

To see them all, we need
the q-parameters: Kähler moduli
of the two dimensional theory
not visible at the level of supersymmetric quantum mechanics!

Remarks

Max commutative $=$ Bethe subalgebras
at the level of supersymmetric quantum mechanics, $\mathfrak{q} \rightarrow 0$
become Gelfand-Zetlin subalgebras

Remarks

The original formulation of Bethe/gauge correspondence
mostly concerned with the commutative (quantum integrals) subalgebra

The non-abelian structure provides rigidity and offers an exciting perspective
on the string landscape of vacua

Remarks

The original formulation of Bethe/gauge correspondence:

The non-abelian structure comes from domain walls

viewed as operators in the spirit of S-branes

Remarks

Recent progress:

The non-abelian structure, i.e. R-matrices
can be understood mathematically using the stable envelope basis

Questions

If one replaces the R-matrices with spectral parameters by the R-matrices without (finite quantum group $U_{q}(\mathfrak{g})$), one can describe the lattice model using
Chern-Simons theory with gauge group G in three dimensions

$$
S_{C S}=\frac{k}{4 \pi} \int \operatorname{Tr}\left(A d A+\frac{2}{3} A^{3}\right)
$$

- How to introduce the spectral parameter into Chern-Simons theory?

Cohomological field theory perspective

Start with CohFT with the moduli space \mathcal{M} of solutions

Fields/Equations/Symmetries paradigm:
 d-dimensional fields

$$
Q^{2}=0
$$

Correlations functions: integrals of products of cohomology classes of \mathcal{M}

$$
\left\langle\mathcal{O}_{1} \ldots \mathcal{O}_{p}\right\rangle^{d} \sim \int_{\mathcal{M}} \Omega_{1} \wedge \ldots \wedge \Omega_{p}
$$

$$
\left\{Q, \mathcal{O}_{i}\right\}=0, \quad \mathcal{O}_{i} \leftrightarrow \Omega_{i}, \quad d \Omega_{i}=0
$$

Loop upgrade

Oxidation of cohomological field theory:
make fields t-dependent
K-theory of \mathcal{M}
Fields/Equations/Symmetries paradigm:
loop space, i.e. $d+1$-dimensional fields
Correlations functions: pushforwards of K-theory classes of \mathcal{M}

$$
\begin{gathered}
\mathbb{Q}^{2}=\partial_{t} \\
\left\langle\mathcal{O}_{1} \ldots \mathcal{O}_{p}\right\rangle^{d+1} \sim \int_{\mathcal{M}} \widehat{A}(\mathcal{M}) \wedge \Omega_{1} \wedge \ldots \wedge \Omega_{p}
\end{gathered}
$$

Double Loop upgrade

NN, PhD. thesis, 1996
Baulieu, NN, Losev, 1997
Costello, 2013
Oxidation of cohomological field theory: make fields z, \bar{z}-dependent Ell-cohomology of \mathcal{M}
Fields/Equations/Symmetries paradigm: double loop space, i.e. $d+2$-dimensional fields
Correlations functions: pushforwards in elliptic cohomology of \mathcal{M}

$$
Q^{2}=\partial_{\bar{z}}
$$

$$
\left\langle\mathcal{O}_{1} \ldots \mathcal{O}_{p}\right\rangle^{d+2} \sim \int_{\mathcal{M}} \widehat{E} l l(\mathcal{M}) \wedge \Omega_{1} \wedge \ldots \wedge \Omega_{p}
$$

3d CS = loop upgrade of 2d YM

$$
\mathcal{M}=\text { moduli space of } G-\text { flat connections on } \Sigma
$$

$\mathcal{N}=2 d=2$ super-Yang-Mills theory, twisted version

$$
Q A=\Psi, Q \Psi=D_{A} \sigma, Q \sigma=0
$$

$$
\mathcal{Q} \chi=H, Q H=[\sigma, \chi], Q \bar{\sigma}=\eta, Q \eta=[\sigma, \bar{\sigma}]
$$

Review of the cohomological field theory on

$$
\mathcal{M}=\text { moduli space of } G-\text { flat connections on } \Sigma
$$

$\mathcal{N}=2 d=2$ super-Yang-Mills theory, twisted version

$$
\begin{gathered}
2 A=\psi, Q \psi=D_{A} \sigma, 2 \sigma=0 \\
2 \chi=H, Q H=[\sigma, \chi], Q \bar{\sigma}=\eta, Q \eta=[\sigma, \bar{\sigma}] \\
S_{0}=Q \int_{\Sigma} \operatorname{Tr}\left(\chi\left(\mathrm{i} F_{A}-g_{\mathrm{YM}}^{2} \star H\right)+\psi \wedge \star D_{A} \bar{\sigma}+\eta[\sigma, \bar{\sigma}]\right) \\
\uparrow \\
\text { Bare action }
\end{gathered}
$$

Review of 2d YM as deformation of SYM

$$
\mathcal{M}=\text { moduli space of } G-\text { flat connections on } \Sigma
$$

$\mathcal{N}=2 d=2$ super-Yang-Mills theory, twisted version

$$
S_{0}+\mathrm{i} \kappa \int_{\Sigma} \operatorname{Tr}\left(\sigma F_{A}+\frac{1}{2} \psi \wedge \psi\right)
$$

\uparrow
2-observable, viewed as deformation of the action Twisted F-term in the physical theory, $\widetilde{W}=\frac{\kappa}{2} \operatorname{Tr} \sigma^{2}$

Review of 2d YM

$\mathcal{N}=2 d=2$ super-Yang-Mills theory, twisted version

$$
S_{0}+\mathrm{i} \kappa \int_{\Sigma} \operatorname{Tr}\left(\sigma F_{A}+\frac{1}{2} \psi \wedge \psi\right)
$$

2-observable, viewed as deformation of the action Twisted F-term in the physical theory, $\widetilde{W}=\frac{\kappa}{2} \operatorname{Tr} \sigma^{2}$

$$
\text { Twisted } \bar{F} \text {-term, } \widetilde{W}^{*}=\frac{\bar{\kappa}}{2} \operatorname{Tr} \bar{\sigma}^{2}
$$ shifts the action by the Q-exact term

$$
+\mathrm{i} \bar{\kappa} \int_{\Sigma} \operatorname{Tr}(\bar{\sigma} H+\eta \chi)
$$

Review of 2d YM

Take the limit $\bar{\kappa} \rightarrow \infty$

$$
\mathrm{i} \bar{\kappa} \int_{\Sigma} \operatorname{Tr}(\bar{\sigma} H+\eta \chi)
$$

The quartet $\bar{\sigma}, H, \eta, \chi$ decouples: and we are left with A, ψ, σ

$$
Q A=\psi, Q \psi=D_{A} \sigma, Q \sigma=0
$$

$$
S=\mathrm{i} \kappa \int_{\Sigma} \operatorname{Tr}\left(\begin{array}{c}
\\
\uparrow
\end{array}\right.
$$

2-observable, becomes the action
Add 0-observable $t \operatorname{Tr} \sigma^{2} \Longrightarrow$ 2d Yang-Mills theory

Loop upgrade

$$
\begin{gathered}
S=\mathrm{i} \kappa \int_{\Sigma} \operatorname{Tr}\left(\sigma F_{A}+\frac{1}{2} \psi \wedge \psi\right) \\
\downarrow \\
S_{C S}=\frac{k}{4 \pi} \int_{\Sigma \times \mathbb{S}^{1}} \operatorname{Tr}\left(A d A+\frac{2}{3} A^{3}+\psi \psi\right)
\end{gathered}
$$

Double Loop upgrade

NN, PhD. thesis 1996, proposed to explain the representation theory of quantum affine algebras

$$
\begin{gathered}
S=\mathrm{i} \kappa \int_{\Sigma} \operatorname{Tr}\left(\sigma F_{A}+\frac{1}{2} \psi \wedge \psi\right) \\
\downarrow \\
S_{4 d C S}=\kappa \int_{\Sigma \times E} d z \wedge \operatorname{Tr}\left(A d A+\frac{2}{3} A^{3}+\psi \psi\right)
\end{gathered}
$$

where $d z$ is a holomorphic one-differential on E : an elliptic curve, a cylinder, or a plane

Susy of the Double Loop upgrade

$$
S_{4 d C S}=\kappa \int_{\Sigma \times E} d z \wedge \operatorname{Tr}\left(A d A+\frac{2}{3} A^{3}+\psi \psi\right)
$$

is Q-invariant, with

$$
\begin{aligned}
& \mathcal{Q} A_{m}=\psi_{m}, \mathcal{Q} \psi_{m}=F_{m \bar{z}}, \mathcal{Q} A_{\bar{z}}=0 \\
& \mathcal{Q} A_{z}=\eta, \quad \Omega \eta=F_{z \bar{z}}, \\
& \Omega \chi=H, \Omega H=D_{\bar{z} \chi}
\end{aligned}
$$

$$
m=1,2 \longrightarrow \text { coordinates on } \Sigma
$$

Anomaly of the Double Loop upgrade

$$
S_{4 d C S}=\kappa \int_{\Sigma \times E} d z \wedge \operatorname{Tr}\left(A d A+\frac{2}{3} A^{3}+\psi \psi\right)
$$

when E is an elliptic curve, is not gauge invariant

$$
S_{4 d C S} \longrightarrow S_{4 d C S}+\kappa \int_{\Sigma \times E} d z \wedge \text { integral } 3-\text { form }
$$

under large gauge transformations

Anomaly of the Double Loop upgrade

$$
S_{4 d C S}=\kappa \int_{\Sigma \times E} d z \wedge \operatorname{Tr}\left(A d A+\frac{2}{3} A^{3}+\psi \psi\right)
$$

when E is an elliptic curve, is not gauge invariant

$$
S_{4 d C S} \longrightarrow S_{4 d C S}+\kappa \int_{\Sigma \times E} d z \wedge \text { integral } 3-\text { form }
$$

under large gauge transformations, incommensurate periods...

Double Loop upgrade of $\mathcal{N}=4 d=4$ theory

$$
S_{4 d C S}=\kappa \int_{\Sigma \times E} d z \wedge \operatorname{Tr}\left(A d A+\frac{2}{3} A^{3}+\psi \psi\right)
$$

when E is an elliptic curve, is not gauge invariant

$$
S_{4 d C S} \longrightarrow S_{4 d C S}+\kappa \int_{\Sigma \times E} d z \wedge \text { integral } 3-\text { form }
$$

under large gauge transformations: incommensurate periods...

String theory realization

String theory realization

Various puzzles will be resolved

Different approaches will be connected

String theory realization

IIB string on $A L E \times \mathbb{R}^{2} \times E \times T^{2}$

String theory realization

IIB string on $\left(A L E \times \mathbb{R}^{2}\right) \tilde{\times}_{u} E \times T^{2}$

String theory realization

IIB string on $\left(\mathrm{ALE} \times \mathbb{R}^{2}\right) \tilde{\times}_{u} E \times T^{2}$

ALE with $\zeta_{i}^{\mathbb{C}}=0 \Longrightarrow U(1)$-isometry
ALE is twisted with a line bundle \mathcal{L}_{u} over E \mathbb{R}^{2} is twisted with a line bundle \mathcal{L}_{u}^{-2} over E

String theory realization of our gauge theory

IIB string on $\left(\mathrm{ALE} \times \mathbb{R}^{2}\right) \tilde{\times}_{u} E \times T^{2}$

String theory realization of our gauge theory

IIB string on $\left(\mathrm{ALE} \times \mathbb{R}^{2}\right) \tilde{\times}_{u} E \times T^{2}$
with $L D 7$-branes on ALE $\times E \times T^{2}$
with $N D 3$-branes on $E \times T^{2}$
with $K D 1$-branes on E

String theory realization of our gauge theory

> IIB string on $\left(\mathrm{ALE} \times \mathbb{R}^{2}\right) \tilde{x}_{u} E \times T^{2}$ with $L D 7$-branes on ALE $\times E \times T^{2}$
> with $N D 3$-branes on $E \times T^{2}$
> with $K D 1$-branes on E

Fractionalization: $(L, N, K) \longrightarrow\left(L_{i}, N_{i}, K_{i}\right)$
Compact branes to be summed over

String theory realization of the q-character

IIB string on ($\mathrm{ALE} \times \mathbb{R}^{2}$) $\tilde{x}_{u} E \times T^{2}$ with fractional $D 7, D 3, D 1$-branes and $D 5$-branes in addition

String theory realization of the q-character

IIB string on $\left(\mathrm{ALE} \times \mathbb{R}^{2}\right) \tilde{x}_{u} E \times T^{2}$ with $L D 7$-branes on ALE $\times E \times T^{2}$
with $N D 3$-branes on $E \times T^{2}$
with $K D 1$-branes on E
with $\tilde{L} D 5$-branes on ALE $\times E$

String theory realization of the q-character

with $N D 3$-branes on $E \times T^{2}$

with $\tilde{L} D 5$-branes on ALE $\times E$

This is similar to the construction of crossed instantons
$q q$-character and q-character observables in 4d and 5d supersymmetric gauge theories

String theory realization

Now we shall get a $6 d$-ish version
of Chern-Simons theory, dual
to the collection of quiver gauge theories

String theory realization

Now we shall get a 6d-ish version of CS theory
using T-dual string background(s)

T-dual description: electric frame

T-duality along E and one of the circles in T^{2}
IIA string on ALE $\times \mathbb{R}^{2} \times \check{E} \times \check{S}^{1} \times S^{1}$
with fractional D-branes

T-dual description: magnetic frame

T-dualize one of the circles in T^{2}
IIA string on ALE $\times \mathbb{R}^{2} \times E \times \check{S}^{1} \times S^{1}$
with fractional D-branes

Six dimensional super-Yang-Mills

Witten; Strominger; Greene, Morrison, Strominger; Bershadsky, Sadov, Vafa, 1995

Six dimensional super-Yang-Mills: electric frame

IIA string on ALE $\times \mathbb{R}^{2} \times \check{E} \times \check{S}^{1} \times S^{1}$

with fractional D-branes \Longrightarrow electric sources

Six dimensional super-Yang-Mills: magnetic frame

$$
\text { IIA string on ALE } \times \mathbb{R}^{2} \times E \times \check{S}^{1} \times S^{1}
$$

with fractional D-branes \Longrightarrow magnetic sources

Twist by $\mathcal{L}_{u} \Longrightarrow 6 \mathrm{~d} \Omega$-deformation of SYM

Six dimensional super-Yang-Mills: magnetic frame

$$
\text { IIA string on ALE } \times \mathbb{R}^{2} \times E \times \check{S}^{1} \times S^{1}
$$

with fractional D-branes \Longrightarrow magnetic sources

Twist by $\mathcal{L}_{u} \Longrightarrow 6 \mathrm{~d} \Omega$-deformation of SYM preserving $\mathcal{N}=(2,2) d=2$ super-Poincare invariance with 2 out of 4 scalars remaining massless: root of a Higgs branch

Six dimensional super-Yang-Mills: magnetic frame

$$
\text { IIA string on ALE } \times \mathbb{R}^{2} \times E \times \check{S}^{1} \times S^{1}
$$

with fractional D-branes \Longrightarrow magnetic sources

Twist by $\mathcal{L}_{u} \Longrightarrow 6 \mathrm{~d} \Omega$-deformation of SYM

In the limit of vanishing size $E \Longrightarrow \mathcal{N}=2^{*}$ theory in 4 d with special Ω-deformation, $m=-\varepsilon \Longrightarrow$ massless chiral in 2d

Six dimensional super-Yang-Mills: magnetic frame

$$
\text { IIA string on ALE } \times \mathbb{R}^{2} \times E \times \breve{S}^{1} \times S^{1}
$$

with fractional D-branes \Longrightarrow magnetic sources

Twist by $\mathcal{L}_{u} \Longrightarrow 6 \mathrm{~d} \Omega$-deformation of $S Y M$

In the limit of vanishing size $E \Longrightarrow \mathcal{N}=2^{*}$ theory in 4 d with special Ω-deformation, $m=-\varepsilon \Longrightarrow$ massless chiral in 2d magnetic membranes reduce to susy 't Hooft operators wrapped on A and B cycles on $\check{S}^{1} \times S^{1}$

Six dimensional super-Yang-Mills: electric frame

IIA string on ALE $\times \mathbb{R}^{2} \times \check{E} \times \check{S}^{1} \times S^{1}$
with fractional D-branes \Longrightarrow electric sources

Twist by \mathcal{L}_{u} upon T-duality on E
produces the Neveu-Schwarz B-field, with $H=d B \neq 0$

Six dimensional Chern-Simons theory

$$
\text { IIA string on ALE } \times \mathbb{R}^{2} \times \check{E} \times \check{S}^{1} \times S^{1}
$$

with electric sources
with the Neveu-Schwarz B-field, with $H=d B \neq 0 \Longrightarrow$

$$
\int_{\mathbb{R}^{2} \times \check{E} \times \check{S}^{1} \times S^{1}} H \wedge C S(A)
$$

from the $\int C \wedge G \wedge G$ Chern-Simons term in 11d

Four dimensional Chern-Simons theory

$$
\text { IIA string on ALE } \times \mathbb{R}^{2} \times \check{E} \times \check{S}^{1} \times S^{1}
$$

Neveu-Schwarz B-field, so that $H=d B \neq 0$

$$
\int_{\mathbb{R}^{2}} H \sim \operatorname{Re} \frac{d z}{u}
$$

Supersymmetric localization \Longrightarrow

$$
\int_{\mathbb{R}^{2} \times \check{E} \times \check{S}^{1} \times S^{1}} H \wedge C S(A)=\frac{1}{u} \int_{\check{E} \times \check{S}^{1} \times S^{1}} d z \wedge C S(\mathcal{A})
$$

Up to Q-exact terms, $\mathcal{A}=A+\mathrm{i}(\ldots)$

Open-closed string duality

Open-closed string duality

Open-closed string duality

Open-closed string duality

closed string exchange $=$ tree level

Open-closed string duality

closed string exchange $=$ tree level

Line operators

Line operators and instanton moduli

Line operators and instanton moduli

Two kinds of line operators

Two kinds of line operators and instanton moduli

String exchanges between line operators

String exchanges between line operators

Gluon exchanges between $\widehat{\text { Wilson }}$ loops

$\widehat{\text { Wilson }}$ loop $=$ Wilson loop with a hat

$$
\widehat{W}_{R_{\widehat{\lambda}}}[C, q]=\operatorname{Tr}_{R_{\widehat{\lambda}}}\left(q^{L_{0}} P \exp \oint_{C} A\right)
$$

for the highest weight representation $R_{\widehat{\lambda}}$ of $\widehat{G_{\Gamma}}$ Kac-Moody group

$\widehat{\text { Wilson }}$ loop $=$ Wilson loop with a hat

$$
\widehat{W}_{R_{\widehat{\lambda}}}[C, q]=\operatorname{Tr}_{R_{\widehat{\lambda}}}\left(q^{L_{0}} P \exp \oint_{C} A\right),
$$

Can be expanded in ordinary G_{Γ} - Wilson loops,
with higher spin representations suppressed by powers of q

Dictionary

$$
\widehat{W}_{R_{\widehat{\lambda}}}[C, q]=\operatorname{Tr}_{R_{\widehat{\lambda}}}\left(q^{L_{0}} P \exp \oint_{C} A\right),
$$

In our story, the two kinds of line operators we encounter correspond to

$$
\widehat{\lambda}=\sum_{i=0}^{r} L_{i} \varpi_{i}, \quad \text { and } \quad \widehat{\lambda}=\sum_{i=0}^{r} \tilde{L}_{i} \varpi_{i}
$$

respectively, with ϖ_{i} being the fundamental weights of $\widehat{\mathfrak{g}_{\Gamma}}$

Dictionary: weight subspaces

$$
R_{\widehat{\lambda}}=\bigoplus_{\widehat{w}} R_{\widehat{\lambda}}^{\widehat{w}}
$$

In our story, the two weight subspaces we encounter correspond to

$$
\widehat{w}=\sum_{i=0}^{r} L_{i} \varpi_{i}-N_{i} \alpha_{i}, \quad \text { and } \quad \widehat{w}=\sum_{i=0}^{r} \tilde{L}_{i} \varpi_{i}-\tilde{N}_{i} \alpha_{i}
$$

respectively, with $\tilde{N}_{i}=K_{i}$, and α_{i} being the simple roots of $\widehat{\mathfrak{g}_{\Gamma}}$

Twist parameters

The parameters \mathfrak{q}_{i} and $\tilde{\mathfrak{q}}_{i}$
\leftrightarrow
background $G_{\Gamma}^{\mathbb{C}}$-flat connection on $\check{S}^{1} \times S^{1}$

Twist parameters

The parameters \mathfrak{q}_{i} and \tilde{q}_{i}

background $G_{\Gamma}^{\mathbb{C}}$-flat connection on $\check{S}^{1} \times S^{1}$

Can be fixed in the six-dimensional setup (in 4d problematic)

Virasoro

\mathfrak{q}_{i} and $\tilde{\mathfrak{q}}_{i} \leftrightarrow$ flat $G_{\Gamma}^{\mathbb{C}}$-connection on $\check{S}^{1} \times S^{1}$
and the parameters q and \tilde{q} of the $\widehat{\text { Wilson }}$ loop operators

$$
q=\prod_{i \in \operatorname{Vert}_{\gamma}} \mathfrak{q}_{i}^{a_{i}}, \quad \tilde{q}=\prod_{i \in \operatorname{Vert}_{\gamma}} \tilde{\mathfrak{q}}_{i}^{a_{i}}
$$

In string theory:

$$
q=\exp -\frac{L_{\breve{S}^{1}} M_{s}}{g_{s}}+\mathrm{i} \int_{\check{S}^{1}} C_{(1)}, \quad \tilde{q}=\exp -\frac{L_{S^{1}} M_{s}}{g_{s}}+\mathrm{i} \int_{S^{1}} C_{(1)}
$$

$C_{(1)}=$ Background IIA Ramond-Ramond $U(1)$ flat gauge field on $\check{S}^{1} \times S^{1}$

Virasoro and M-theory

$$
\mathfrak{q}_{i} \text { and } \tilde{\mathfrak{q}}_{i} \leftrightarrow \text { flat } G_{\Gamma}^{\mathbb{C}} \text {-connection on } \check{S}^{1} \times S^{1}
$$

and the parameters q and \tilde{q} of the Wilson loop operators

$$
q=\prod_{i \in \text { Vert }_{\gamma}} \mathfrak{q}_{i}^{a_{i}}, \quad \tilde{q}=\prod_{i \in \text { Vert }_{\gamma}} \tilde{\mathfrak{q}}_{i}^{a_{i}}
$$

Lift to M-theory: line operators become M5 branes
wrapped on ALE $\times\left(\check{S}^{1}\right.$ or $\left.S^{1}\right) \times S_{10}^{1}$, respectively
q, \tilde{q} - elliptic curve nodes for $\left(\check{S}^{1}\right.$ or $\left.S^{1}\right) \times S_{10}^{1}$

Little strings

Berkooz, Rosali, Seiberg; Seiberg 1997
Losev, Moore, Shatashvili 1997
Reviews Aharony 1999; Kutasov 2001
in BPS/CFT context, (2,0) version, Aganagic, Haouzi, 2016
Take the limit $g_{s} \rightarrow 0$, keeping M_{s} finite: $q, \tilde{q} \rightarrow 0$
The Wilson loop operator becomes the ordinary one
Decouple one of the nodes, e.g. the affine one

$$
\begin{gathered}
\widehat{\mathfrak{g}_{\Gamma}} \rightarrow \mathfrak{g}_{\Gamma}, \mathfrak{q}_{0} \rightarrow 0, \tilde{\mathfrak{q}}_{0} \rightarrow 0 \\
L_{0}=K_{0}=0=\tilde{L}_{0}=N_{0}
\end{gathered}
$$

In lieu of conclusions

The Chern-Simons $\int d z \wedge C S(A)$ approach to quantum groups has the advantage of making the group whose quantum deformation one is seeking, visible in the structure of sources

Seems problematic for groups outside the ADE (BCFG) classification

Bethe/gauge correspondence does not have the explicit G_{Γ} symmetry but is more general (covers all quivers and also super-algebras)

Lots of things to learn and understand better...

One wild speculation

Naively, to describe affine quiver theories

One would attempt to study the $L G_{\Gamma}$, or $\widehat{G_{\Gamma}}$ gauge theory
One additional dimension: 7d theory? natural in M-theory on ALE
However, we learned: $U(1)_{L_{0}} \subset \widehat{G_{\Gamma}}$ is the $10 \mathrm{~d} \operatorname{RR} U(1)$ gauge field

Perhaps we'll learn about the origin of the (12d?) E_{8} gauge field
Hořava, Witten 1996; Witten 1997; Diaconescu, Moore, Witten 2000

Lots of things to learn and understand better...

THANK YOU

