Periodic Monopoles and qOpers

Vasily Pestun

Institut des Hautes Études Scientifiques

28 July 2017

Vasily Pestun (IHES)

Geometric Langlands Correspondence

Let C be Riemann surface. Then there is a conjectured equivalence

geometric Langlands

$$\mathcal{D}\mathrm{mod}(\mathrm{Bun}_{\mathcal{G}}(\mathcal{C}))\simeq'\mathrm{QCoh}'(\mathrm{Loc}_{{}^{L}\mathcal{G}}(\mathcal{C}))$$

Beilinson, Deligne, Drinfeld, Laumon

Arinkin, Gaitsgory, Frenkel, Lafforgue, Lurie, Mircovic, Vilonen

talk by Donagi

geometric Langlands as a mirror symmetry

$$A_{\epsilon^{-1}\Omega_I}(\operatorname{Hit}_{G}(C)) \simeq B_{J_{\epsilon}}(\operatorname{Hit}_{{}^{L}G}(C))$$

Hitchin, Hausel, Thaddeus, Donagi, Pantev, Arinkin, Bezrukavnikov, Braverman Bershadsky,Johansen,Sadov,Vafa Kapustin,Witten Teschner

geometric Langlands as a A-B mirror

$$A_{\epsilon^{-1}\Omega_I}(\operatorname{Hit}_G(C)) \simeq B_{J_{\epsilon}}(\operatorname{Hit}_{{}^LG}(C))$$

In particular

$$\mathcal{B}_{\mathsf{cc-brane}}(A_{\epsilon^{-1}\Omega_I}) \leftrightarrow \mathcal{B}_{\mathsf{opers}}(B_{J_\epsilon})$$

 $\mathcal{B}_{cc-brane}$ is the A-model canonical space-filling brane [Kapustin-Orlov] = 'quantized algebra of functions on T^*Bun_G ' = the sheaf \mathcal{D} in $\mathcal{D}mod(Bun_G)$

 $\mathcal{B}_{opers} := mirror(\mathcal{B}_{cc-brane})$ The $\mathcal{B}_{cc-brane}$ is holomorphic Lagrangian brane in $\operatorname{Hit}_{{}^{L}G, J_{e}}$ In the limit $\epsilon = 0$ (see talk by Donagi) we have

'baby' geometric Langlands as B-B model mirror

 $B_I(\operatorname{Hit}_G(C)) \simeq B_I(\operatorname{Hit}_{L_G}(C))$

Vasily Pestun (IHES)

Periodic Monopoles and qOpers

 $\mathcal{B}_{\mathsf{opers}}$ is HyperKahler rotation of $\mathcal{B}_{\mathsf{Hitchin}\ \mathsf{section}}$ in the limit

$$\zeta_{\text{twistor}} = \epsilon R, \qquad R \to 0$$

where $R \in \mathbb{R}_+$ rescales the Higgs field in the real moment map ω_I

$$F_A - R^2 \phi \wedge \phi = 0$$

Gaoitto, Moore, Neitzke

Gaiotto

Dumitrescu, Fredrickson, Rydonakis, Mazzeo, Mulase, Neitzke

In this limit $\operatorname{Hit}_{L_{G,J_{\epsilon}}}$ as a complex space is the space of flat ϵ -holomorphic connections

$$\operatorname{Loc}_{L_{G}}(C)_{J_{\epsilon}} = \{G \text{-bundle on } C, \epsilon \text{-connection } \epsilon \partial_{z} + A_{z}\}$$
 (2)

quantum geometric Langlands

Feigin, Frenkel, Gaitsgory, Kapustin, Witten

quantum geometric Langlands as a A-A mirror

$$egin{aligned} &\mathcal{A}_{\epsilon_1^{-1}\Omega_{J_{\epsilon_2}}}(\mathrm{Hit}_{\mathcal{G}}(\mathcal{C}))\simeq\mathcal{A}_{\epsilon_2^{-1}\Omega_{J_{\epsilon_1}}}(\mathrm{Hit}_{{}^{L}\mathcal{G}}(\mathcal{C}))\ &\mathcal{W}_{eta}(\mathfrak{g})\simeq\mathcal{W}_{{}^{L}eta}({}^{L}\mathfrak{g}) \end{aligned}$$

where

$${}^{L}\beta = -\frac{\epsilon_1}{\epsilon_2} = r({}^{L}k + {}^{L}h^{\vee}) = \frac{1}{k+h^{\vee}} = \frac{r}{\beta}$$

•
$$W_{\beta=\infty}({}^{L}\mathfrak{g}) \simeq \mathcal{O}(\mathcal{B}_{L_{\mathfrak{g}, \mathsf{opers}}}(\mathbb{C}^{\times})) \simeq Z(U_{-h^{\vee}}(\hat{\mathfrak{g}}))$$

• $W_{\beta}({}^{L}\mathfrak{g}) \simeq \mathcal{O}_{\beta^{-1}}(\mathcal{B}_{L_{\mathfrak{g}, \mathsf{opers}}}(\mathbb{C}^{\times}))$

 $W_{\rm g}\text{-}{\rm algebra}$ is quantization of the Poisson algebra of functions on $\mathcal{B}_{\rm g,opers}(\mathbb{C}^{\times})$ with quantization parameter β^{-1} Kostant, Drinfeld-Sokolov, Feigin-Frenkel

Depending on parameters ϵ_1, ϵ_2 we are dealing with different level of complexity of geometric Langlands duality:

- 'baby' geometric Langlands: $\epsilon_1 = \epsilon_2 = 0$ classical Hitchin integrable system
- 'quantum' geometric Langlands: ε₁ ≠ 0, ε₂ ≠ 0
 2d CFT / chiral vertex algebra / associative W-algebra

Dealing with representation theory of $U\hat{g}$, differential equations, KZ equations, CFT conformal blocks, 4d Nekrasov partition functions

Class S-theory in Ω -background

The class S theory on Ω -background $X_4 = \mathbb{C}^2_{\epsilon_1, \epsilon_2}$ gives us a microscope to nail down geometric Langlands

Nekrasov,Shatashivili Alday,Gaiotto,Tachikawa Gaiotto,Moore,Neitzke Teschner Kapustin, Witten Nekrasov.Witten (c.f. Feigin, Frenkel, Reshetikhin, more recently Aganagic, Frenkel, Okounkov and Saponov)

- $G \simeq {}^L G$ a compact Langlands self-dual Lie group
- C a flat Riemann surface, e.g. C is \mathbb{C} , \mathbb{C}^* or \mathcal{E}
- $Mon_G(C \times S^1)$ is the moduli space of G-monopoles on $C \times S^1$ with prescribed singularities at a coweight colored divisor on C
- flat action of abelian group $\mathbb C$ on C, so that $\epsilon \in \mathbb C$ acts by shift

$$z \mapsto z + \epsilon$$

where C is identified with \mathbb{C} , \mathbb{C}/\mathbb{Z} , or $\mathbb{C}/(\mathbb{Z} + \tau\mathbb{Z})$

• a constant section dz of K_C ; it induces holomorphic symplectic form Ω_I on $Mon_G(C \times S^1)$

Proposal for q-geometric Langlands

Conjecturally there are equivalences of the (derived) categories associated to the hyperKahler moduli space of periodic monopoles $Mon_G(C \times S^1)$

'baby' q-geometric Langlands is B-B mirror

$$B_I(\operatorname{Mon}_G(C \times S^1)) \simeq B_I(\operatorname{Mon}_{{}^LG}(C \times_{\epsilon_1} S^1))$$

'ordinary' q-geometric Langlands is A-B mirror

$$\mathcal{A}_{\epsilon_1^{-1}\Omega_I}(\operatorname{Mon}_{\mathcal{G}}(\mathcal{C} imes \mathcal{S}^1))\simeq \mathcal{B}(\operatorname{Mon}_{{}^{L}\mathcal{G}}(\mathcal{C} imes_{\epsilon_1}\mathcal{S}^1))$$

'quantum' q-geometric Langlands is A-A mirror

$$\mathcal{A}_{\epsilon_1^{-1}\Omega_{J_{\epsilon_2}}}(\mathrm{Mon}_{\mathcal{G}}(\mathcal{C}\times_{\epsilon_2}\mathcal{S}^1))\simeq \mathcal{A}_{\epsilon_2^{-1}\Omega_{J_{\epsilon_1}}}(\mathrm{Mon}_{^{L}\mathcal{G}}(\mathcal{C}\times_{\epsilon_1}\mathcal{S}^1))$$

Here $C \times_{\epsilon_1} S^1$ is C fibered over S^1 with a twist ϵ .

Type of
$$C = Jac(\check{C})$$

Č C	$\check{\mathcal{E}}_{cusp}$	$\check{\mathcal{E}}_{nod} \ \mathbb{C}^*$	Ě E
	4d	5d	6d
	rational	trigonometric	elliptic
	cohomology	K-theory	elliptic cohomology
	Yangian algebra	quantum affine algebra	elliptic quantum group
	difference	q-difference	elliptic q-difference

q-lift / categorification / K-theory version of various objects of (quantum) geometric Langlands and CFT.

Integrable system of periodic monopoles

Phase space

The space $Mon_G(C \times S^1)_I$ is the holomorphic phase space of integrable system of group valued Higgs bundles on C

Group Higgs bundles

 $\operatorname{Mon}_{G}(C \times S^{1})_{I} = \{G \text{-bundle on } C, \text{ meromorphic section } g \text{ of } Ad_{G} \text{ bundle} \}$

Let G be simply connected simple Lie group.

Hamiltonians

The ring of commuting Hamiltonians is generated by fundamental characters $\chi_{R_i}(g(z))$ where R_i denotes the irreducible representation with fundamental highest weight λ_i .

Vasily Pestun (IHES)

Periodic Monopoles and qOpers

 $\operatorname{Mon}_{G}(C \times S^{1}_{R})$ is hyperKahler.

There is a family of holomorphic structures on $Mon_G(C \times S^1)$ fibered over $\mathbb{CP}^1_{twistor}$.

There is a convenient description of $Mon_G(C \times S^1_R)_{\zeta}$ in the limit $\zeta \to 0, R \to \infty$ with fixed

$$\epsilon = \zeta R$$

aka 'conformal limit' Gaiotto, and talks by Holland and Bridgeland

The resulting complex space $Mon(C \times S^1)_{J_{\epsilon}}$ is equivalent to the complex space of ϵ -difference connections

Finite difference ϵ -connection

 $\operatorname{Mon}_{{}^{L}G}(\mathcal{C} \times S^{1})_{J_{\epsilon}} = \{{}^{L}G\text{-bundle }\mathcal{P} \text{ on } \mathcal{C}, \text{ mero morphism } \epsilon^{*}\mathcal{P} \to \mathcal{P}\}$

The space $\operatorname{Mon}_{\ell G}(C \times S^1)_{J_{\epsilon}}$ is q-geometric Langlands version of the space of flat ϵ -connections $\operatorname{Loc}_{\ell G}(C)_{J_{\epsilon}}$ of the *B*-side of the ordinary geometric Langlands.

Main question

In the ordinary geometric Langlands the key role plays the question of finding the image \mathcal{B}_{opers} of the quantization brane $\mathcal{B}_{cc-brane}$ under the mirror map. The answer leads to effective solution of quantum integrable system.

Beilinson,Drinfeld, Kapustin,Witten, Gukov, Witten, Nekrasov,Rosly,Shatashvili Teschner, Gaiotto, Neitzke-Holland

q-geometric Langlands A-B mirror

Can we compute the **q-oper brane**, that is can we find the image of the canonical coisotropic quantization brane

$$\mathcal{B}_{\mathsf{cc-brane}} o \mathcal{B}_{q\operatorname{-oper}}$$

under the q-geometric Langlands equivalence

$$A_{\epsilon_1^{-1}\Omega_I}(\operatorname{Mon}_{\mathcal{G}}(\mathcal{C} imes S^1)) o B(\operatorname{Mon}_{{}^L\mathcal{G}}(\mathcal{C} imes_{\epsilon_1}S^1))$$
?

(α, β) coordinates and the generating function $W(\alpha)$ of **q-opers**

To 'compute' Lagrangian brane of **q-opers** means for us to find a suitable system of Darboux coordinates (α^i, β_i) in $\operatorname{Mon}_{\ell G}(C \times_{\epsilon_1} S^1)$ and the generating function $W(\alpha)$ such that

$$\beta_i = \frac{\partial W}{\partial \alpha^i}$$

In the case of ordinary \mathfrak{sl}_2 opers on \mathbb{P}^1 with 4 regular singularities the problem has been solved by Nekrasov, Rosly, Shatashvili. The generalization to \mathfrak{sl}_n opers and irregular punctures has been addressed by Neitzke-Hollands, presented in the talk by Hollands, also see talk by Bridgeland. In this talk we will find the solution of **q-oper** problem.

 Give geometric definition of the space of *q*-difference connections that are **q-opers**

$$\mathcal{B}_{q-opers} \subset \operatorname{Mon}_{{}^{L}G}(\mathcal{C} \times_{\epsilon} S^{1})$$

- 2 Define Darboux coordinates (α^i, β_i) in $\operatorname{Mon}_{{}^{L}G}(\mathcal{C} \times_{\epsilon} S^1)$
- 3) Present the generating function ${\cal W}(lpha)$ such that

$$\beta_i = \frac{\partial W}{\partial \alpha^i}$$

is the graph of $\mathcal{B}_{q\text{-opers}}$.

The presented technic applies to any compact Lie group G, and any flat curve C, in the talk we consider concrete examples.

q-oper definition

From now on fix the *q*-difference case $C = \mathbb{C}^{\times}$, denote by $z \in \mathbb{C}^{\times}$ the multiplicative coordinate, and set

$$q=e^\epsilon$$

to be multiplicative shift

 $z \mapsto qz$

A q-connection A(z) defines the parallel transport, i.e. q-difference equation on a trivializing section

s(qz) = A(z)s(z)where $A \in G(\mathbb{C}^*)$ is a

G-valued function of z

c.f. talk by Okounkov

gauge transformation: $A(z) \rightarrow g(qz)A(z)g(z)^{-1}$ What does it mean for G-group valued q-connection A(z) to be a q-oper? Recall that

A g-oper for g valued connection $\partial_z + a_z$ comes from Kostant section (Kostant'59-'63)

 $s_{\mathsf{K}}:\mathfrak{g}/G\to\mathfrak{g}$

of the adjoint Lie algebra quotient $\pi : \mathfrak{g} \to g/G$, see talk by Ben-Zvi.

After fixing a Borel subalgebra, Kostant section yields an element $a \in \mathfrak{g}$ by its conjugacy class.

Example of Kostant section for \mathfrak{sl}_2

Let $\mathfrak{g} = \mathfrak{sl}_2$ and fix a conjugacy class $u = \frac{1}{2} \operatorname{tr} x^2$ of a regular $a \in \mathfrak{g}$. Then Kostant section is

$$a = \begin{pmatrix} 0 & u \\ 1 & 0 \end{pmatrix}$$

The \mathfrak{sl}_2 -oper is a connection of the form $\partial_z + \begin{pmatrix} 0 & u \\ 1 & 0 \end{pmatrix}$, talk Hollands, Ben-Zvi

18 / 38

Parallel to the work of Kostant'59-'63 for the Lie algebra, there is construction of Steinberg'65 section for the Lie group.

Example of Steinberg section for SL_2

Let $G = SL_2$ and fix a conjugacy class $t_1 = \operatorname{tr} g$ of a regular $g \in G$. Then Steinberg section is

$$g = \begin{pmatrix} t_1 & 1 \\ -1 & 0 \end{pmatrix}$$

Example of Steinberg section for SL_n

Fix a conjugacy class of a regular $g \in G$ by the fundamental characters $t_k = \chi_{R_k}(g)$ where $\chi_{R_k} = \operatorname{tr}_{\Lambda^k \mathbb{C}^n} g$. Then Steinberg section is

$$g = \begin{pmatrix} t_1 & t_2 & t_3 & \dots & 1 \\ -1 & 0 & 0 & \dots & 0 \\ 0 & -1 & 0 & \dots & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & \dots & -1 & 0 \end{pmatrix}$$

Definition of Steinberg section for simple G

Fix $\mathfrak{g} = \mathfrak{g}_- \oplus \mathfrak{h} \oplus \mathfrak{g}_+$ and let $e_i \in \mathfrak{g}_+$ be the standard generators of weight α_i where α_i are simple roots with $i = 1 \dots r$. Let $s_i \in N(T)$ be the Weyl reflections in simple roots α_i , in particular $s_1 \dots s_r$ is Coxeter element. Then an element

$$g(t) = \prod_{i=1}^r s_i \exp(-e_i t_i), \qquad t_i \in \mathbb{C}$$

is Steinberg section: there is an isomorphism (i.e. polynomial map in both directions) between affine spaces of the parameters (t_1, \ldots, t_r) and the affine space of the fundamental characters (χ_1, \ldots, χ_r)

Caution

In the SL_{r+1} example we find

$$t_i = \chi_i, \qquad i = 1 \dots r$$

but in general the map between χ_i and t_i is not identity.

where χ_1 is vector, χ_2 is adjoint, χ_3, χ_4 are spinors.

Definition of q-oper

A q-oper in $\operatorname{Mon}_G(\mathbb{C}^* \times_q S^1)$ on C is the following data

- a reduction of the structure group of the *G*-bundle to a Borel subgroup *B*
- a q-connection A(z) in the form of Steinberg section

$$A(z) = \prod_{i=1}^{r} s_i \exp(-e_i t_i(z))$$

Frenkel, Semenov-Tian-Shansky, Sevostyanov

Example of SL_2 q-oper

$$A(z) = \begin{pmatrix} t_1(z) & 1 \\ -1 & 0 \end{pmatrix}$$

Example of SL_n q-oper

$$A(z) = egin{pmatrix} t_1(z) & t_2(z) & t_3(z) & \dots & 1 \ -1 & 0 & 0 & \dots & 0 \ 0 & -1 & 0 & \dots & 0 \ 0 & 0 & -1 & 0 & 0 \ 0 & 0 & \dots & -1 & 0 \end{pmatrix}$$

Example of SO_8 q-oper

Pick a basis in the fundamental representation of SO_8 such that the metric has the form

/0	0	0	0	1	0	0	0\
0	0	0	0	0	1	0	0
0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	1
1	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0
٥/	0	0	1	0	0	0	0/

and choose the conventional basis of simple roots. Then SO_8 q-oper is

$$A(z) = \begin{pmatrix} t_1(z) & t_2(z) & t_3(z)t_4(z) & t_4(z) & 0 & 0 & -1 & t_3(z) \\ -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -t_4(z) & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -t_1(z) & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -t_2(z) & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & -t_3(z) & -1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

The Steinberg affine map from the parameters $(t_1(z), \ldots, t_r(z))$ of Steinberg section to the space of adjoint invariants defined by the fundamental characters $(\chi_1(z), \ldots, \chi_r(z))$ provides canonical holomorphic isomorphism between the brane of q-opers $\mathcal{B}_{q-opers}$ and the base of $\operatorname{Mon}_G(C \times S^1)$ integrable system. The power of Nekrasov, Rosly, Shatashvili construction comes from certain system of distinguished coordinates (α, β) in the character variety $\operatorname{Char}_{G}(C)$ (representation of the fundamental group $\pi_{1}(C)$ in G).

Riemann-Hilbert

The character variety $\operatorname{Char}_G(C)$ is isomorphic to the space $\operatorname{Loc}_G(C)$ of the pairs (holomorphic G-bundle, holomorphic flat connection $\partial_z + a_z$) but the isomorphism is complex analytic, rather than algebraic.

This isomorphism requires to compute the monodromies of the flat connection $(\partial_{\overline{z}}, \partial_z + a_z)$ and is called Riemann-Hilbert correspondence.

Unwrap the spirals

Similarly, for the $Mon_G(\mathbb{C}^* \times_q S^1)$ we need to introduce the coordinates (α, β) in the space $qChar_G(\mathbb{C}^*)$ – the analogue of the character variety.

To construct qChar variety we look at space $\mathbb{C}^* \times_q S^1$ as the family of spirals $\simeq \mathbb{R}$ fibered over the elliptic curve $\tilde{C} = \mathbb{C}^*/q^{\mathbb{Z}}$.

The qChar variety

$$\operatorname{qChar}_{G}(\mathbb{C}^{*}) = \operatorname{Mon}_{G}(\mathcal{E}_{q} \times \mathbb{R}_{t})$$

The holomorphic description is given along the rays \mathbb{R}_t from $t = -\infty$ to $t = +\infty$.

So we shall look for canonical coordinates (α, β) in the space $Mon_{\mathcal{G}}(\tilde{\mathcal{C}} \times \mathbb{R})$.

This space is well-understood after the work of Hitchin on monoles in \mathbb{R}^3 . In fact, if \tilde{C} were \mathbb{C}

 $\operatorname{Mon}_{G}(\mathbb{C} \times \mathbb{R})_{n} \simeq \operatorname{Maps}_{n}(\mathbb{P}^{1}, G/B)$

where the monopole charge *n* takes values in the coroot lattice of *G*. The key idea is that we can filter the solutions to the parallel transport equation along the rays \mathbb{R}

$$D_t s = 0$$

and construct two flags according to the asymptotics of growth as $t \to +\infty$ or as $t \to -\infty$. Birkhoff,Stokes,Hitchin,Hurtubise,Jarvis, c.f. talk by Hollands. To specify a flag is equivalent to specify a reduction of *G*-bundle structure to *B*-bundle.

Example of qChar for SL_2

For SL_2 charge k monopoles we expect $Maps(\tilde{C}, \mathbb{P}^1)_k$, i.e. degree k rational rational functions. Suppose that scattering monodromy from $t = -\infty$ to $t = \infty$ modulo B transformations is

$$\begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \begin{pmatrix} a(z) & b(z) \\ c(z) & d(z) \end{pmatrix}$$

The invariant data is the ratio

$$\frac{b(z)}{a(z)} = \sum_{i=1}^{n} \frac{\beta_i}{z - \alpha_i}$$

where $\alpha_i \in \tilde{C}$ are locally flat relative to dz, and β_i are the residues.

The system (α, β) provides canonical coordinates for SL_2 qChar

$$\{\alpha_i,\beta_j\}=\delta_{ij}\beta_j$$

Hitchin, Donaldson, Hurtubise, Jarvis, Gerasimov, Harchev, Lebedev, Oblezin, Finkelberg, Kuznetsov, Markarian, Mirkovic, Braverman

Vasily Pestun (IHES)

Periodic Monopoles and qOpers

For SL_2 monopoles on $\tilde{C} \times \mathbb{R}$ there is two-dimensional space of solutions of parallel transport along \mathbb{R} parametrize by the points $z \in \tilde{C}$.

$$D_t s = 0$$

Let $s_{\pm}(z, t)$ be the two solutions of minimal growth as $t \to \pm \infty$, they specify two lines $L_+ \subset \mathbb{C}^2$ and $L_- \subset \mathbb{C}^2$.

$$egin{aligned} 0 \subset L_+(z) \subset \mathbb{C}^2 \ 0 \subset L_-(z) \subset \mathbb{C}^2 \end{aligned}$$

For generic z the two lines $L_+(z)$ and $L_-(z)$ are in generic position with $L_+ \cup L_- = 0$. Still it could happen that at some point $z_* \in \tilde{C}$ the lines $L_+(z_*)$ and $L_-(z_*)$ coincide. The set of such points z_* are α_i coordinates. From this special solution $s(\alpha_i, t)$ of minimal growth at $t \to \pm \infty$ we find the conjugated coordinate β_i as the abelian monodromy, that is ratio

$$\beta_i = \frac{\lim_{t \to \infty} s(\alpha_i, t) e^{-\lambda_+ t}}{\lim_{t \to -\infty} s(\alpha_i, t) e^{-\lambda_- t}}$$

in situation when the minimal growth solution has regular asymptotics with fixed values of λ_{\pm} coming from the boundary data of monopoles Mon at infinity.

For non-regular growth we use more general suitable basis of normalizing coefficents.

The GL_n -difference equations and difference Hilbert-Riemann correspondence have been adressed since the ancient times Birkhoff'1913, and more recent work by Baranovsky-Ginzburg, Jimbo-Sakai, Borodin, Krichever, Ramis, Sauloy, Zhang, Etingof, Singer, Vizio, Kontsevich, Soibelman, and c.f. talk by Okounkov

The twistor geometry of the periodic monopoles provides a new perspective on this ancient story.

The construction (α, β) coordinates for monopole scattering problem of $Maps(\tilde{C}, G/B)$ has natural generalization for arbitrary simple Lie algebra G, and introduction of singularities.

In generic case we have $\sum_{i=1}^{r} n_i$ pairs of coordinates $(\alpha_{i,j}, \beta_{i,j})$ where $\sum n_i \alpha_i^{\vee}$ is monopole charge, with $j = 1 \dots n_i$. The coordinates $\alpha_{i,j}$ are the points on \tilde{C} in which the map to G/B lands in the divisor colored by the simple root α_i .

Some versions of *qChar*-varieties for $Mon_G(\tilde{C} \times \mathbb{R})$, have appeared under different names such as rational/trigonometric/elliptic Zastava Finkelberg et.al, Braverman et.al, Beilinson-Drinfeld Grassmanian Gerasimov et.al, or the fiber of Hecke correspondence Kapustin-Witten.

Separation of Variables / Abelianization / q-Miura transformation

By gauge transformation $\tilde{A}(z) = g(qz)A(z)g^{-1}(z)$ of the q-connection A(z) in the equation s(qz) = A(z)s(z) the q-oper

$$A(z) = \begin{pmatrix} t_1(z) & 1 \\ -1 & 0 \end{pmatrix}$$

can be converted into the lower triangular form with

$$ilde{\mathcal{A}}(z) = egin{pmatrix} Y^{-1}(z) & 0 \ -1 & Y(z) \end{pmatrix}$$

and

$$t_1(z) = Y(qz) + Y^{-1}(z)$$

The variables $Y_i(z)$ can be thought as generalized eigenvalues of Kac-Moody group element represented by the Steinberg section $t_1(z), \ldots, t_r(z)$.

Now we can integrate abelianized equation. Define $Q_i(z)$ such that

$$Q_i(qz) = Y_i(qz)Q_i(z)$$

and take the solution $Q_i(z) \to 1$ at $z \to 0$ (assuming that 0 is regular singuarity with generalized eigenvalues $Y_i(z) \to 1$).

The $Q_i(z)$ generically blows up along the ray z/q^n as $n \to +\infty$.

But for certain rays $\alpha_{i,j}q^{\mathbb{Z}}$ the function $Q_i(\alpha_{i,j}q^k)$ has the asymptotics of minimal growth, say

$$Q_i(zq^k)\sim {eta_{i,j}}{\mathfrak{q_i}}^k$$

where q_i is the minimal eigenvalue of generalized root type eigenvalue $Y_i(z)$ at $z \to \infty$. This gives canonical coordinates $(\alpha_{i,i}, \beta_{i,i})$

Proposition

The 5d K-theoretic ADE quiver gauge theory partition function Z on $\mathbb{C}^2_{q_1,q_2} \times S^1$ is the generating function of the \mathcal{B}_{q-oper} in the qChar_G in coordinates (α,β) in a sense that \mathcal{B}_{q-oper} is Lagrangian defined by the graph

$$\beta_{i,j} = \lim_{q_2 \to 1} Z(q_2 a_{i,j}, \ldots,)/Z(a_{i,j}, \ldots)$$

The expression of $t_i(z)$ in terms of the generalized eigenvalues $Y_i(z)$ is called q-character Frenkel, Reshetikhin, Semenov-Tian-Shansky, Sevostyanov.

It coincides with the q-character coming from the quiver gauge theory construction Nekrasov, VP, Shatashvili'13.

Dankeschön!