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Defining properties of Conformal Field Theory 
in Two Dimensions

[Belavin-Polyakov-Zamolodchikov ’84, Friedan-Shenker ’87, Segal ’87, Moore-Seiberg ’88]

2. Local operators organize into (unitary) representations 
of Virasoro algebra.

3. There is an associative operator product expansion.

4. Modular invariance (or covariance) of torus one-point 
function.

Non-local operators and boundary states are beyond the scope of this talk.

1. There is a local, conserved stress-energy tensor ⇒ 
Virasoro symmetry with central charge c
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1. Strongly coupled SCFTs beyond BPS sector 

e.g. Landau-Ginzburg/Calabi-Yau models, deformed symmetric product 
orbifolds. In principle accessible using conformal perturbation theory starting 
from solvable points on conformal manifold, technically challenging.

3. Non-unitary conformal supergroup sigma models

arise on the worldsheet of superstrings in AdS 

Important for AdS3/CFT2  e.g. D1-D5 CFT

2. Potentially irrational compact CFTs as infrared fixed points 
of (non-supersymmetric) RG flows

e.g. coupled Potts models  [Dotsenko et al ’98]

[Bershadsky, Zhukov, Vaintrob ’99, Berkovits, Vafa, Witten ’99, Berkovits ’00, ’04]
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(Put differently, can a unitary Virasoro algebra always be embedded in a 
compact modular invariant theory?)

5. To what extent does the low lying operator spectrum of a CFT pin down the 
entire theory? (Existence and uniqueness of UV completion of gravity+matter in 
AdS?)

4. Are there really compact CFTs of large c and large gap in the spectrum of 
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Beyond RCFT, our analytic tools are limited.

Conformal perturbation theory, when available, is hard.

Unlike the “old” bootstrap which aims to construct exact 
solutions,

Our goal is to carve out the space of 2D (unitary) CFTs.

We would like to know: what are the possible spectra of local 
operators and structure constants?

the “new” bootstrap aims to rule out theories (and constrain 
known theories).

[Ferrara, Grillo, Gatto ’73, Polyakov, ’74, Mack, ’77, Belavin, Polyakov, Zamolodchikov, ’84, ….]

[Ratazzi, Rychkov, Tonni, Vichi ’08, ….many more]
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modular invariancecrossing invariance
(associativity of OPE)

(any spacetime dimension) (only properly understood in 2D)
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Let us begin with a simple example

Modular invariance of the torus partition function

Invariance under                   is equivalent to the requirement 
that all local operator have integer spins.
(Fermionic theories are subject to GSO projection.)

The invariance under                   imposes much more 
nontrivial constraints on the operator spectrum.

For instance, it relates the growth of the number of operators 
at large scaling dimensions to the operator content of the 
lowest scaling dimensions. [Cardy ’86]

The modular constraint on the operator spectrum goes much 
further!
[Hellerman ’09, Friedan-Keller ’13, Qualls-Shapere ’13, Collier-Lin-XY ’16]



Modular Bootstrap



The torus partition function admits character decomposition:

Modular Bootstrap



The torus partition function admits character decomposition:

(Assuming c>1 here; h=0 character is degenerate.)

Modular Bootstrap



The torus partition function admits character decomposition:

We impose the positivity of             and modular invariance of            , 
namely,

(Assuming c>1 here; h=0 character is degenerate.)

Modular Bootstrap



The torus partition function admits character decomposition:

We impose the positivity of             and modular invariance of            , 
namely,

and that the spin takes integer values.

(Assuming c>1 here; h=0 character is degenerate.)

Modular Bootstrap



The torus partition function admits character decomposition:

We impose the positivity of             and modular invariance of            , 
namely,

and that the spin takes integer values.

(Assuming c>1 here; h=0 character is degenerate.)

Modular Bootstrap

We aim to rule out all spectra     with some hypothetical properties.



Modular crossing equation



Modular crossing equation

Strategy: seek a linear functional 



Modular crossing equation

Strategy: seek a linear functional 

such that 



Modular crossing equation

Strategy: seek a linear functional 

such that 

Depending on the hypothesis we choose to make on the 
spectrum, such a linear functional      may or may not exist. 
If      is found, then the modular crossing equation cannot be 
satisfied, thereby ruling out the hypothetical spectrum.
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s

Δ

excluded by 
unitarity bound

excluded by 
unitarity bound

excluded by 
hypothesis

In practice, can work with a basis of linear functionals up to a finite 
derivative order, truncate on the range of spin (must check stability 
wrt increasing spin truncation), and use semidefinite programming 
[SDPB by D. Simmons-Duffin] to optimize the bound numerically.
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E8

SO(8)
G2

SU(3)
SU(2)

exclusion

all-spin bound

scalar bound

Modular bounds on the gap in the spectrum (all-spin Virasoro 
primaries vs scalar Virasoro primaries)  [Collier-Lin-XY ’16]

large c asymptotics?

(bound exists 
up to c=25 only)

conjecture motivated by 
3D gravity: c/12 + “less 
than linear in c”

numerics: < c/9
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Now we turn to the analysis of OPE
(via crossing invariance of sphere 4-point function)

ϕ4

ϕ3

ϕ1

ϕ2

Virasoro conformal block

ϕ4

ϕ3

ϕ1

ϕ2

useful to map to 
pillow geometry The 4-punctured sphere is conformally 

mapped to the pillow geometry (T2/Z2), 
with the identification of moduli
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z-plane q-disc

[Zamolodchikov ’87, Maldacena-Simmons-Duffin-Zhiboedov ’15]

It is useful to work with the q-expansion of the Virasoro conformal 
block, which makes manifest various analyticity and positivity 
properties, and allows for efficient numerical evaluation.

We perform practical computations using Zamolodchikov’s recurrence 
relations, in which the Virasoro blocks are expressed in terms of 
residue contributions from poles in its analytic continuation in the 
weights or in the central charge.
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For simplicity, restrict to a pair of primaries

In a unitarity CFT, the OPE coefficients are real. We can again 
exploit the positivity of the coefficients of the conformal block 
expansion using semidefinite programming.
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Assuming only scalar Virasoro primaries in OPE

0
c-1
16

c-1
12

Δϕ

c-1
12

Δgap

[van Rees, unpublished; Collier, Lin, XY, unpublished]
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Can do better than just bounding the gaps and OPE coefficients 
of the first few operators!

4-point function

The spectral function

captures distribution of OPE coefficients in scaling dimension.
[Kim, Kravchuk, Ooguri, ’15; Collier, Kravchuk, Lin, XY, ’17]

Can bound spectral function using semidefinite programming.

Recall crossing equation, in the schematic form
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Now consider the inequality

If       is obeyed by a set of coefficients                                         

then multiply by       , and sum over     , the coefficients         drop 
out by virtue of crossing equation, and we end up with

i.e.       is a lower bound on the spectral function.

Optimal lower bound achieved by maximizing       subject to    . .

Likewise, optimal upper bound obtained by minimizing       subject to
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A few words on superconformal theories

In (2,2) SCFT, marginality implies exactly marginality. 
[Dixon ’87, Green, Komargodski, Seiberg, Tachikawa ’10]

They provide abundant examples of interacting, compact, 
irrational CFTs (along the conformal manifold).

Bootstrap method allows us to get a handle on the non-BPS 
operators in SCFTs, by analyzing e.g. the OPE of BPS operators.

. . . .RCFTs

singular CFT
.
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Some technical ingredients

1. Moduli dependence is fed into the crossing equation through 
chiral ring relations and/or protected BPS correlators.

2. N=2 Super-Virasoro conformal blocks known for BPS external 
operators.

[Chang, Lin, Shao, Wang, XY, ’14]

e.g. in superconformal NLSM on K3, can determine integrated half 
BPS 4-point function [Kiritsis-Obers-Pioline, ’00, Lin-Shao-Wang-XY, ‘15]

determined from BPS correlators in N=2 cigar SCFT, related to 
bosonic Virasoro blocks in simple ways
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4-point function

Example 1: for K3 CFT, bounding the gap of non-BPS primaries 
in the OPE of a pair of 1/2-BPS operators along the moduli space.

Gap bound saturated by A1 
cigar CFT (c=6, N=4 Liouville)

[Lin, Shao, Wang, Simmons-Duffin, XY ’15]
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Δgap
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q = 1, λ = 0

bound saturated by products of N=2 minimal models 
(Landau-Ginzburg model with two superfields at special 
point on the conformal manifold)

Upper bound on the scaling dimension of the first non-BPS primary 
in the OPE of a pair of marginal chiral and anti-chiral primaries

[Lin, Shao, Wang, XY ’16]
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A few technical challenges

1. Conformal anomaly: choose a convenient conformal frame to 
make modular invariance manifest

2. Need efficient method of computing genus two conformal blocks

3. Need to handle semidefinite programming on functions of three 
internal weights

σ3 σ3

σ3 σ3

Plumbing frame:  
modular invariance not manifest

Renyi frame:  
modular invariance manifest

Recursion relations via analytic continuation in central charge.

(Don’t have the computer program to do this efficiently yet.)
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General Virasoro conformal blocks

In the plumbing frame, the large c limit is finite.

c=∞ vacuum block global SL(2) block

residues at poles are determined recursively

(captured by 1-loop partition function 
of 3D gravity on a handlebody) 
[Giombi-Maloney-XY ’08]

[Zamolodchikov ’84]
generalizations by [Hadasz, Jaskolski, Suchanek ’09] [Cho, Collier, XY ’17]
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General Virasoro conformal blocks

Necklace 
channel

OPE 
channel

Red: numerical result for genus one reflection 
amplitude in c=1 string theory from the worldsheet

Blue: matrix model result

Allows for efficient computation of arbitrary Virasoro conformal blocks.  

A recent application is the evaluation of torus 2-point function in Liouville 
CFT, and upon moduli integration, the genus one 2-point reflection 
amplitude in c=1 string theory [Balthazar-Rodriguez-XY ’17].
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To make modular invariance manifest, work in a different 
conformal frame. A convenience choice is the “Renyi frame”.

To begin with, consider the Z3 invariant Renyi surface (a genus two surface 
that is a 3-fold cover of the Riemann sphere branched at four points):

σ3 σ3

σ3 σ3

The Renyi surfaces occupy a 1 complex 
dimensional locus of the moduli space of 
genus two Riemann surfaces.

The parameter z is the cross ratio of the 
four branch points on the sphere.
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A nontrivial generator of the genus two modular group Sp(4,Z) is 
the crossing transformation of the four-point function of Z3 twist 
fields.
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σ3 σ3

σ3 σ3

conformal anomaly plumbing frame block

The infinite c limit of the plumbing frame block for the Renyi surface is

(Finite c result can be recovered by recursion formula.)
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Genus two crossing equation 
beyond the Renyi surface

TTT

σ3 σ3

σ3 σ3

  

Triplet of Virasoro descendants of identity 
operator inserted on the three sheets

Modified genus two conformal blocks 
(with insertions of Virasoro 
descendants of id)
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A systematic investigation of the consequences of the genus 
two modular crossing equation is yet to be performed.

Some nontrivial bounds relating structure constants of 
small and large dimension operators can be derived by 
simply inspecting the first few orders of the expansion of 
the genus two modular crossing equation around z=1/2.
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Summary: we know very little about “generic” 2D CFTs.

At least the rule of the game is clear.

(Embarrassingly so when it comes to CFTs with “nice” holography duals.)

Lots of work to do for physicists and mathematicians!


